
1

3 4

5

2

0.43016

0.56984

0.43016

1

0.56984

0.43016

0.56984

1

3 4

5

2

p0

p2

p3 p3

p3
p2

p2

A B

1

6

5

2
p2

p3
p3 p3p2

p2

C D

1

6

5

2

E

1

6

5

2

START END

START

START

START

START

END

END END

END

Supplementary Figure 1: An example walk and demonstration of the steps in deriving the
scaling law. (A) Example network, with arcs labelled by stepping probabilities. The walk starts in
node 1 and ends in node 5. (B) The same network, but with transition probabilities re-expressed as
integer powers of a base probability p ≈ 0.7548776, which solves p2 + p3 = 1. Our scaling law does
not require transition probabilities to be exact integer powers of some base probability p, however, it
makes the arguments we present here more straightforward. See [1] for details on how to handle the
more general case. (C) Any transition with probability 1, say from node i to node j, is eliminated
by collapsing the two into a new node k. All incoming arcs to the old nodes i and j are redirected
to node k, while all outgoing arcs from the old node j are copied over to node k. In this network,
nodes 3 and 4 are collapsed into a new node 6. After this transformation, each arc has probability
pn for some n > 0. (D) Each arc with probability pn is replaced by a series of n arcs. The crucial
benefit of this transformation is that every path with probability pn in the original network has a
corresponding path of length n in the new network D. Counting paths of a certain probability in
network A thus corresponds to counting paths of a certain length in network D—a problem that
is well understood. (E) Strongly connected components of the network, indicated by dashed lines,
are identified to determine how the number of paths grows with path length. In this case, one
component supports exponential growth, so that the overall distribution of path probabilities will
be powerlaw. The slope of the powerlaw depends on the base probability p and the exact rate of
exponential growth of the number of paths.

1

START END

p

1- p

A

START END

p/2

1- p

B
A

B
p/2

Supplementary Figure 2: Parameterized random walks demonstrating that nearly arbitrary
scaling slopes can be achieved. (A) Mono-cyclic case. (B) Multi-cyclic case.

2

A

A END

p/2

1- p

B
B

C
p/2

A END

p

1- p
START

q

1- q

START
q

1- q

Supplementary Figure 3: Parameterized random walks demonstrating that expected first-
passage time and scaling slope need not be related. (A) Mono-cyclic case. (B) Multi-cyclic case.

3

0 2 4 6 8 10
0.165

0.17

0.175

0.18

0.185

0.19

0.195

0.2

0.205

0.21

autocorrelation lag o

eq
ua

l−
sy

m
bo

l a
ut

oc
or

re
la

tio
n

songs
permuted songs

Supplementary Figure 4: Equal-symbol autocorrelation analysis of the songs in the Essen
collection suggest history dependence of no more than 7 steps.

4

100 102 10410−9

10−8

10−7

10−6

10−5

path rank, r

pa
th

 p
ro

ba
bi

lit
y,

 P
r

100 102 10410−8

10−7

10−6

10−5

10−4

10−3

path rank, r

pa
th

 p
ro

ba
bi

lit
y,

 P
r

100 102 10410−7

10−6

10−5

10−4

10−3

10−2

path rank, r

pa
th

 p
ro

ba
bi

lit
y,

 P
r

100 102 10410−7

10−6

10−5

10−4

10−3

10−2

path rank, r

pa
th

 p
ro

ba
bi

lit
y,

 P
r

100 102 10410−6

10−5

10−4

10−3

10−2

10−1

path rank, r

pa
th

 p
ro

ba
bi

lit
y,

 P
r

100 102 10410−7

10−6

10−5

10−4

10−3

10−2

path rank, r

pa
th

 p
ro

ba
bi

lit
y,

 P
r

100 102 10410−7

10−6

10−5

10−4

10−3

path rank, r

pa
th

 p
ro

ba
bi

lit
y,

 P
r

Supplementary Figure 5: For each of the seven energy basins of the G-protein model, plots of
the log probability versus log rank for escape paths indicate powerlaw scaling. Solid lines are
predicted slopes, based on our scaling theory.

5

Supplementary Note 1: Justification for the scaling law

Our scaling law generalizes previous work by Mandelbrot [2], Miller [3] and Li [4]. The latter
two works assumed all transitions are equiprobable, and that any node of the network could come
next in the random walk. The former work sketched arguments that allowed for non-equiprobable
transitions as well as restrictions on which nodes could be stepped to from each node. However, it
focussed on a subset of the powerlaw cases. No previous work has addressed all possible random
walks on networks.

Here, we sketch the main argument establishing our new scaling law—in particular, the argu-
ment for the three possible types of path distributions and the circumstances in which they occur.
We describe how, given a walk on a network, we can successively transform the problem into a
form that allows us to establish our law. We also demonstrate the steps of the transformation
on an example walk. Rigorous proof of our scaling law is quite technical, so we must refer the
interested reader to our recent paper for details [1]. Here, we present arguments in more palatable
form. We also alleviate a relatively minor technical obstacle, but one necessary for a law that covers
all possible random walks, by providing a mechanism to handle probability-one transitions in the
network.

Suppose we are interested in a walk on a network with nodes 1 . . . N . One of these nodes is
designated as the START of the walk, and one is designated as the END of the walk. Because the
walk ends upon reaching the END node, we assume that the END node has no outgoing arcs. Let
Pij be the probability that the walk steps from node i to node j. Supplementary Figure 1A gives
an example walk that we will use to demonstrate the steps of our derivation.

Most previous analyses of path distributions have assumed all possible steps happen with equal
probability. We do not make any such restriction. As a matter of convenience, however, we will
assume that we can represent all the non-zero transition probabilities as Pij = pkij for some non-
negative integers kij . That is, all non-zero transition probabilities are integer powers of some “base”
probability p. See Supplementary Figure 1B for an example. This assumption makes the arguments
presented here more direct, but is not required by our theory; the scaling law holds for arbitrary
probabilities [1].

Now, suppose there is a path P from START to END of probability pn. What is the rank, r,
of path P? Its rank is simply one more than the number of paths from START to END of strictly
greater probability. If there are M such paths, then r = M + 1, because path P is (at least tied
for) rank M + 1. Thus, our main task will be to count, for a given probability level pn, how many
paths there are of probability greater than pn.

Step1: Elimination of probability-one transitions. The first step in our analysis is to
eliminate, or “collapse”, any probability-one transitions. The reason for this will become clear
shortly. For every pair of nodes (i, j) where Pij = 1, the nodes i and j should be coalesced into a
single node. To be specific, we delete nodes i and j from the network, and we create a new node
k. The incoming arcs to node k include all the incoming arcs to node i and all the incoming arcs
to node j except the arc from node i. The outgoing arcs from node k are precisely the same as the
outgoing arcs from node j. In this procedure, if node i is the START node, then the new node k
should be re-designated as the START node. Likewise, if node j is the END node, then the new
node k is re-designated as the END node. When the network contains multiple pairs (i, j) for which
Pij = 1, then the node pairs may be coalesced in any order. Each coalescing operation reduces
the number of probability-one transitions, so after at most N such operations, all probability-one
transitions will have been removed from the network.

6

Supplementary Figure 1C gives an example of the elimination of probability-one transitions.
Observe that it is possible, as we have included in the example, for the coalescing of two nodes to
result in a node l having two separate arcs to the new node k. In this case, node 2 originally has
links to nodes 3 and 4. However, nodes 3 and 4 are coalesced, after which node 2 has two distinct
links to the new node 6, each of which is followed with a different probability. This is allowed,
and henceforth paths through the network must be thought of as sequences of arcs rather than as
sequences of nodes.

A crucial feature of our elimination of probability-one transitions is that it changes neither the
number nor probabilities of different paths from the START node to the END node. We omit
careful proof of this fact, although we hope it is self-evident. In essence, any path which previously
traversed the i → j link as follows: START → · · · → x → i → j → y → · · · → END, instead now
follows the path: START → · · · → x→ k → y → · · · → END.

Step 2: Expand single transitions into chains. In the second step of our analysis, we
produce a new network in which every probability pn arc in the network is replaced by a series of
n arcs through intermediate or “dummy” nodes. For instance, in Supplementary Figure 1D, we
see that the probability p2 arcs in the network of panel C are replaced by a pair of arcs which
traverse a single new node (shown as a smaller circle) that has been added to the network. The
probability p3 arcs are replaced by a series of 3 arcs traversing two new nodes. Because Step 1 of
our analysis ensures that each arc has probability pn for some strictly positive integer n, we are
assured that the chains of arcs in Step 2 have at least length one. This transformation does not
change the number of paths between any of the non-dummy nodes (1, 2, 5 and 6, in the example
of Supplementary Figure 1). However, it changes the lengths of those paths, and it does so in a
way that is particularly helpful for our analysis. In particular, every path of probability pn in our
original network now has a corresponding path of length n in our transformed network. Conversely,
every path of length n between non-dummy nodes in the new network corresponds to precisely one
probability pn path in the original network. Because of this, counting paths of a given probability
in our original network is equivalent to counting paths of a given length in our expanded network.
There is a large, established literature on counting paths in networks by length, and these tools
help us, at least in part, to establish the form and parameters of the path probability distribution.

Step 3: Reachability analysis to identify “live” nodes. The next step of the analysis
is to conduct a reachability analysis of the network. We say node i can reach node j if there is a
path comprising at least one arc that leads from i to j. This definition includes the special case
where i = j; thus, we only say i is reachable from itself if there is a path which leaves and returns
to node i. Reachability can be established by several efficient algorithms, as is well known [5].
With the exceptions of the START and END nodes themselves, we discard any nodes that are not
reachable from START, or from which the END is not reachable. Such nodes cannot play any part
in a path from START to END, and hence are irrelevant to the path distribution. The network
in Supplementary Figure 1D has no such nodes, but in general, this is possible. The nodes that
remain, which participate in paths from START to END, we call “live” nodes.

Step 4: Analyze strongly connected components to determine overall type of path
distribution. After restricting attention to live nodes, we identify the strongly connected compo-
nents of the network. A strongly connected component is either: (1) a single node, which is not
reachable from itself, or (2) a set of nodes, each of which is reachable from every other node in the
set. Option 2 includes the special case of a single node with a self-loop. Supplementary Figure 1E
shows the strongly connected components of our example walk. (For the sake of brevity, we will
sometimes use just “component” to stand for strongly connected component.) It turns out that

7

the components of type 2, have two important subtypes. In one case, the set of one or more nodes,
call them x1, x2, . . . , xm, are connected in a simple cycle, without any other links between them.
That is, there is a single arc from each xi to xi+1, and a single arc from xm to x1. Thus, the only
path from a node xi back to itself is the path that loops through every node in the component.
On the other hand, suppose that there is at least one additional arc between two nodes in the
component. This includes the special case of multiple arcs between two nodes, which can result
from the elimination of probability-one transitions. In this case, there are at least two distinct
paths that may return to node xi. In this case, we will say that the component is “more than a
cycle”.

The overall rate at which the number of paths from START to END grows depends on the
types of strongly connected components in the network.

Case 1. The network is acyclic if all components are of type (1) above—single nodes not
reachable from themselves. In this case, no path from START to END can contain a loop. Thus,
there are only finitely many possible paths possible from START to END. In this case, the path
distribution has no asymptotic behaviour to characterize.

Case 2. The network is mono-cyclic if it has at least one component of type (2) above—one
or more nodes that are reachable from each other—but all such components are simple cycles. In
this case, the number of paths from START to END grows polynomially in path length L. To see
this, let us denote the type (2) components as C1, C2, . . . , Cm. Let the sizes of those components
be l1, l2, . . . , lm with lmax = max(l1, l2, . . . , lm). Some components may be reachable from others,
but if Cj is reachable from Ci, then Ci cannot be reachable from Cj . If it were, then the two would
actually be part of a single strongly connected component. Let us suppose, for convenience, that
the components are listed in topological-sorted order. By this, we mean that if Cj is reachable
from Ci, then j > i. As such, there are at most 2m possible sequences of components that may be
visited on any path from START to END—each of the Ci either is or is not visited as part of a
path. Depending on the structure of the network, many of these may in fact be impossible. In any
case, let us consider a particular sequence of n distinct components that may be visited on a path
from START to END. As a function of maximum path length L, how many paths are there that
visit those n components in that order? We claim the answer is Θ(Ln). Formally, this means that
there exists an integer L∗ > 0 and there exist real constants a, b > 0 such that for all L ≥ L∗, the
true number of paths is at least aLn and at most bLn.

First, we argue that the number of possible paths of length ≤ L that visit a specific sequence
of n components is at most of the order Ln. Any such path can be divided into the steps that lead
it to the first component, the steps within the first component, the steps that lead it to the second
component, the steps within the second component, etc. Let us assume there are p0,1 possible paths
from START to the first component, p1,2 possible paths from the first component to the second,
..., pn,n+1 possible paths from the last component to the END. These numbers depend on the
structure of the network, but are independent of the maximum path length L. The total numbers
of ways of transiting to and from the components is p∗ =

∏n
i=0 pi,i+1. Now, the START node may

actually be within the first component. But all remaining transitions between components or to
the END node require at least one step. This leaves no more than L − n steps that may occur
strictly within the components. A basic result from combinatorics is that there are

(a+b−1
b−1

)
ways

to distribute a indistinguishable objects into b distinct containers [6]. In the present case, we can
consider the L−n remaining steps as objects. There are n+1 containers into which to put them—n
components, plus an extra container for steps that go “unused”. (Remember, L is the maximum
path length; for shorter paths, the extra steps go into the “unused” container.) As such, there are

8

at most
((L−n)+(n+1)−1

(n−1)+1

)
=
(L
n

)
≤ Ln/n! ways of distributing those steps among the components or

leaving them unused. In total then, there are no more than Ln(p∗/n!) possible paths from START
to END that traverse a particular sequence of n components.

Next, we argue that the number of possible paths of length ≤ L through n specific components
is at least of the order Ln. Again, imagine these paths divided into segments between components
and segments within components. There are at most n + 1 segments outside of components: one
from START to the first component, n− 1 between components, and one from the last component
to END. Each of these segments can be carried out by at least one path, and can take no more than
N steps, where N is the total number of nodes in the network. Therefore, at least L − N(n + 1)
steps are available to take place within strongly connected components. Now, the entry and exit
nodes to the components may be constrained. But, to get from any entry to any exit point takes at
most lmax steps. That still leaves at least L−N(n+ 1)−nlmax steps in the path. To go around the
cycle of nodes that comprises one component takes at most lmax steps. Therefore, the remaining
steps allow for at least L′ = b(L − N(n + 1) − nlmax)/lmaxc loops around any component. These
loops can be distributed arbitrarily among the n components or go unused (resulting in a shorter

path) in at least
(L′+n

n

)
≥ (L′)n/n! ≥ bLn ways, for some constant b and for sufficiently large L.

Summarizing the previous two paragraphs, then, the number of paths of length less than or
equal to L that go through a specific sequence of n components is bounded above and below by
something proportional to Ln. Therefore, the number of paths is Θ(Ln). The total number of
paths from START to END of length ≤ L is obtained by adding together the paths from all
possible sequences of components that may be visited on any path from START to END. If k is
the maximum number of cycle-components that may be encountered on any path from START to
END, the total number of paths therefore grows as Θ(Lk).

In terms of the path distribution, consider a path from START to END of length L. Recall that
such a path has probability pL. The rank of such a path depends on how many paths there are
that are shorter. By the above arguments, this number is r ≈ cLk for some constant c. Therefore,
the log probability of that path is logPr = L log p and the kth root of its rank is r1/k ≈ c1/kL. The
ratio logPr/r

1/k is approximately constant, and the path probability as a function of rank, Pr, is
approximately a stretched exponential. This establishes the mono-cyclic case of our scaling law.

Case 3. The network is multi-cyclic if there is at least one strongly connected component that
is more than a simple cycle. If there is exactly one such component, then the number of paths
from START to END of length less than or equal to L grows exponentially. Why is this? Getting
from START to the component that is more-than-a-cycle takes at most N steps, and at most N
steps are needed to get from there to END. That leaves at least L − 2N steps that may be used
within the component. Frobenius-Perron theory [7] tells us that the number of paths within the
component grows at λL−2N = Θ(λL), where λ is the largest eigenvalue of the adjacency matrix of
the component. (Note that “adjacency matrix” here means a matrix that counts the number of
arcs from each node i to each node j, so its entries are nonnegative integers.)

Now, suppose there are multiple such components in the graph, and suppose in particular that
it is possible to visit n of them along some path from START to END. Let λ1, . . . , λn be the largest
eigenvalues of the adjacency matrices of those components, and let λmax = max(λ1, . . . , λn). How
many paths are there from START to END of length ≤ L? Again, there are transitions between the
components, but the numbers and lengths of these do not depend on L. The key question is how
the remaining steps (somewhere between L−Nn and L−n) are distributed among the components.
Clearly, we can generate Θ(λLmax) paths, by putting all those extra steps into the single component
with largest eigenvalue. In fact, even if all components have that same eigenvalue, the best we can

9

do is distribute the approximately-L remaining steps among them in
(L
n

)
ways. At most, that gives

us Θ(LnλLmax) paths, which is O((λmax + ε)L) for any ε > 0. Therefore, the total number of paths
from START to END of length less than or equal to L is between Θ(λLmax) and O((λmax + ε)L)
for any ε > 0. Given this, a length L path has log rank log r ≈ L log λmax and log probability
logPr = log pL = L log p. As a result, the ratio logPr/ log r is approximately constant for large L,
or equivalently, we have an approximate powerlaw relationship between Pr and r. This establishes
the multi-cyclic case of our scaling law.

10

Supplementary Note 2: Computing path distribution type and pa-
rameters

As stated in the main text and again in the previous note, three types of path distributions are
possible: finite, stretched exponential and powerlaw. Intuitively, the categorization of a random
walk and computation of its parameters could be done based on an “expanded” network, as shown
in Supplementary Figure 1D. However, some walks may not correspond exactly to any expanded
network—because their transition probabilities may not be integer powers of some base probability
p. In other cases, those integer powers might be so large as to result in an enormous (if sparse)
network, which could be computationally awkward. Fortunately, we need not actually construct
the expanded network to determine the type of the distribution and its parameters. Rather, com-
putational shortcuts allow us to establish the form of the path distribution and its parameters
much more directly from the network structure and the probabilities with which different arcs
are followed. We describe the necessary computations below. MATLAB code implementing the
computations is available on the web, at http://www.perkinslab.ca/Software.html.

Determining the type of the distribution. To analyze a particular random walk, we begin
by computing reachability of every node from every other node. Let Z be the set of all nodes
that are reachable from the START and from which the END can be reached. If no node in Z is
reachable from itself by a path of one or more steps, then we are in the acyclic case / the path
distribution is finite. Otherwise, we compute the strongly connected components among the nodes
in Z. If all of the components are simple cycles (i.e., each node has an arc to precisely one other
node in the component), then were are in the monocyclic / stretched exponential case. Otherwise,
we are in the multicyclic / powerlaw case. All of these reachability-based computations are well
known in graph theory [5], so we do not further detail them here. In our MATLAB code, we use
the graphtraverse function to assess reachability, and the graphconncomp function to extract the
strongly connected components.

Parameters for stretched exponential path distributions. If the path distribution is
determined to be of the stretched exponential type, so that logPr ≈ br1/k, then we desire to
compute the constants b and k. To do this, let our random walk be on a network G = (V,E) where
V = {v1, . . . , vm} are nodes and E ⊆ V × V are directed edges. Let the stepping probabilities be
Pij , where Pij > 0 ⇐⇒ (vi, vj) ∈ E. For simplicity of notation, let us assume that the graph G
has already been restricted to the set Z of vertices that are reachable from the START and from
which the END can be reached. Nodes not in this set have no influence on the path distribution.

Now, let us construct a new network G′ = (V ′, E′) with V ′ = {u1, . . . , un} in the following
manner. First, the END node of the random walk on G gets a vertex in V ′. Second, every strongly
connected component in G gets a single corresponding vertex in V ′. Third, every other node in V
gets its own vertex in V ′. Implicitly, this three-step construction defines a surjection f : V → V ′.
For ui, uj ∈ V ′, let us define N(ui, uj) = |{(v1, v2) ∈ E such that f(v1) = ui and f(v2) = uj}|. In
words, N(ui, uj) is the total number of arcs in graph G from the nodes corresponding to ui, to any
of the nodes corresponding to uj . In network G′, for ui 6= uj , we include an edge (ui, uj) ∈ E′ if
Ni,j > 0. We do not include an edge (ui, ui) in G′ even if Ni,i > 0. Finally, for vertices ui that
correspond to a cycle in the original graph G, let W (ui) be the sum of the negative log probabilities
of the steps around the cycle.

To obtain our scaling constants, we associate two values, A0 and A1, to each vertex in G′. The
quantity A0 is related to the transition probabilities. The quantity A1(ui) gives the maximum
number of cycles that may be encountered along any path in G from a vertex in f−1(ui) to the

11

END. We compute both values using the dynamic program described in Algorithm 1.

Initialization:
A0(u)← 0 for all u ∈ V ′
A0(f(END))← 1
A1(u)← 0 for all u ∈ V ′

Dynamic programming iterations:
for Iter = 1 to n do

for u ∈ V ′ do
U ← {u′ ∈ V ′ such that (u, u′) ∈ E′ and A0(u

′) > 0}
if U 6= ∅ then

Temp1 ← maxu′∈U A1(u
′)

U ′ ← arg maxu′∈U A1(u
′)

if N(u, u) > 0 then
A1(u)← Temp1 + 1
A0(u)← (

∑
u′∈U ′ N(u, u′)A0(u

′)) /(W (u)A1(u))

else
A1(u)← Temp1
A0(u)←

∑
u′∈U ′ N(u, u′)A0(u

′)

end

end

end

end

Algorithm 1: Algorithm for computing parameters of a stretched exponential path distribution.

Once the algorithm has completed, the scaling constants can be obtained as k = A1(f(START))
and b = −A0(f(START))−1/A1(f(START)). In particular, b will be the slope of the line relating Pr
with r, when Pr is plotted on a logarithmic axis and r is plotted on a kth-root axis. The base of
the logarithm in the plot (e.g. base-10) should be the same as the base of the logarithm used to
compute W (u).

Parameters for powerlaw path distributions. If the path distribution is powerlaw, where
logPr ≈ b log r, the parameter b can be obtained by analyzing the strongly connected components
of the walks individually, and then combining the results, as described in part one of this document.
Again, because an “expanded” graph, as seen in Supplementary Figure 1D, can be unwieldy, or
because the transition probabilities may not be exactly integer powers of any base probability,
we provide an alternate mechanism that avoids the expanded graph [1]. Also, for simplicity of
discussion, we assume we have already restricted attention to nodes that are reachable from the
START and from which the END is reachable.

First, let us focus on any one individual strongly connected component. Suppose this component
has n nodes, and let Pij for i, j ∈ {1, . . . , n} be the transition probabilities among them. Let us
define a family of matrices, M(β), indexed by real parameter β, as follows:

Mij(β) =

{
0 if Pij = 0

P−βij if Pij > 0

For any given value of β, M(β) has a set of eigenvalues. Let λ1(β) be the eigenvalue of M(β) with
largest real component. In our MATLAB code, we use the eigs function to compute the largest

12

eigenvalue. Then, let β∗ be the value of β such that λ1(β) has real component equal to 1. To find
this β∗ we perform a binary search, beginning with upper and lower bounds on β∗. We repeatedly
compute the midpoint βmid of our upper and lower bounds, and evaluate the largest eigenvalue of
M(βmid). If it is larger than 1, we reset our upper bound to be βmid. If it is smaller than one, we
reset our lower bound to be βmid. In this way, we rapidly home in on β∗, to whatever precision is
desired.

Now, suppose the original walk has m strongly connected components, and we have analyzed
each one to obtain β∗1 , . . . , β∗m. Let β∗∗ = mini∈{1,...,m} β

∗
i . Then, the scaling constant b in the

relationship logPr ≈ b log r is b = 1/β∗∗.

13

Supplementary Note 3: On the scaling slope and other random
walk statistics

There are Markov chains with (nearly) arbitrary scaling slopes. As stated in the main
text, powerlaw scaling slopes are often found to be near −1. In the case of the uniform, memoryless
random walk, where each step leads with equal probability to one of N nodes, one of which is the
END node, the slope is − log(N)/ log(N − 1) [4]. This converges to −1 rather quickly. For N = 5,
the slope is −1.16, and for N = 10 it is −1.05. Slightly more generally, the random walk can be
on a graph with M nodes, as long as at each step there are N possible next nodes from each,
one of which is the END node. The total size of the graph, M , is not relevant. Of course, these
are simplistic models that would not be accurate for many real-world examples. Nevertheless, one
could conjecture that if, in some suitable “average” sense, a system has N possible next nodes,
then it might have a similar slope, and that this might explain the frequency of powerlaw slopes
near −1 in real-world examples.

Regardless, here we argue that such slopes are not in any way necessary. We describe two
parameterized Markov chains, one for the mono-cyclic case and one for the multi-cyclic case, that
allow us to achieve any feasible slope. Let us begin with the mono-cyclic chain, which is shown in
Supplementary Figure 2A. For K = 1, 2, 3, . . ., this chain allows precisely one length-K path from
START to END, and that path is the Kth most probable. It has probability pK−1(1 − p). Thus,
the slope of logPr versus r (since this mono-cyclic chain allows at most one cycle on any path from
START to END), is

lim
K→∞

log(pK−1(1− p))
K

= lim
K→∞

(K − 1) log p+ log(1− p)
K

= log p . (1)

Because p can be anything in the open interval (0, 1), the scaling slope can be anything in the open
interval (−∞, 0).

Next, we consider the multi-cyclic/powerlaw example given in Supplementary Figure 2B. For
K = 1, 2, 3, . . ., this chain has 2K−1 paths of length 2K − 1 from START to END. The probability
of such a path is (p/2)K−1(1− p), and it is tied for rank r = 2K−1. Therefore, the scaling slope is

lim
K→∞

log((p/2)K−1(1− p))
log 2K−1

= lim
K→∞

(K − 1)(log p− log 2) + log 1− p
(K − 1) log 2

=
log p

log 2
− 1 (2)

Because p can be anything in the open interval (0, 1), the scaling slope can be anything in the open
interval (−∞,−1).

Relationships between the path distribution and first-passage times. The first-passage
time distribution of a random walk on a network describes the probability that a walk goes from
START to END in exactly s steps, for any s = 0, 1, 2, For acyclic networks, the path distribution
is finite and the first-passage time distribution is finite. By contrast, for mono-cyclic or multi-cyclic
networks, both the path distribution and the first-passage time distribution are infinite. Thus,
at this coarsest level of analysis, there is a relationship between the path distribution and the
first-passage time distribution. However, for both mono- and multi-cyclic networks, the first-
passage time distribution is approximately exponentially distributed [7]. Thus, the shape of the
path distribution is a finer distinction, dividing networks into three categories (finite, stretched
exponential, and powerlaw), whereas the first-passage time distribution divides networks into two
categories (finite and exponential).

14

In either the mono-cyclic or multi-cyclic case, there is no necessary relationship between the
expected first passage time and the slope of the path distribution. For example, consider the network
walk shown in Supplementary Figure 3A. It is a modified version of the walk in Supplementary
Figure 2A, and has the same scaling slope of log p. The initial probability-q branch to the mono-
cycle versus the probability-(1−q) branch directly to END does not affect the scaling slope. It affects
the expected first passage time, however. The expected first-passage time from START to END is
1 + q/(1− p). For any fixed value of p, with scaling slope of log p, the expected first passage time
can vary over the interval (1,1 + 1/(1− p)). This example demonstrates that there is no necessary
one-to-one relationship between scaling slope and expected first passage time, even for random
walks on a fixed network structure and considering only variations in the stepping probabilities. Of
course, both statistics—scaling slope and first-passage time—depend at least in part on the common
parameter p. In that sense, the two are related. However, one can construct other network walks
where scaling slope and expected first-passage time do not depend on any common parameters. We
leave this as an exercise for the reader. Supplementary Figure 3B provides a similar example for
powerlaw scaling, by modifying the walk in Supplementary Figure 2B. The q versus 1− q branches
from the START node influence the expected first passage time, but not the slope of the powerlaw
relationship between path probability and path probability rank.

Relationships between the path distribution and mixing times. In a similar vein, there
is no necessary relationship between the scaling slope and the mixing time of a walk. Mixing time
can be defined in different ways, but intuitively, it quantifies how quickly a walk on a network
reaches a “steady-state” distribution. (In fact, a quasi-steady state distribution over the live nodes
is perhaps a more relevant notion in our context, but this distinction is not important.) Consider,
for instance, the memoryless random walk on N nodes, which we have discussed several times. This
family of walks, parameterized by N , has a mixing time of 1 step regardless of N . This is because
the relative probabilities of the different nodes at a given step are independent of the previous
node. As discussed previously, however, the slope of the powerlaw scaling of this walk depends
on N . Therefore, this family of random walks demonstrates that there need be no relationship
between scaling slope and mixing time of a walk.

There is a different sense in which path distributions and mixing times are related, however. The
reader may have noticed that in our plots of logPr against either r1/k or log r, the paths with lowest
rank r are not always so consistent with the overall stretched exponential or powerlaw relationship.
This is because the relationships we establish are asymptotic—they hold for sufficiently large ranks
r. The question arises, then, as to what constitutes “sufficiently large” in any particular case.
For simplicity, let us restrict attention to the multi-cyclic case, where logPr/ log r → b, where b
is the scaling slope. As we state in Supplementary Note 1, we can obtain the scaling relationship
by looking at an “expanded network” (Supplementary Figure 1D), where each pseudo-transition
has probability p. Roughly speaking, the approach to slope b depends on the mixing time of that
expanded network. Slightly more formally, the probability of an n-step path from START to END
is pn, while the rank of such paths grows approximately as eλ1n. This is why we have

lim
r→∞

logPr
log r

= lim
n→∞

log pn

log eλ1n
= lim

n→∞
n log p

λ1n
=

log p

λ1
= b . (3)

The fact that the number of paths grows approximately as eλ1n is well known from linear algebra
/ Frobenius-Perron theory [7]. The constant λ1 is the modulus of the largest eigenvalue of the
adjacency matrix of live nodes in the expanded graph. However, a slightly more detailed analysis
would include both the largest and second largest eigenvalues. That is, the rank of the n-step
paths can be bounded by eλ1n(1 ± ce−δn), where δ = λ1 − λ2 is the spectral gap, or difference

15

in modulus of the largest and second largest eigenvalues, and c is some constant. The spectral
gap characterizes the mixing time, and controls how quickly the number of paths converges to its
largest-eigenvalue exponential. Thus, when analyzing the path distribution, the rate of approach
to the limiting relationship between logPr and log r can be analyzed in terms of the mixing time
of the expanded graph. This is not the same as the mixing time of the original walk. However, it
establishes that there is some relationship between the path distribution and a mixing time that is
related to the original random walk on the network.

16

Supplementary Note 4: Autocorrelation and cross-validation anal-
ysis of history dependence in note sequences

As stated in the main text, we employed K-order random walk models to analyze note sequences in
songs from the Essen database. We found that the best match between predicted scaling slope and
observed scaling slope was achieved for K = 5, suggesting that a 5-step history dependence was
best at capturing correlations in the note sequences. It appears that shorter history dependence
is insufficient. Longer history dependence, of course, should also allow such correlations to be
captured. However, the longer the history dependence gets, the more the model is in danger of
overfitting the data. To further test whether K = 5 is a good choice, we employed two other
accepted methods for assessing history dependence in symbolic (i.e., non-numeric) sequences.

First, we conducted an autocorrelation analysis of the songs using the “equal-symbol autocor-
relation” approach of Voss [8]. In the present context, the autocorrelation at lag τ is the fraction of
times, over all songs, that a note or rest is the same as the note or rest that comes τ steps before.
The autocorrelations for τ up to 10 are listed in the table below, along with similar autocorrela-
tions computed from randomly permuted songs, and Bonferonni-corrected p-values (by unpaired
t-test) for significance of difference between the two. The autocorrelations are also visualized in
Supplementary Figure 4, along with 95% confidence intervals.

Lag Autocorrelation Autocorrelation
τ songs permuted p-value

1 0.1865297039 0.1795900345 1.1149e-16
2 0.2008514963 0.1805937642 3.2290e-130
3 0.1660867442 0.1789347833 4.6183e-56
4 0.1758773042 0.1795533386 8.2761e-05
5 0.1685246057 0.1800946967 1.5815e-43
6 0.1737748832 0.1807575585 9.7524e-16
7 0.1775437486 0.1806890481 0.0023
8 0.1823804701 0.1804483933 0.2569
9 0.1785760371 0.1788134675 1
10 0.1802579297 0.1797144199 1

The strongest deviations between correlations in the real songs versus the permuted songs are
seen at time lags of τ = 2, 3 and 5, with statistically significant, though weaker, deviations up to
τ = 7. This suggests an upper limit of 7 on the appropriate degree of history dependence, with
a shorter history dependence possible. (Typically, with increasing τ the autocorrelation function
“decays” towards a neutral value, rather than jumping abruptly to a neutral value. Intuively, this
happens because if the symbol at position i is related to the symbol at position i − τ , then by
transitivity, it is also related to the symbol at i− 2τ—though the relationship is likely weaker.) In
any case, the upper limit of τ = 7 is broadly consistent with our scaling-based estimate of length-5
history dependence. If one interprets the significant difference in real and permuted autocorrelations
at τ = 5 as substantial, and the lesser autocorrelations at τ = 6 and 7 as “decay” towards the
neutral value, then the autocorrelation analysis is completely consistent with our scaling-based
analysis.

We also tried another approach to estimating the appropriate degree of history dependence.
In this approach, we randomly divided the set of songs into two distinct subsets, a “training” set
and a “testing” set. Each set had 4233 songs. We then used the training set to compute the
maximum a posteriori estimate of a K-order Markov model, under the assumption of uniform

17

Dirichlet priors. In short, if there are N possible K-tuples, and if a particular K-tuple x is at the
start of M songs, then we estimate the probability of transition from the START node to K-tuple x
as (M+1)/(4233+N). (The maximum likelihood estimate would be just M/4233, but this has the
well-known problem of estimating zero probability for some initial K-tuples, so that the testing set
has zero apparent probability under the estimated model.) Then, to estimate the probabilities of
different K-tuple transitions during the songs, including a transition to an END node, if K-tuple x
occurs M times, and is followed by K-tuple y on P of those times, and if there are S = 14 distinct
possible symbols (i.e., notes, rests, and an “end node” marker, comprising all possible next node
transitions), we estimate the probability of the transition for x to y as (P + 1)/(M + S). Once all
the transitions of the K-order Markov chain model are estimated, we evaluate the log probability
of the songs observed in the testing set. For varying K, the results are shown below.

K Training set log-prob Test set log-prob

1 -190911.3645 -193753.7715
2 -180819.3848 -184600.6370
3 -174734.8906 -181247.1159
4 -172440.8256 -185827.6412
5 -174686.3545 -200518.3329

As is typical in scenarios like this, as the model gets more complicated (i.e., larger K = more
parameters), the fit to both training and testing data initially improves. At some point, however,
the model starts overfitting the data. Specifically, the test set probability increases only up until
K = 3, and afterwards declines, suggesting that the models with K = 4 and higher are overfitting
the training set. This analysis thus suggests that a history length of no less than 3 is optimal –
from a prediction standpoint, and keeping in mind that only half of the data is used in the model
estimation process. We say no less than 3 because more data might reduce the overfitting problem,
and lead to a larger estimate of the best K. The necessity of accounting for the many different
K-tuples that might follow the START weighed very heavily on more complex models, limiting K.

In the end, then, it appears that our scaling-based estimate of the degree of history dependence
(5 steps) is right in the middle of a cross-validation-based estimate (at least 3 steps) and an
autocorrelation-based estimate (at most 7 steps), lending some credence to the approach.

18

Supplementary Note 5: Powerlaw distributions for exit paths from
energy basins of the G-protein model

As stated in the main text, by performing cut-based free energy analysis of the Scalco and Caflisch
G-protein model [9], we divided the network into 7 major energy basins. Within each basin, the
node with highest steady state probability was designated the START state, and all transitions
out of a basin were routed to a new, generic END state. For every basin, the exact probabilities of
the 10,000 most-probable exit paths are strongly consistent with a powerlaw path distribution (see
Supplementary Figure 5), with slopes close to those predicted by our theory.

19

References

[1] R. Edwards, E. Foxall, and T. J. Perkins. Scaling properties of paths on graphs. Electronic
Journal of Linear Algebra, 23:966–988, 2012.

[2] B. B. Mandelbrot. On recurrent noise limited coding. In E. Weber, editor, Information Net-
works, the Brooklyn Polytechnic Institute Symposium, pages 205–221, 1955.

[3] G. A. Miller. Some effects of intermittent silence. The American Journal of Psychology,
70(2):311–314, 1957.

[4] W. Li. Random texts exhibit Zipf’s-law-like word frequency distribution. IEEE Transactions
on Information Theory, 38(6):1842–1845, 1992.

[5] J. A. Bondy and U. S. R. Murty. Graph theory with applications. North-Holland, New York
City, 1976.

[6] F. Roberts and B. Tesman. Applied combinatorics. Chapman and Hall/CRC, 2011.

[7] A. Berman and R. J. Plemmons. Nonnegative matrices in the mathematical sciences. Society
for Industrial Mathematics, 1994.

[8] R. F. Voss. Evolution of long-range fractal correlation and 1/f noise in DNA base sequences.
Physical Review Letters, 68(25):3805–3808, 1992.

[9] R. Scalco and A. Caflisch. Equilibrium distribution from distributed computing (simulations of
protein folding). The Journal of Physical Chemistry B, 2011.

20

