Supplementary data

Length Polymorphism in *Heme Oxygenase-1* and Risk of Chronic Kidney Disease among Coronary Artery Disease Patients

Yu-Hsin Chen,^{§*} Ko-Lin Kuo,^{**} Szu-Chun Hung,^{**} Chih-Cheng Hsu,^Ψ Ying-Hwa Chen,^{§†} and Der-Cherng Tarng^{§I¶‡}

[§]Faculty of Medicine, ^IInstitute of Clinical Medicine and [¶]Department and Institute of Physiology, National Yang-Ming University, Taipei; ^{*}Division of Nephrology, Department of Internal Medicine, Taipei City Hospital Yang-Ming Branch, Taipei; ^{**}Division of Nephrology, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Taipei; ^{\Victual}Division of Geriatrics and Gerontology, Institute of Population Health Sciences, National Health Research Institutes; Divisions of [†]Cardiology and [‡]Nephrology, Department of Medicine and Immunology Center, Taipei Veterans General Hospital, Taipei, Taiwan

Supplementary Table 1. Adjusted hazard ratio (95% confidence interval) of total bilirubin, serum ferritin and malondialdehyde for renal endpoints^a

	Adjusted Hazard Ratio (95% Confidence Interval)		
	Bilirubin	Ferritin	Malondialdehyde
	For each 1	For each 100	For each 1
	mg/dL increase	µg/L increase	µmol/L increase
Cox regression model ^b	0.91 (0.86-0.95) P = 0.022	1.20 (1.03 - 1.32) $P = 0.012$	1.23 (1.01-1.42) P = 0.010
Cox with time-varying covariate model ^c	0.90 (0.85–0.99) P = 0.048	1.16 (0.99 - 1.35) P = 0.058	1.12 (0.90–1.45) P = 0.072

in CAD patients with a median follow-up of 10.2 years

^aRenal endpoints are serum creatinine doubling and/or end-stage renal disease necessitating long-term renal replacement therapy.

^bA Cox regression model was adjusted for age, sex, smoking status, diabetes, hypertension, prior congestive heart failure, stroke or peripheral arterial disease, total cholesterol, high-density lipoprotein-cholesterol, serum albumin, hemoglobin, estimated glomerular filtration rate, the presence of proteinuria at baseline, and the use of renin-angiotensin system blockades or statins.

^eThe multivariate Cox regression model was further analyzed using the cardiac events as the time-dependent covariates.

^dTo avoid multicollinearity, the genotypes of length polymorphism in *HO-1* promoter were not offered in the Cox regression model and Cox with time-varying covariate model.