
Supplementary Figure 1 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Copy number of pNUK73. 

Number of pNUK73 copies per cell in the ancestral (day 0, n=5) and compensated (day 30, 
n=6) PA01/pNUK73 clones. Copy numbers were determined by qPCR. The line inside the 
box marks the median. The upper and lower hinges correspond to the 25th and 75th 
percentiles. The upper and lower whiskers extend to the highest and lowest values. 
  



Supplementary Figure 2 
 

 

Stability of pNUK73 in the compensated clones. 

This figure shows the relative proportion (average ± s.d.) of plasmids-bearing bacteria 
(logarithmic scale) over 10 days of serial passage (approximately 100 generations) for three 
populations of the parental PAO1/pNUK73 strain and six populations of two different 
clones showing compensatory mutations in the putative helicase gene (PA1372), 30+_1_2 
or in one of the two contiguous putative kinases genes (PA4673.15), 30+_2_2. In Table S1 
we provide with a detailed description of the mutations of each clone. 
  



Supplementary Figure 3 

 

 

Increase in plasmid half-life after antibiotic exposure. 

Plasmid half-life computed by interpolating an exponential fit to the observed frequency of 
plasmid bearing clones when (A) no antibiotic was used (plasmid half-life: 3.08 days), B) 
drug was used at day 8 (half-life: 5.93 days), and (C) drug was used at day 16 (half-life: 6.89 
days).  Note how, as predicted by the mathematical model, delays in antibiotic exposure 
have the effect of stabilizing the plasmid and increasing the plasmid’s half-life. 
  



Supplementary Figure 4 

 

 

Antibiotic suppression parameters obtained from dose-response experiments. 

Bacterial densities at the end of a 24 hour model simulation under increasing 
concentrations of antibiotic are represented with the filled circles: black represents no 
inhibition and white no growth detected. The circles highlighted with the red star 
correspond to the minimum inhibitory concentration where no visible bacterial growth was 
observed experimentally. 
  



Supplementary Figure 5 
 
 
 

 
 

MCMC diagnostics: parental strain, plasmid-free.  

a) 2-dimensional posterior distribution.  b) Comparison between data (dots with standard 
error) and model simulations (red solid line) using parameters selected randomly from the 
posterior distribution.  c) Traces of chains for parameters  ̅  ⁄  (above) and   (below). d) 
Autocorrelation functions for both parameters. e) Residual plot for the time series data. f) 
Q-Q plot for the residual. 
  



Supplementary Figure 6 
 
 

 

MCMC diagnostics: parental strain, plasmid-bearing.  

a) 2-dimensional posterior distribution.  b) Comparison between data (dots with standard 
error) and model simulations (red solid line) using parameters selected randomly from the 
posterior distribution.  c) Traces of chains for parameters  ̅  ⁄  (above) and   (below). d) 
Autocorrelation functions for both parameters. e) Residual plot for the time series data. f) 
Q-Q plot for the residual. 
  



Supplementary Figure 7 
 
 

 
 

MCMC diagnostics: compensated strain, plasmid-free.  

a) 2-dimensional posterior distribution.  b) Comparison between data (dots with standard 
error) and model simulations (red solid line) using parameters selected randomly from the 
posterior distribution.  c) Traces of chains for parameters  ̅  ⁄  (above) and   (below). d) 
Autocorrelation functions for both parameters. e) Residual plot for the time series data. f) 
Q-Q plot for the residual. 
  



Supplementary Figure 8 
 
 

 
 

MCMC diagnostics: compensated strain, plasmid-bearing.  

a) 2-dimensional posterior distribution.  b) Comparison between data (dots with standard 
error) and model simulations (red solid line) using parameters selected randomly from the 
posterior distribution.  c) Traces of chains for parameters  ̅  ⁄  (above) and   (below). d) 
Autocorrelation functions for both parameters. e) Residual plot for the time series data. f) 
Q-Q plot for the residual. 
  



Supplementary Figure 9 
 
 

 
 
 

Data cloning convergence diagnostics plots.  

Each row corresponds to a different bacterial type, from top to bottom:           . In all 

cases we used a uniform prior and kept 5000 posterior MCMC draws after discarding burn-
in. Left and middle columns show parameter estimates as a function of the number of 
clones for  ̅  ⁄  and   respectively. Note how the mean values of the posterior distribution 
(red lines) are converging towards the maximum likelihood estimates and the standard 
errors (vertical lines) are getting smaller as the number of clones increases. Plots in the 
right column illustrate how the standardized maximum eigenvalue also converges to zero as 
the number of clones increases, indicating estimability of the parameters. 



Supplementary Table 1. Description of the mutations in the clones analyzed in this work. 

 
Mutations by gene 

 

Gene id Product name Position Mutation Effect Mutated clones 

PA1372 putative helicase 1489043 SNP C-->T Non-synonymous 30+_2_1 

PA1372 putative helicase 1487154 SNP C -->T Non-synonymous 8S+_3_1 

PA1372 putative helicase 1487965 Deletion 1nt (T) Frameshift 30+_1_2 

PA1372 putative helicase 1488678 HZ SNP C(74%)-->T(26%) Non-synonymous 30S+_1_2 

PA1372 putative helicase 1487590 Deletion 1nt (G) Frameshift 8S+_3_2 

PA1372 putative helicase 1486998 Deletion 1223 nt frameshift 8S+_1_2 

PA1695 
 

PscP (translocation protein in type III 
secretion) 

1844903 
 

HZ Deletion 6 nt (48%) Codon change + 
codon deletion 

30S-_3_1 

PA2020 
 

MexZ (probable transcriptional regulator) 2212925 
 

Deletion 72 nt Codon deletion 8S+_2_1 

PA2294 
 

probable ATP-binding component of ABC 
transporter 

2524944 
 

SNP C-->T Non-synonymous 8S+_3_3 

intergenic intergenic 2558272 Deletion 526 nt intergenic 8S+_1_3 

PA2402 
 

probable non-ribosomal peptide synthetase 2686632 
 

HZ Deletion 11 nt (21%) Frameshift 30S+_1_2 

PA2526 MuxC (multidrug efflux pump) 2848293 SNP A-->T Non-synonymous 8S+_3_3 

PA2839 putative dioxygenase 3193349 SNP G-->A Non-synonymous 30-_3_1 

PA3264 Probable transporter 3652530 HZ SNP G(83%)-->A(17%) Synonymous 30-_2_3 

PA3350 
 

flagellar basal body P-ring biosynthesis 
protein FlgA 

3762613 
 

Deletion 55 nt 
 

Frameshift 30S+_2_2 



PA3539 conserved hypothetical protein 3961617 SNP G-->A Synonymous 30-_2_2 

PA3703 
 

WspF (methylesterase) 4145103 
 

SNP G-->A Stop codon gained 30S+_1_1, 30S+_3_1, 30S+_3_2, 30-_1_1, 30S-
_1_2, 30S-_1_3, 30S-_3_1 

PA3703 
 

WspF (methylesterase) 4145834 
 

Insertion 46 nt Codon insertion 8S+_1_1, 8S+_2_1, 8S+_3_1, 30-_1_2, 30-_2_1, 
30-_2_2, 30-_2_3, 30-_3_1, 30-_3_2, 30S-_1_1, 
30S-_2_1, 30S-_2_2, 30S-_2_3, 30S-_3_3 

PA3703 WspF (methylesterase) 4145836 Deletion 92 nt Frameshift 30S+_2_1 

PA3703 WspF (methylesterase) 4145463 Deletion 98 nt Frameshift 30S-_3_2 

PA4673.15 putative protein kinase 5252149 Deletion 1 nt Frameshift 30+_2_2, 30+_3_1,  30S+_2_1 

PA4673.15 putative protein kinase 5252204 SNP G-->A Non-synonymous 30S+_3_1, 30S+_3_2 

PA4673.15 putative protein kinase 5252585 Deletion 1 nt Frameshift 30+_3_2,  30S+_2_2 

PA4673.15 putative protein kinase 5252617 SNP G-->T Stop codon gained 30S+_1_1 

PA4673.16 putative protein kinase 5252983 SNP G-->A Non-synonymous 30+_1_1 

PA4673.16 putative protein kinase 5253760 HZ Insertion 1 nt (66%) Frameshift 30S+_1_2, 8S+_3_3 

intergenic intergenic 5269310 SNP T-->C intergenic 8S+_1_3 

PA5017 putative diguanylate cyclase 5642825 SNP A-->C Non-synonymous 30-_1_3 

PA5017 
 

putative diguanylate cyclase 5642856 
 

Deletion 6nt  
 

Codon change + 
codon deletion 

8S+_1_3 

 
 
Mutations by clone 
 

Mutated clones Gene id Product name Position Mutation Effect 

Clones evolved with no antibiotics      

30 days, PAO1/pNUK73      



30+_1_1 PA4673.16 putative protein kinase 5252983 SNP G-->A Non-synonymous 

30+_1_2 PA1372 putative helicase 1487965 Deletion 1nt (T) Frameshift 

30+_2_1 PA1372 putative helicase 1489043 SNP C-->T Non-synonymous 

30+_2_2 PA4673.15 putative protein kinase 5252149 Deletion 1 nt Frameshift 

30+_3_1 PA4673.15 putative protein kinase 5252149 Deletion 1 nt Frameshift 

30+_3_2 PA4673.15 putative protein kinase 5252585 Deletion 1 nt Frameshift 

30 days, PAO1 (no pNUK73)      

30-_1_1 PA3703 WspF (methylesterase) 4145103 SNP G-->A Stop codon gained 

30-_1_2 PA3703 WspF (methylesterase) 4145834 Insertion 46 nt Codon insertion 

30-_1_3 PA5017 putative diguanylate cyclase 5642825 SNP A-->C Non-synonymous 

30-_2_1 PA3703 WspF (methylesterase) 4145834 Insertion 46 nt Codon insertion 

30-_2_2 PA3539 conserved hypothetical protein 3961617 SNP G-->A Synonymous 

 PA3703 WspF (methylesterase) 4145834 Insertion 46 nt Codon insertion 

30-_2_3 PA3264 Probable transporter 3652530 HZ SNP G(83%)-->A(17%) Synonymous 

 PA3703 WspF (methylesterase) 4145834 Insertion 46 nt Codon insertion 

30-_3_1 PA2839 putative dioxygenase 3193349 SNP G-->A Non-synonymous 

 PA3703 WspF (methylesterase) 4145834 Insertion 46 nt Codon insertion 

30-_3_2 PA3703 WspF (methylesterase) 4145834 Insertion 46 nt Codon insertion 

30-_3_3      

Clones evolved with antibiotics (day 8)      

After treatment, PAO1/pNUK73      

8S+_1_1 PA3703 WspF (methylesterase) 4145834 Insertion 46 nt Codon insertion 

8S+_1_2 PA1372 putative helicase 1486998 Deletion 1223 nt frameshift 



8S+_1_3 intergenic intergenic 2558272 Deletion 526 nt intergenic 

 intergenic intergenic 5269310 SNP T-->C intergenic 

 PA5017 
 

putative diguanylate cyclase 5642856 
 

Deletion 6nt  
 

Codon change + codon 
deletion 

8S+_2_1 PA2020 
 

MexZ (probable transcriptional 
regulator) 

2212925 
 

Deletion 72 nt Codon deletion 

 PA3703 WspF (methylesterase) 4145834 Insertion 46 nt Codon insertion 

8S+_2_2  No mutations    

8S+_2_3  No mutations    

8S+_3_1 PA1372 putative helicase 1487154 SNP C -->T Non-synonymous 

 PA3703 WspF (methylesterase) 4145834 Insertion 46 nt Codon insertion 

8S+_3_2 PA1372 putative helicase 1487590 Deletion 1nt (G) Frameshift 

8S+_3_3 PA2294 
 

probable ATP-binding component of 
ABC transporter 

2524944 
 

SNP C-->T Non-synonymous 

 PA2526 MuxC (multidrug efflux pump) 2848293 SNP A-->T Non-synonymous 

 PA4673.16 putative protein kinase 5253760 Insertion 1 nt  Frameshift 

30 days, PAO1/pNUK73      

30S+_1_1 PA4673.15 putative protein kinase 5252617 SNP G-->T Stop codon gained 

 PA3703 WspF (methylesterase) 4145103 SNP G-->A Stop codon gained 

30S+_1_2 PA1372 putative helicase 1488678 HZ SNP C(74%)-->T(26%) Non-synonymous 

 PA2402 
 

probable non-ribosomal peptide 
synthetase 

2686632 
 

HZ Deletion 11 nt (21%) Frameshift 

 PA4673.16 putative protein kinase 5253760 HZ Insertion 1 nt (66%) Frameshift 

30S+_2_1 PA3703 WspF (methylesterase) 4145836 Deletion 92 nt Frameshift 



 PA4673.15 putative protein kinase 5252149 Deletion 1 nt Frameshift 

30S+_2_2 PA4673.15 putative protein kinase 5252585 Deletion 1 nt Frameshift 

 PA3350 
 

flagellar basal body P-ring 
biosynthesis protein FlgA 

3762613 
 

Deletion 55 nt 
 

Frameshift 

30S+_3_1 PA4673.15 putative protein kinase 5252204 SNP G-->A Non-synonymous 

 PA3703 WspF (methylesterase) 4145103 SNP G-->A Stop codon gained 

30S+_3_2 PA4673.15 putative protein kinase 5252204 SNP G-->A Non-synonymous 

 PA3703 WspF (methylesterase) 4145103 SNP G-->A Stop codon gained 

30 days, PAO1 (no pNUK73)      

30S-_1_1 PA3703 WspF (methylesterase) 4145834 Insertion 46 nt Codon insertion 

30S-_1_2 PA3703 WspF (methylesterase) 4145103 SNP G-->A Stop codon gained 

30S-_1_3 PA3703 WspF (methylesterase) 4145103 SNP G-->A Stop codon gained 

30S-_2_1 PA3703 WspF (methylesterase) 4145834 Insertion 46 nt Codon insertion 

30S-_2_2 PA3703 WspF (methylesterase) 4145834 Insertion 46 nt Codon insertion 

30S-_2_3 PA3703 WspF (methylesterase) 4145834 Insertion 46 nt Codon insertion 

30S-_3_1 PA1695 
 

PscP (translocation protein in type III 
secretion) 

1844903 
 

HZ Deletion 6 nt (48%) Codon change + codon 
deletion 

 PA3703 WspF (methylesterase) 4145103 SNP G-->A Stop codon gained 

30S-_3_2 PA3703 WspF (methylesterase) 4145463 Deletion 98 nt Frameshift 

30S-_3_3 PA3703 WspF (methylesterase) 4145834 Insertion 46 nt Codon insertion 

      

 
Examples of clone nomenclature of clones in this work: 



30S+_3_2; 30, clone isolated at the end of the experiment. S, it has been subjected to one step of selection pressure from day 8 to 9. +, the 
clone carries pNUK73. _3, population 3. _2, clone 2 within the population 3. 
30-_1_1: 30, clone isolated at the end of the experiment. -, the clone is plasmid-free. _1, population 1. _1, clone 1 within population 1. 
8S+_2_2: 8, clone isolated after antibiotic treatment at day 8 (technically it was isolated after day 9). +, the clone carries pNUK73. _2, 
population 2. _2, clone 2 within the population 2. 
 
 

  



Supplementary Table 2. Clones used to determine growth kinetic parameters. 
 
 
 

   

Strain Description Isolates 
   

Bp Parental, plasmid-bearing PAO1/pNUK73 

B Parental, plasmid-free PAO1 

Cp Compensated, plasmid-bearing 30+_1_1, 30+_1_2, 30+_2_1, 
30+_2_2, 30+_3_1, 30+_3_3 

   
C Compensated, plasmid-free 30__1_1, 30__1_2, 30__1_3, 

30__2_1, 30__2_2, 30__2_3, 
30__3_1,30__3_2, 30__3_2 

      

 
Bacterial isolates used to determine growth kinetic parameters for each bacterial type 
defined in the evolutionary model. Parameter estimates were obtained by fitting growth 
curves of each isolate acquired by measuring optical densities at 600nm in a 96-well plate 
every 20 minutes using the same environmental conditions as the competition experiment 
(with 4 replicates, except for the parental strain that was replicated 3 times).  



Supplementary Table 3. Estimated parameter values for different prior distributions. 
 
 
 

     

  Priors ρ (×109) 
 

 ̅   (×10-10) 
     

 
MCMC 1 1.2305  [1.218, 1.243] 

 
6.3055  [6.143, 6.473] 

 
MCMC 2 1.2283  [1.216, 1.241] 

 
6.3363  [6.173, 6.509] 

 
MCMC 3 1.2283  [1.216, 1.241] 

 
6.3365  [6.173, 6.506] 

 
MCMC 4 1.2306  [1.218, 1.243] 

 
6.3039  [6.140, 6.472] 

     

   Priors ρ (×108) 
 

 ̅   (×10-10) 
     

 
MCMC 1 9.2355  [9.107, 9.365] 

 
8.2197  [7.896, 8.556] 

 
MCMC 2 9.2028  [9.072, 9.331] 

 
8.3100  [7.983, 8.661] 

 
MCMC 3 9.2025  [9.071, 9.331] 

 
8.3113  [7.983, 8.662] 

 
MCMC 4 9.2372  [9.109, 9.367] 

 
8.2150  [7.892, 8.551] 

     

  Priors ρ (×108) 
 

 ̅   (×10-10) 
     

 
MCMC 1 9.1543  [9.051, 9.257] 

 
1.0924  [1.048, 1.140] 

 
MCMC 2 9.1316  [9.026, 9.232] 

 
1.1043  [1.059, 1.153] 

 
MCMC 3 9.1317  [9.027, 9.234] 

 
1.1043  [1.059, 1.150] 

 
MCMC 4 9.1555  [9.052, 9.259] 

 
1.0916  [1.047, 1.138] 

     

   Priors ρ (×109) 
 

 ̅   (×10-10) 
     

 
MCMC 1 1.1963  [1.183, 1.209] 

 
6.6734  [6.480, 6.873] 

 
MCMC 2 1.1937  [1.181, 1.206] 

 
6.7144  [6.521, 6.918] 

 
MCMC 3 1.1938  [1.180, 1.207] 

 
6.7141  [6.522, 6.919] 

 
MCMC 4 1.1963  [1.183, 1.209] 

 
6.6724  [6.480, 6.871] 

     

 
Parameter estimates [95% confidence intervals] obtained using the MCMC 
algorithm with 2 × 107 iterations kept after burn-in. MCMC 1: priors used were 
uniform (0,1 ×10-8) for  ̅   and uniform(0,1 × 1011) for ρ. MCMC 2: uses lognormal 
priors with mean 0 and standard deviation equal to 1 for both parameters. MCMC 
3: uses a beta(1,1) prior for  ̅   and a uniform(0,1 × 1011) prior for ρ. MCMC 4: 
uses a gamma(0.001,0.001) prior for  ̅   and uniform(0,1 × 1011) prior for ρ. 

 
  



Supplementary Methods.  
 
Model parametrization 
 
First, we will determine growth kinetic parameters for different bacterial strains isolated 
from the plasmid stability experiment (see Supplementary Table 2). Then, once we have 
obtained estimates for the parameters that characterize the growth of each strain in a 
single season, we will simulate a serial transfer experiment using the evolutionary model 
described in the manuscript. The goal of this approach is to predict the ecological dynamics 
of a competition experiment based on observations of how each strain grows 
independently. The remaining parameters of the model will be determined using values 
obtained from the literature (rate of point mutation) or using other experimental data 
(antibiotic susceptibility, drug degradation and rate of plasmid segregation). 

 
Let us begin by denoting the bacterial density at time t with the variable      and with 
     the concentration of environmental resource. Then bacterial growth in a 
homogeneous environment with resource limitation can be modelled with the following 
equations: 
 

                                               
  

  
  (

 ̅     

      
)   

                                               
  

  
  (

 ̅      

      
) 

 
 
with initial conditions           Here ρ denotes a resource conversion 
coefficient,  ̅  represents the maximum growth rate and   the cell’s affinity for the 
resource. This model is indeed very simple, but it has been extensively used before to 
describe bacterial growth in batch reactor experimental systems [8, 17] and will be the core 
of the evolutionary model used in the main text to study plasmid dynamics. 
 
Despite the advantages of using mechanistic models, this approach also requires some 
caveats. For instance, it is known that ecological and biophysical models can present 
identifiability problems [9,13,5] and as a consequence parametrization algorithms may fail 
to converge or to provide reliable estimates for all parameters. In particular, microbial 
growth models that contain Michaelis-Menten type nonlinearities, like the one described 
by equations (1-2) can be nonidentifiable due to  ̅ and   being highly correlated [6,8]. It 
has been reported that the system can be structurally identifiable if we can measure the 
initial concentration of limiting resource [3], but not if we only measure bacterial optical 
density, which is the case in our experimental setup. To overcome this limitation, it has 
been proposed that instead of trying to estimate values for  ̅ and K, the  ̅   ratio should 
be used to assess competitive fitness between different strains [4,7], a quantity referred to 
in the literature as specific affinity [8]. 
 
 
It is important to highlight that the objective of the mathematical model presented in this 
paper is not to describe the internal biological processes of the cell or to assign biological 
interpretation to the estimated growth kinetic parameters, but to quantify the fitness cost 
associated with plasmid-bearing, as well as the fitness advantage of acquiring a 
compensatory mutation relative to the parental strain. Therefore we will use the simple 
Monod model described by Supplementary Equations (1-2) as an empirical metabolic 



model whereby the specific affinity ( ̅  ) and the resource conversion coefficient (ρ) will 
provide us with a measure of the relative fitness of different strains. Both parameters were 
jointly estimated by fitting the Monod model to growth curve data (optical density 
measurements) assuming normally distributed errors using a Metropolis-Hastings Markov-
chain Monte Carlo (MCMC) method implemented in R, a free open-source statistical 
package [14], with scripts available in a public repository [16]. 
 
The estimated parameter values for different prior distributions are summarized in 
Supplementary Table 3. In all cases, we used 2.5 × 107 iterations with a burn-in period of 
5 × 106 and a thinning of 100 iterations. In order to adjust the acceptance probabilities for 
the proposed updates we used an adaptive proposal variance method as a first step of the 
MCMC algorithm. During this period no samples were stored in the chain until the 
acceptance ratio reached a target value, then we fixed the proposal variance and started 
storing the MCMC iterations. Convergence of the Markov chains was assessed by visual 
inspection. 
 
The resulting posterior distributions, as well as the diagnostic plots of the MCMC algorithm 
for each one of the bacterial strains are presented in Figures S5-S8. Note how, although the 
MCMC chains appear to have converged and the estimated parameters provide a good fit 
to the data capturing the essential qualitative features, this simple model systematically 
underestimates the bacterial density during the first few hours of exponential phase. This 
could be a consequence of the rich media used in the experiments (LB broth) containing 
multiple limiting substrates [15]. While we could, of course, pose more complex models to 
capture these features [1, 12], for the questions we address in this paper we consider the 
simpler evolutionary model to be more appropriate [18]. 
 
Furthermore, in order to assess the estimability of the parameters of our model and to 
obtain maximum likelihood estimates for each parameter, we implemented a data-cloning 
method as described in [10,11]. This method is based on a hypothetical situation whereby 
an individual performs simultaneously k independent experiments and by coincidence 
produces the same results. This is, of course, an unrealistic scenario, but we can simulate it 
by generating k clones of the original data and using a Metropolis-Hastings MCMC method 
modified to consider a new likelihood function given by the original function raised to the k-
th power. Lele and co-authors demonstrated in [10,11] that as the number of clones 
increases, the marginal posterior distribution converges to a multivariate normal 
distribution with mean equal to the maximum likelihood estimate with approximate 
variance corresponding to k times the posterior variance. Supplementary Fig. 9 illustrates 
the results obtained after applying the data cloning algorithm to our model and optical 
density data. 
 
Finally, we used the ANOVA test proposed in [2] to confirm that the parameters are 
estimable and that the estimates obtained using the MCMC algorithm are reliable. The 
objective of this test is to reject the null hypothesis that there are significant differences in 
estimates when changing the number of clones or when considering different prior 
distributions. For instance, the plasmid-bearing parental strain with k = {1000,2000} clones, 
four different prior distributions (described in Supplementary Table 3) and 40000 posterior 
samples kept after burn-in produced a p-value for cloning effect of 0.7012 for ρ and 0.4025 
for  ̅  , and a p-value for prior effect of 0.8152 and 0.9106 respectively (analogous p-
values were also obtained for the other bacterial types). These values indicate that there 
are no significant cloning or prior effects and as a consequence we conclude that the 
MCMC chains have converged to the maximum likelihood estimates. We will use the 



obtained parameter values (summarized in Table 1) to characterize the relative fitness of 
each strain in the plasmid dynamics model presented in the main text of this paper. 
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