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Abstract

Feedback delays are a major challenge for any controlled process, and yet we are able to easily control limb movements
with speed and grace. A popular hypothesis suggests that the brain largely mitigates the impact of feedback delays
(,50 ms) by regulating the limb intrinsic visco-elastic properties (or impedance) with muscle co-contraction, which
generates forces proportional to changes in joint angle and velocity with zero delay. Although attractive, this hypothesis is
often based on estimates of limb impedance that include neural feedback, and therefore describe the entire motor system.
In addition, this approach does not systematically take into account that muscles exhibit high intrinsic impedance only for
small perturbations (short-range impedance). As a consequence, it remains unclear how the nervous system handles large
perturbations, as well as disturbances encountered during movement when short-range impedance cannot contribute. We
address this issue by comparing feedback responses to load pulses applied to the elbow of human subjects with theoretical
simulations. After validating the model parameters, we show that the ability of humans to generate fast and accurate
corrective movements is compatible with a control strategy based on state estimation. We also highlight the merits of
delay-uncompensated robust control, which can mitigate the impact of internal model errors, but at the cost of slowing
feedback corrections. We speculate that the puzzling observation of presynaptic inhibition of peripheral afferents in the
spinal cord at movement onset helps to counter the destabilizing transition from high muscle impedance during posture to
low muscle impedance during movement.
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Introduction

The presence of sensory and motor delays in any control process

can lead to highly unstable behavior [1]. Impressively, humans

(and other animals) are able to make rapid corrective responses

even with sensorimotor delays on the order of 50 ms [2,3]. Several

hypotheses have been formulated, each making distinct predictions

about how the nervous system handles sensorimotor delays. One

common view argues that the brain exploits the spring-like

properties of muscle to stabilize the body during motor control,

commonly termed impedance control [4]. In this framework, the

brain controls the state of the peripheral motor apparatus in such a

way that the intrinsic biomechanical properties of the limb restore

a force proportional to changes in joint angle (stiffness) and

velocity (viscosity) with zero delay [4–9].

In order to avoid ambiguous terminology, we will use impedance
to refer to muscle’s intrinsic visco-elastic properties, therefore

excluding motor responses mediated by neural feedback [4,10,11].

It is important to stress that there is some confusion in the

literature relative to the definition of impedance control. Many

studies include not only the stiffness related to muscle activation,

but implicitly also neural feedback as a factor contributing to limb

impedance [5,7,8,12–18]. This is because these studies use

estimates of joint stiffness and viscosity based on perturbation

responses that last .200 ms [12], and thus depend on neural

feedback including the short-latency (,20 ms–50 ms), long-

latency (,50 ms–100 ms) and early voluntary responses (.

100 ms). This methodology is now questionable given recent

observations on the sophistication of long-latency and early

voluntary responses [2]. Also, long-latency responses are known

to involve cortical and cerebellar circuits involved in voluntary

control [19,20]. Thus, estimates of limb impedance based on

motor responses beyond ,50 ms include essentially the entire

motor system, peripheral and central.

Using our definition of muscle impedance, it is clear that the

conventional perturbation technique does not provide estimates of

the intrinsic muscles properties. Thus it is important to re-evaluate

the contribution of muscles’ intrinsic impedance independent of

neural feedback in order to better understand how the nervous

system counters perturbations during motor control.

A challenge in modeling the stiffness properties of muscle is that

their properties vary with changes in muscle length: in vivo studies

highlight relatively high stiffness for small perturbations corre-

sponding to less than only a few degrees of joint motion (short-

range stiffness, [21,22]), whereas larger perturbations must rely on

relatively low stiffness properties associated with the muscle’s
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force-length/velocity curves [21–24]. Taking these limitations into

account, it remains unclear how the brain generates fast and stable

feedback responses to external disturbances, in particular when

perturbations exceed the short-range impedance.

To address this issue, we first illustrate how changes in muscle

impedance dramatically alter the capabilities of muscles’ intrinsic

properties to oppose external disturbances, such that stable

corrections for small disturbances abruptly switch to slow and

oscillatory responses following the transition from high to low

impedance that occurs beyond the short-range. Next, we

characterize the performance of healthy humans instructed to

counter moderate-sized perturbations, highlighting the ability of

humans to make very rapid and stable motor corrections. Finally,

we investigate whether different feedback control mechanisms can

generate human-like corrective responses, considering long-laten-

cy delays (,50 ms) and intrinsic joint impedance observed beyond

the short-range stiffness. We show that the model including a state

estimator was the best candidate to reproduce fast motor responses

of humans following abrupt perturbations inducing large motor

errors. Essentially, participants were able to increase their

feedback gains without altering the kinematics of corrective

movements, which we show is the signature of state estimators.

We also suggest that impedance control of muscle can be

beneficial during postural control against small perturbations.

Beyond the short-range stiffness, our data and simulations suggest

that fast and stable feedback control requires internal models and

state estimation to compensate for low impedance and sensori-

motor delays.

Results

Transition to Low Stiffness Impacts Limb Trajectory
Muscles perturbed in vivo display high-impedance over a short

range, a property commonly referred to as short-range stiffness

[21,22,25]. Beyond this short range, the intrinsic impedance of

muscle drops dramatically, and depends on its force-length and

force-velocity properties [23,24]. Data from the cat soleus muscle

suggest that the short-range impedance corresponds to ,1 mm of

muscle stretch (Figure 1A, schematic redrawn of Figure 2 from

[22]), which corresponds to ,2.6% of its fascicles length [23].

Transposed to human elbow muscles (see Methods), these numbers

suggest that the elbow joint exhibits high intrinsic impedance when

changes in angle are less than 5 deg in amplitude (see also [26]).

The transition from high to low impedance has a direct impact

on corrective trajectories generated by intrinsic muscle properties

[4]. Indeed, transient perturbations inducing changes in joint

angles .5 degrees dramatically reduce the potential contribution

of muscle intrinsic impedance to the corrective response. Figure 1

B displays the simulated perturbation-related changes in joint

angle following application of small- (gray) and medium-sized

(black) perturbations. For these simulations, we considered both

elastic and viscous terms to describe the short-range intrinsic

properties, and therefore refer to it as short-range impedance (see

also Methods). The values of the exemplar perturbations in

Figure 1 B were chosen so that the motion either maintained

muscles within its short range (high impedance), or exceeded 5

degrees, transitioning muscle to low impedance. Observe the

important difference in joint trajectories induced by the change in

muscle visco-elastic properties. The peak-to-peak change in joint

angle and time to first zero-crossing are markedly altered following

the transition from high to low impedance. These two variables

are plotted as a function of pulse magnitude in Figure 1C to

further illustrate the bifurcation in kinematics parameters resulting

from the transition from high to low muscle impedance. This

emergent consequence of changes in muscle intrinsic properties on

joint motion clearly emphasizes the need for central compensation

for biomechanical features of the motor system.

Thus, impedance control may provide stability when perturba-

tions induce small amounts of joint motion. Against larger

disturbances, low muscle impedance would generate slow and

oscillatory corrections clearly incompatible with human motor

behaviour. The following sections present human motor responses

to perturbations and address how the nervous system may handle

the low muscle impedance along with the additional problem

related to temporal delays in sensorimotor transmission.

Human Experiment
Main experiment. The purpose of the human experiment

was to quantify the ability of humans to generate rapid corrections

against external perturbations in order to compare their perfor-

mance to various control strategies. Participants interacted with a

robotic exoskeleton supporting their arm against gravity and

allowing motion in the horizontal plane (Figure 2 A). Visual

targets and a hand-aligned cursor were projected on a virtual

reality display aligned with the workspace of the arm. The

shoulder joint was physically locked and perturbation pulses

(Figure 2 B) were applied to the elbow joint. Perturbations were

applied with three different background loads used to pre-excite

specific muscle groups (+2 Nm, 0 Nm 2neutral condition – and 2

2 Nm). Participants were instructed to stabilize their fingertips in

the start target and return to the goal target following the

perturbations (Figure 2 C) within a moderate (600 ms) or very

short (300 ms) amount of time. The latter time constraint was used

to induce an increase in feedback gains [27], and compare the

resulting movement profiles with theoretical simulations. Details

about the experimental procedures are provided in the Methods

section.

Average traces of the elbow motion are represented in Figure 3

A and B. The 600 ms condition was easy and participants

obtained 95% successful trials on average (range: 85–100%).

Maximum elbow displacement was 14.563.7 deg degrees (mean

6 SD, range 8–20.4, Figure 3D) and return time was 400643 ms.

Author Summary

Recent studies have investigated how the brain generates
purposeful feedback responses to perturbations during
motor control. One hypothesis suggests that the brain
exploits the spring-like properties of muscles to counter
perturbations. However, muscles exhibit high mechanical
impedance only against small perturbations during pos-
ture, which questions the general contribution of intrinsic
muscle impedance for feedback control. Alternatively, the
brain may directly map sensory data into motor com-
mands without compensating for sensorimotor delays,
which is known to limit control performance. A third
hypothesis suggests that neural activity following an
external disturbance estimates the current state of the
limb to generate a motor response. We used a perturba-
tion paradigm where healthy participants were instructed
to respond to perturbations within an extremely short
time window. Comparing participants’ performances with
a model considering intrinsic joint impedance and
conduction delays revealed that the case of state
estimation was the best candidate control model to
explain very fast corrective response of humans. This
study emphasizes that model-based control can generate
human-like rapid and stable feedback responses given low
muscle stiffness and sensorimotor delays.

Importance of State Estimation for Feedback Control
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In contrast, the 300 ms condition was challenging and the success

rate dropped to 49625% (mean 6 SD across participants).

Maximum elbow displacement was reduced in this condition

(11.663.2 degrees, range 7.3–17.4, Figure 3D). The median

return time (i.e. the elapsed time outside of the target) was

270 ms611 ms (mean 6 SD across subjects Figure 2 C). The

increase in feedback gains associated with this condition generated

a decrease in maximum joint angle for 12/15 participants

Figure 2. Experimental procedure. A: Overhead representation of a participant performing the task. The hand aligned cursor (white dot) and the
visual targets were projected on the virtual reality display and direct vision of the arm was blocked. B: Perturbation pulses applied on the elbow joint
(65 Nm, 50 ms with linear ramp-up/down of 10 ms) were added to the background torque (L0 = +2, 0 or 22 Nm, see Methods). C: Illustration of the
time course of a trial. Participants were instructed to reach for the centre of the start target (red dot). The perturbation was applied after a random
time delay ranging from 2 sec to 4 sec. Participants had to return to the goal target (red circle) within the prescribed time constraint (tMAX = 300 ms
or 600 ms), and stabilize in this target for 2 sec. A green or red goal target indicated success or failure to meet the timing criterion, respectively.
doi:10.1371/journal.pcbi.1003869.g002

Figure 1. Short-range stiffness. A: Relationship between muscle force and changes in muscle length for different perturbation amplitudes. Traces
represent the changes in tension following cyclical changes in fascicle length of varying amplitude. Data were schematically reproduced from Rack
and Westbury [12]. The short-range stiffness (gray) and static force-length curve (black) are represented. B: Perturbation-related motion following
perturbation pulses applied on a simulated single joint system with high stiffness in the short range (,5 deg), and low stiffness beyond the short
range. The gray (3 Nm) and black (5 Nm) perturbation pulses were chosen to illustrate the impact of rapid changes in muscles properties. See
Methods for details about the derivation from muscles parameters (fascicle length, physiological cross sectional area and moment arm). C: Peak-to-
peak joint displacement (solid, left axis) and first zero-crossing time (dashed, right axis) as a function of the perturbation magnitude under the
hypothesis of limb-impedance control. The parameters corresponding to single trajectories plotted in Panel B are reported with similar color code
(gray: 3 Nm, black: 5 Nm).
doi:10.1371/journal.pcbi.1003869.g001

Importance of State Estimation for Feedback Control
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(Figure 3 D), followed by similar or reduced absolute target

overshoot across conditions (Figure 3 E). Group comparisons

confirmed a clear reduction in return times relative to the 600 ms

condition (paired t-test, t(14) = 212, P,0.001), followed by a

reduction in maximum joint angle (t(14) = 25.1, P,0.001) and a

reduction in absolute target overshoot (t(14) = 3.49, P,0.01). Thus,

participants generated faster corrective movements without sub-

stantially altering the shape of the corrective movement. Similar

conclusions characterize participants’ behaviour after including the

non-successful trials in the dataset. We observed a significant

reduction in return times (t(14) = 28, P,0.001) and a significant

reduction in maximum elbow angle across conditions of temporal

constraints (t(14) = 24.6, P,0.001), whereas the target overshoot

was statistically similar across conditions (t(14) = 1.22, P = 0.24).

The control of limb intrinsic impedance is often assumed to

depend on co-activation of antagonist muscles groups [10–12]. We

recorded the activity of the main muscles spanning the elbow joint

to quantify how much participants spontaneously relied on this

strategy. We observed a significant increase in baseline activity for

7/15 participants between the 600 ms and 300 ms conditions

(Wilcoxon ranksum test on average baseline activity across trials,

Figure 4). Looking at the average across the four muscles, we

found that 3/15 participants spontaneously increased their

baseline activity by more than 50% of the activity recorded in

the 600 ms condition. The same analysis performed on individual

muscle samples revealed similar results, with 15/60 individual

samples displaying .50% increase in baseline activity. Group data

confirmed a significant increase in baseline muscle activity

corresponding to 0.1460.21 a.u. (mean 6 SD, Figure 4, paired

t-test on individual means, t(14) = 2.5, P,0.05). However, it is

important to note that this increase is quite small. Indeed, an

average of 14% of the activity evoked by a 2 Nm constant load

corresponds to a change in force required to compensate for the

weight of a 70 g mass placed 40 cm away from the elbow joint,

which corresponds to holding a small object such as a plum in

one’s hand (assuming no background noise in the EMG signals).

Notably, the spontaneous increase in co-contraction did not

correlate with success rate in the 300 ms condition (linear

regression on participants’ individual means, P = 0.58), and the

return times were negatively correlated with the baseline activity

for 7/15 subjects (linear regressions on individual trials from

the same condition, P,0.05). Thus the link between muscle

Figure 3. Movement kinematics. A: Average elbow motion from one representative subject. The shaded areas represent 1 standard deviation
across trials (blue: 600 ms condition, red: 300 ms condition). The gray rectangle illustrates the duration of the perturbation pulse (70 ms, see
Figure 1B). The dashed horizontal lines represent the 3 deg window used to determine the return times and validate the trials offline (see Methods).
B: Same as A for group subjects’ data. Shaded areas represent 1 standard error across subjects. Panels A and B included all trials. The effect of
perturbation offset can be observed as small deviations at the end of the pulse duration (gray rectangle). C: Return times from the 300 ms condition
plotted against the return times from the 600 ms condition. Filled dots indicate significant effect across conditions from individual trials (Wilcoxon
ranksum test, P,0.05). Data summary in the form of bar plots are presented using the same vertical axis as the scatter plot. Color codes correspond
to Panels A and B, and stars indicate significant difference across conditions (3 starts: P,0.001, 2 stars: P,0.01). Vertical bars represent one standard
deviation across participants. D: Same as C for the maximum elbow displacement. E: Same as C for the maximum target overshoot. Only successful
trials were included in panels C to E.
doi:10.1371/journal.pcbi.1003869.g003

Importance of State Estimation for Feedback Control
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co-activation and behavioural performance, often assumed under

the hypothesis of impedance control, was not a strong feature of

our dataset.

Although the average spontaneous increase in baseline activity

was small, some participants clearly used this strategy and

increased their baseline to ,1 a.u., corresponding to the activity

evoked by a 2 Nm background load (Figure 4). We investigated

further possible effects of pre-activation on the movement

kinematics by applying a constant background load of 2 Nm on

the elbow (Figure 2 B, L0 = 62 Nm, see Methods). Average joint

motion and muscle responses are shown in Figure 5 A and 5 B for

the 300 ms condition. The muscle pre-perturbation activity was

0.5360.23 a.u. greater with the application of a background load

(mean 6 SD across participants, Figure 5 B, inset, t(14) = 8.8, P,

0.001). Pre-loading the muscles significantly decreased the

maximum change in elbow angle (t(14) = 25.73, P,0.001), but

also induced an absolute increase in target overshoot (t(14) = 22.4,

P,0.05). As a result, the return times (t(14) = 1, P = 0.32) and the

success rate (t(14) = 1.26, P = 0.23) did not display any statistical

change across pre-loading conditions. This analysis indicates that

the spontaneous increase in pre-perturbation activity reported in

Figure 4 (,0.14 a.u. on average) likely played a minor role in the

behavioural performance.

Control experiment. Applying a background load on the

participants’ forearm in the main experiment allowed us to address

whether increases in baseline activity impacted motor corrections

while controlling accurately the pre-perturbation activity. How-

ever, it is possible that motor responses in this case differ from

those following muscles co-activated in the absence of a

background load. To address the influence of co-contraction

more directly, we instructed participants to perform a block of

trials while co-activating elbow muscles. This instruction induced

important changes in pre-perturbation activity despite large

variability across participants. The substantial increase in baseline

activity also induced a clear increase in the short-latency stretch

reflex across conditions. This comparison was made with the

response collected in the condition when the antagonist muscle

group was pre-loaded to magnify the difference resulting from

changes in muscle state (Figure 6A). We refer to this pre-

perturbation muscle state as the unloaded condition. Surprisingly,

elbow motion was minimally affected until ,85 ms (Figure 6B

and C, black arrow). The relationship between changes in baseline

activity and changes in joint angle at 130 ms confirms that co-

activation is beneficial to limit perturbation-related motion

(Figure 6C), but likely through recruitment of short-latency

feedback.

We found that onset of divergence between elbow motion across

conditions occurred before 20 ms for 2/6 participants shown in

green in Figure 6C (ROC on individual trials, see Methods),

which is sufficiently fast to be attributed to changes in intrinsic

properties. The same two participants were able to limit the

Figure 4. Effect of timing condition on muscle co-activation.
Average pre-perturbation activity (from 250 ms to 0 ms) in the 300 ms
condition plotted against the pre-perturbation activity in the 600 ms
condition. Filled dots designate participants for whom the change in
pre-perturbation activity was significant (Wilcoxon ranksum tests on
individual trials, P,0.05). Open dots represent participants who did not
display any significant change in pre-perturbation activity. The bar plot
summarizes the effect of the timing condition on the pre-perturbation
activity (mean 6 SD across participants). The star indicate significant
increase (one-tail paired t-test, P,0.05).
doi:10.1371/journal.pcbi.1003869.g004

Figure 5. Effect of muscle pre-loading on return times. A: Group averages of elbow motion in the 300 ms condition, with (black) or without
(gray) application of a background load. The gray rectangle illustrates the onset and offset of the square perturbation pulse. The horizontal dotted
lines represent the 3 deg virtual target. Shaded areas represent 1 SEM B: Muscles grand average across subjects (mean 6 SEM). The inset displays the
pre-perturbation activity (250 to 0 ms) with the same color code as in panel A (1 bar represent one standard deviation). The statistical difference
across conditions is illustrated (see Results). C: Return times in the 300 ms condition without background load, plotted against the return times
obtained after pre-loading the muscles. Filled dots illustrate significant differences from individual trials based on Wilcoxon ranksum tests. Open dots
are displayed otherwise. Summary of group average and standard deviation is presented in the bar graph.
doi:10.1371/journal.pcbi.1003869.g005

Importance of State Estimation for Feedback Control
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maximum average elbow displacement ,5 deg, and therefore

potentially exploited short-range stiffness of muscles. Observe that

the associated increase in baseline is substantially greater than the

spontaneous increase observed in the main experiment (the full

range across participant from the main experiment is illustrated

with the red frame). Group data indicated that the onset of

divergence across conditions was found at ,85 ms (Figure 6B,

vertical arrow), which may result from the recruitment of short-

latency feedback.

To summarize, the main experiment shows that participants

were able to generate very fast corrective movements with minimal

use of co-contraction and without inducing systematic oscillations

in the response profile. The control experiment shows that changes

in co-contraction observed in the main experiment were too small

to induce significant changes in perturbation-related motion.

Parameter Validation
In order to develop control models, we must first estimate

parameters that best capture the visco-elastic properties of the

limbs. First, it is clear that the values associated with high, short-

range stiffness cannot be considered to reflect the intrinsic joint

impedance for perturbations in our Main Experiment, as the

perturbation-related motion was substantially greater than 5

degrees (range from Main Experiment was 8 to 20 degrees).

Estimates provided in the literature based on hand forces

following perturbations typically depend on reflexes [5,7,8,12–

15,28], and as a consequence do not represent the intrinsic

impedance of the joint. For example, muscle impedance values

commonly used in the literature (K = 16 Nm/rad and

G = 2.4 Nms/rad, [29]) predict ,5 degrees of maximum joint

displacement, even without considering any contribution from

Figure 6. Effect of co-activation. A: Muscles activity averaged across groups and participants in the two conditions of muscle pre-activation
following an extensor perturbation load evoking flexor response (red: co-contraction; blue: unloaded). Shaded areas are the standard error across
participants. The two epochs are illustrated with vertical dashed lines (Pre.: 250 to 0 ms, R1: 20 to 50 ms) B: (Left) Changes in pre-perturbation
activity across conditions when the antagonist muscle group is pre-loaded (blue, unloaded), or when muscles are co-activated (red). (Right)
Difference between the muscles activity in the short-latency time window (R1: 20–50 ms) and the pre-perturbation activity. C: Elbow motion
averaged across participants with similar color code as in panel 6A. The difference is plotted in black and the gray area represents the standard error
of the mean across participants. The vertical rectangle illustrates the perturbation time window as in Figure 3. The vertical arrow indicates the onset
of divergence estimated based on sliding t-test (,85 ms). D: Changes in elbow angle as a function of change in co-activation for individual subjects.
Filled dots are the average diference in elbow angle measured at 50 ms and open squares are the average difference in joint angle measured at
130 ms. The red rectangle illustrates the range of spontaneous changes in co-activation from the main experiment. The two participants illustrated
with green symbols are those for whom activation-dependent changes in joint angles occurred prior to 20 ms (see Methods).
doi:10.1371/journal.pcbi.1003869.g006

Importance of State Estimation for Feedback Control
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neural feedback. This displacement is significantly lower than the

experimentally observed joint displacement in the 600 ms

condition (14.563.7 degrees), and even lower than observed for

the 300 ms in our Main Experiment (11.663.2 deg, t-test between

participants’ individual means and theoretical maximum displace-

ment, t(14) = 5.79, P,0.001).

In light of these limitations, we used force-length and force-

velocity curves to estimate the intrinsic impedance of the joints.

Based on the literature, we estimated muscle stiffness (K) to be

1.61 Nm/rad and muscle viscosity (G) to be 0.14 Nms/rad (see

Methods for details about the derivation). One can identify if these

values are reasonable by using the data from our Main

Experiment, as described below.

The following analysis estimates the set of plausible muscle

stiffness and viscosity terms based on comparisons between

perturbation-related motion and simulations of a passive single

joint with intrinsic visco-elastic properties varied across simulations

(see Methods). First, it is clear that estimates of muscle impedance

cannot generate less elbow displacement than we observed in our

600 ms condition, because motion in this condition still includes

some contribution of participants’ neural feedback (Figure 7A).

We used the measured joint displacement at 150 ms from our

human subjects in the moderate temporal condition (h600) and

computed the set of values of K and G that predict a displacement

of the elbow joint at 150 ms equal to h600. The boundary between

the values of K and G predicting a joint displacement h(t) at

150 ms greater or lesser than h600 is an upper bound on the

intrinsic joint impedance. This boundary delineates the regions C

and B in the parameter space represented in Figure 7 C (gray

lines). Note that the commonly used values in the literature for

muscle impedance lie outside of the range displayed in the

diagram (K = 16 Nm/rad and G = 2.4 Nms/rad [29]).

Second, a closer estimate of a reasonable set of muscle stiffness

and viscocity terms is obtained by comparing changes in the

patterns of elbow motion with changes in perturbation-related

EMG between the two time constraints. In the following analysis,

perturbation-evoked changes in EMG are used to quantify the

effect of the feedback response on the joint kinematics and

extrapolate the theoretical motion of the passive joint due to

muscles intrinsic properties only. We related changes in joint angle

across timing conditions (Figure 7A, dA) to the corresponding

changes in muscle response (Figure 7A, dR). The ratio dA/dR was

used to extrapolate the joint displacement at 150 ms correspond-

ing to the intrinsic impedance (Figure 7A and B, hI). We used the

measured joint displacement at 150 ms from our human subjects

in the moderate temporal condition (h600) and the estimated joint

displacement corresponding to the intrinsic properties (hI, open

dot in Fig. 7B) to determine set of acceptable values for K and G
based on simulations (thick dashed line in Fig. 7C). We then

calculated the set of K and G values predicting a joint

displacement at 150 ms equal to hI, which represents the best

estimates for participants involved in the main experiment. The

corresponding set represents the boundary between the regions A

and B of the parameter space (Figure 6 C, black dashed lines).

Observe that our estimates obtained independently (Equations 6,

black dot) are in perfect agreement with the values of K and G that

generate a joint displacement at 150 ms equal to hI.

As in any model, there are several free parameters that can be

difficult to estimate (moment arm, activation level, PCSA, fascicle

length and normalizing constant). Although we based our

estimates on measured muscle properties to the best of our

abilities (see Methods), it is clear that each value is subject to

experimental measurement error. We calculated how errors in

each parameter would impact the estimates of joint impedance by

varying them up to 625%. The worst-case relative change in K
and G was between 50% and 160% of the initial values. These

possible variations are reported in Figure 7 C with a gray

rectangle. Such a range of uncertainty resulting from model

parameter errors is still clearly confined within the regions A and B

of the parameter space presented in Figure 7.

Figure 7. Validation of model parameters. A: Relationship between the integrated EMG (dR) and the corresponding change in joint angle at
150 ms (dA) across the timing conditions. The ratio dA/dR was used to extrapolate the joint displacement at 150 ms resulting from the intrinsic joint
impedance only (hI). Dashed line denotes estimated contribution generated by muscle intrinsic mechanical properties. B: Extrapolation of changes in
joint angle as a function of changes in integrated muscle response used to estimate hI. The same extrapolation based on integrated EMG and joint
angle at distinct times provided similar results. Crosses illustrate 1 SEM across participants. C: Regions of the parameter space (K and G) predicting
changes in simulated joint angle at 150 ms $hI (region A), between hI and h600 (region B) and ,h600. The boundary between the regions A and B is
the set of values of K and G that best corresponds to our data. Upper and lower boundaries were obtained by varying the segment inertia by 65%.
The black dot represent the estimates derived from the muscle model (Equations 6). The gray rectangle shows the worst-case variation in K and G
resulting from 625% errors in the muscles model parameters (see Results).
doi:10.1371/journal.pcbi.1003869.g007
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Simulations of Control Models
The purpose of the following analysis is to determine which

control model can explain the ability of human subjects to perform

fast and stable feedback control given low impedance and the

presence of sensorimotor delays. We consider a linear model of the

elbow joint coupled with a first order low-pass filter representing

muscle dynamics. The equations of motion are:

I€hh{{Kh{G _hhzT , ð1Þ

t _TT{u{T , ð2Þ

where h is the joint angle (dots represent time derivative), I [Kgm2]

is the forearm inertia, K [Nm/rad] and G [Nms/rad] are the

elastic and viscous components of the intrinsic stiffness, T is the

controlled torque, t is the time constant of the muscle and u is the

control variable.

A first candidate control model is a direct mapping of the state

of the system (represented by x) delayed by dt = 50 ms, compatible

with long-latency delays (see Methods). This control model can be

written as:

u{Cx t{dtð Þ, ð3Þ

where C is a row vector of feedback gains. We analyze three

candidate controllers from this class of models, each controller

being represented by a row vector of feedback gains C. The first

controller (C1) minimizes the spectral abscissa, which is the

rightmost eigenvalue of the closed loop control system. The

spectral abscissa is directly related to the exponential decay of the

joint motion towards the equilibrium following a perturbation

[30], which in theory guarantees the fastest corrective movement

towards the target. This controller corresponds to relatively low

feedback gains (Figure 8, blue trace, C1 = [22.03 21.07 20.58]).

This seems counter-intuitive since this controller should present

the fastest exponential decay following perturbations. A closer look

indicates that this is indeed the case, as this controller does not

generate any oscillation in the corrective response, resulting in a

fast decay of the angle, velocity and torque towards 0 following the

perturbation. The return time obtained with this controller was

585 ms.

Although the performance of this controller is good for

moderately fast return times, we are interested to generate

corrective responses with return times ,300 ms. Reducing the

return times can only be obtained at the cost of tolerating

oscillations, provided that they remain within the virtual target

bounds. This is illustrated with the second controller minimizing

the return times (red trace, C2 = [210.81 22.37 20.98]). The

return time for this controller was 260 ms. However, it presented

oscillations that exceeded those generated by human subjects

(Figure 8 A, inset). It is also important to realize that this controller

was quite sensitive to the presence of noise in the process, a

common feature of biological motor systems [31–33]. Indeed,

injecting small amounts of noise in the simulations substantially

altered its performance as illustrated in Figure 8 B (dashed red

histogram, average return time .350 ms). Observe that the

oscillations do not vanish on average, as they are not due to noise

but to the controller spectral properties. Thus, although the

performance of this control candidate is good in the absence of any

source of noise, we may question its relevance as a model for

human behaviour on the basis that its sensitivity to process noise

impedes consistent success in the fastest temporal condition.

In theory, it is possible to limit the impact of process noise by

using robust control design (black trace, C3 = [210.92 22.4 2

1.22]), which minimizes the controller sensitivity to perturbations

and uncertainties in the model parameters [30,34]. Indeed, with

similar amounts of sensorimotor noise, the robust controller

generates a distribution of return times that is narrower than the

distribution obtained with the controller designed to minimize

return times (Figure 8 B). However, improving the robustness is

Figure 8. Simulations results. A: Simulations of feedback responses following perturbations with delay-uncompensated control (left) and
feedback control based on state estimation (right). Dashed horizontal traces illustrate the virtual target and the shaded rectangle represents the
perturbation duration. Feedback responses obtained with the three delay-uncompensated candidate controllers are represented: minimum spectral
abscissa (blue, C1), minimum return time (red, C2), and maximum stability radius (robust control, black, C3). Responses of the controller based on state
estimation are displayed for two distinct cost-functions illustrating the effect of increasing the feedback gains on the overall response profiles (high
feedback gains, red, or low feedback gains, blue). Areas represent a standard deviation across 100 simulation runs at each point in time. B:
Distributions of return times obtained with the delayed controllers (dashed) and with state estimation (solid red).
doi:10.1371/journal.pcbi.1003869.g008
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achieved to the detriment of control performance [35], as

illustrated by the shift in return times towards greater values

(average return time = 0.33 s, Figure 8 B). To summarize,

increasing the feedback gains of delay-uncompensated controllers

(as for C2 and C3 in comparison with C1) reduced the return times

but generated oscillations. Any attempt to increase the feedback

gains to match human performance generated oscillations that

exceeded the target bounds, and we were not able to find any

stable delay-uncompensated controller generating consistent

return times ,300 ms in the presence of sensorimotor noise.

In contrast, it was much easier to reproduce participants’ data

with simulations based on state estimation, without any apparent

limitations on the feedback gains (Figure 8 A, right and 8 B). This

class of control models differs from Equation 3 in that the feedback

gains are applied to an estimation of the present state of the system

represented by x̂x given by a Kalman filter:

u{Cx̂x tð Þ: ð4Þ

For these controllers, increasing the feedback gains simultaneously

reduced the maximum joint angle as well as the target overshoot,

which was the signature of participants’ successful trials (Figure 2).

Interestingly, the high feedback gains used with the state estimator

generated unstable control when applied directly to delayed

sensory input. This result highlights the advantage of state

estimation to generate fast and stable feedback control, and

corroborates our previous findings regarding the influence of state

estimation on rapid feedback responses to perturbations [36].

Thus, the controller based on state estimation performs better

than the tested delay-uncompensated feedback controllers. How-

ever, using internal models is prone to errors in the presence of

model errors, causing an inherent trade-off between control

performance and robustness dependent upon the accuracy of the

internal model [30]. We observed the consequences of this control

principle by varying the joint inertia while maintaining constant

the robust controller (C3), and the model-based controller

(including feedback gains and Kalman gains). Varying the inertia

by 610% only induced small changes in return times obtained

with the robust controller (,10% on average), in agreement with

the fact that it is in theory the least sensitive to small changes in

model parameters. In contrast, similar variations induced more

than 20% increase in return times when using estimation-based

control. The performance of the controller minimizing the return

times was also quite sensitive to changes in inertia (.30% increase

in return times when inertia decreases by 10%). Simulations

further indicated that the robust controller started to perform

better than the model-based controller if inertia changed by $

15%. Thus, robust control is clearly a good candidate in the

presence of model uncertainty when internal models of dynamics

are not sufficiently accurate to ensure fast and stable control.

Finally, the simulations allow us to quantify the relative

contribution of intrinsic impedance to the total torque produced

against the external perturbation. In the slowest temporal

condition, the peak elastic and viscous torques represent 23%

and 18%, respectively, of the controlled torque generated by the

feedback response. It is worth noting that the intrinsic elastic and

viscous torques do not reach their peak values at the same time,

nor at the peak resultant torque. The contribution of the passive

torques represents 22% of the peak resultant torque. The relative

contribution of the joint intrinsic stiffness is reduced in the fastest

temporal condition because the feedback response limits the

perturbation-related motion. In this condition, the intrinsic

stiffness and viscosity represent 9.6% and 9.4% of the peak

controlled torque respectively, and their combined action

contributes to 10% of the peak resultant torque.

Discussion

We show that participants are able to generate very fast

corrective movements following mechanical perturbations without

substantial oscillations and while using only small increases in pre-

perturbation activity. Based on anthropometric data, observed

perturbation-related motion, muscle recordings and a full muscle

model [23,24], we derived a linear model of the elbow joint with

realistic feedback delays and intrinsic impedance. With these

parameters, we found that state estimation is an easy and effective

way to permit fast corrective movements (return times ,300 ms).

Estimating the joint stiffness and viscosity was central to our

analyses because it critically influences the predictions of each

control model. The conventional technique for estimating joint

stiffness is with servo-controlled perturbations to extract the

relationship between the hand displacement and the restored force

[5,7,12,13,15,28]. One shortcoming of this technique is that the

restored force measured over ,200 ms includes the contribution

of short-latency (.20 ms), long-latency (.50 ms) and early

voluntary feedback responses (.100 ms) [3,37–39]. Thus, this

approach provides estimates that include not only the intrinsic

mechanical impedance of the joint, but also neural feedback. We

estimated joint stiffness and viscosity from the mechanical

properties of muscle. Our sensitivity analysis may not fully capture

estimation errors that result from using a linear muscle model.

However, some ignored non-linear features (such as plateaus in

force-velocity curves and the presence of elasticity in the tendon,

see Methods) would result in estimates of the muscles visco-elastic

properties that are even smaller than our first-order approxima-

tions. It is clear that future studies would be useful to explore the

limitations of these linear approximations to address whether the

basic results presented in this paper remain valid in general.

We wish to emphasize that we do not reject the presence of

peripheral joint impedance. We show that short-range impedance

can contribute substantially against transient perturbations during

postural control. However, short-range impedance cannot counter

perturbations during movement or when abrupt perturbations

induce large motor errors. Thus, what we question is the

contribution of joint intrinsic impedance during movement and

feedback responses to moderate-sized disturbances, given that

perturbation-related motion quickly overcomes the short-range

stiffness (in ,60 ms in the main experiment). Previous work also

reported that the intrinsic components of muscles only provide

limited contribution to force feedback in comparison with neural

feedback [40]. Further, short-range impedance cannot contribute

during voluntary movements, as it is only present in static

conditions. These observations indicate that feed-forward regula-

tion of intrinsic joint impedance, suggested as the first level of

sensorimotor control hierarchy [9,41], may not play a substantial

role during voluntary control.

This is puzzling because co-contraction is often observed as a

spontaneous strategy [42–44]. We also found a significant (small)

increase in baseline activity across timing conditions. However,

higher levels of joint stiffness and viscosity can only be obtained by

increasing baseline activation substantially (see the Control

Experiment), yet nobody chose this strategy despite the failure

rate. Why then, in some conditions, does the brain use co-

contraction? Perhaps co-contraction is mostly beneficial to counter

small disturbances by exploiting the short-range stiffness.

In order to understand the role of co-contraction, one must

consider not only its contribution peripherally, but also its
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contribution centrally to feedback processing. It has been shown

that perturbations applied with higher background levels of muscle

activity lead to larger short-latency stretch responses [45–47] (see

also the Control experiment). This gain-scaling quality of the

short-latency spinal reflex is likely due to the size recruitment

principle of motoneurons, whereby the motor units are recruited

in order of their strength [48]. Thus, by increasing the level of

baseline activation, spinal feedback can recruit stronger motor

units with faster contraction times, increasing the gain of spinal

feedback and hastening the corrective response. Like the short-

range stiffness, it is worth pointing out that spinal gain-scaling is

potentially deleterious as the short-latency stretch response lacks

most of the sophisticated capabilities present in long-latency

responses [2]. In fact, this increase in gain is transient, as it

disappears within 100 ms after the perturbation, during the long-

latency time period [47].

In general, our data do not allow us to make any definitive

statement regarding how neural circuits express model-based

control, and it is clearly possible that the spinal cord is engaged in

addition to supra-spinal and cortical contributions. However, we

provide empirical evidence that participants did not strongly

engage short-latency spinal responses in this task, as measured

response onsets occurred at ,50 ms on average. The control

experiment also revealed that the spontaneous increase in co-

activation observed in the main experiment was very small in

comparison with the range in which the benefits of co-contraction

are apparent. Thus, although the short-latency spinal stretch reflex

generates a faster muscle response, it was clearly not exploited by

participants. It should be noted that this strategy may have

depended on the task instruction. We focused on timing

constraints because return times are directly affected by the

boundedness of the set of stabilizing delayed-feedback controllers,

making the limitations of such controllers easier to observe. Other

tasks for which stability and model-based control are less critical

(such as shooting through a target) may allow other strategies such

as more recruitment of intrinsic impedance and short-latency

feedback.

The present results on the limited contribution of short latency

spinal reflexes appears to be at odds with the classic studies by

Nichols and Houk [40] that highlight spinal reflexes in decerebrate

cats can compensate for changes in muscle stiffness. However, this

study demonstrated that this spinal-based compensation was only

possible with sufficient background muscle activity. At low levels of

background muscle activity, spinal reflexes were insufficient to

counter the change in muscle stiffness properties [40], consistent

with the observations in the present study.

State estimation has been exploited to characterize unperturbed

reaching during which the brain may rely on internal predictions

from forward models and efference copy of motor commands [49–

52]. Although this hypothesis is firmly established in the context of

voluntary movements, evidence of estimation underlying rapid

feedback responses has remained elusive. Previous studies provide

indirect evidence for state estimation driving feedback control,

without dissociating the rapid update based on sensory feedback

about the perturbation from the prediction of the effects of the

motor commands [53–56]. Recently we showed that internal

priors about the perturbation profiles were engaged in the long-

latency response before sufficient sensory information was

collected to accurately respond to the perturbation [36]. This

previous study showed that long-latency responses were not purely

dependent upon sensory feedback; instead these responses were

compatible with a rapid update of the estimate state of the limb

using internal knowledge of the perturbation profiles. The present

paper highlights the benefits of this state estimation to provide

rapid feedback control following perturbations (and more gener-

ally during voluntary control).

However, our simulations also highlight potential strategies for

delay-uncompensated feedback control to provide relatively fast

corrective responses. In particular, robust control is beneficial to

reduce the impact of errors in model parameters, but at the cost of

greater return times that can impede task success. Robust control

may also provide important insight on the role of Golgi tendon

organs (GTO). This sensory organ provides feedback about the

muscle force [57,58], but its role remains controversial. Interest-

ingly, the robust controller has higher absolute torque feedback

than the other delay-uncompensated controllers. This results from

the fact that maximizing the stability radius requires that the

closed-loop control system is as far as possible from the unstable

bounds, and the system becomes quickly unstable with non-

negative torque feedback. Thus, increasing negative torque

feedback improves the system’s stability margin, but also slows

down corrective feedback. This theoretical feature of robust

control is compatible with the regulatory action of the GTO [57].

More generally, the inherent trade-off between performance and

robustness, previously reported in a bimanual task [59], is likely an

important feature of online feedback control that requires further

study. It is possible that biological motor systems select control

solutions that achieve performance or robustness depending on the

quality and reliability of body and environment’s internal models

of dynamics.

Our results have important implications for motor learning and

adaptation given the link between feedback control and motor

learning [60]. Indeed, previous studies addressing adaptive

changes in movement control have predominantly focused on

trial-by-trial adjustment of the descending commands [11,29,61–

64]. This approach is partially supported by the fact that several

modeling studies have considered very high impedance values

[29,54,65–67], or have ascribed them to short-latency spinal

pathways [53,54], which in both cases substantially overestimates

the actual properties of the limb (see Figure 7C). Thus, simulations

obtained with such models predict that online corrections for

motor errors encountered while moving in a novel dynamical

environment are handled by the intrinsic properties of the limbs or

by high-gain short-latency reflexes. It seems important to re-

evaluate this aspect of motor learning theory and re-explore the

mechanisms underlying online feedback control while exposed to

unknown dynamics. Robust control is again a good candidate

model to capture motor strategies during early exposure to

unknown dynamics, giving place to a greater reliance on internal

models following the acquisition of motor skills. In theory, it is also

possible to adjust internal models within a single movement with

rapid reverberating loops mapping motor errors into model

updates [68]. We expect that future work on motor learning will

shed light on how the motor system handles model errors during

online feedback control.

The rapid drop in muscle stiffness beyond a short range of

motion may explain the presence of pre-synaptic inhibition of

direct spinal feedback during movement [69]. There is an

extensive literature highlighting that a group of GABA inhibitory

interneurons in the spinal cord form synapses on the axons of

sensory afferents that terminate onto motor neurons and

interneurons [70]. These GABA interneurons generate presynap-

tic inhibition on sensory afferents during the transition from

posture to movement [70,71]. Pre-synaptic inhibition effectively

reduces the gain of sensory feedback at the level of the spinal cord,

and it has been presumed that this is necessary to extract task-

relevant information about movement [70,72]. Although plausi-

ble, it is unclear why information about self-generated motion is
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irrelevant to the central nervous system, nor how presynaptic

inhibition on synapses between sensory afferents and motoneurons

relate to sensory processing.

We believe that pre-synaptic inhibition may also have a

functional role for motor function. Indeed, limb movement also

results in muscle switching from high to low impedance [73].

Thus, it is possible that pre-synaptic inhibition reflects a relative

shift in the contribution of spinal feedback. During postural

control, the motor system can exploit short-range impedance of

muscles and relatively elevated spinal gains. However, during

movement when muscle possesses low stiffness, direct spinal

feedback is reduced and the central nervous system exploits to a

greater extent on internal models and state estimation that is

expressed in long-latency motor responses.

How these mechanisms, purely spinal and supra-spinal, interact

is not straightforward. However, this question appears to be at the

core of how the nervous system maintains stable interactions with

the environment. In the present study, we emphasized that upper

limb stability is threatened by state-dependent muscle mechanics

as well as sensorimotor delays. Stability issues also arise when

interacting with intrinsically unstable environments, such as when

one manipulates non-rigid objects or when stepping on unsteady

ground. Using a paradigm that can reproduce such situations,

Lawrence and colleagues [74] recently showed that humans

displayed consistent capabilities to stabilize finger or lower-limb

forces against unstable springs across healthy and clinical

populations. Altogether, these observations suggest that the

interaction between peripheral and central mechanisms is likely

a core challenge for the nervous system in most tasks. Simple

hierarchical models have been suggested [9,41,75], but this view

still leaves open the problem of central compensation for state-

dependent properties of the lower level of the hierarchy such as the

transition from high to low impedance as well as task-dependent

spinal feedback. Alternatively, the brain may selectively rely on

short-range control or model-based control depending on the task

or on the perturbation-related motion. In this framework, it is

possible that pre-synaptic inhibition regulates spinal sensorimotor

gains to complement muscles biomechanics and partially com-

pensate for changes in their properties across postural control and

movement tasks.

Methods

Ethics Statement
The Queen’s University Research Ethics Board approved the

experimental protocol and participants gave written informed

consent following standard procedures.

Experimental Procedures
A total of 16 healthy volunteers (11 males) between 19 and 33 yrs

of age took part in this study. Fifteen participants performed the main

experiment. Five of them also performed the control experiment.

One participant was tested for the control experiment only.

Main experiment. Participants (N = 15) interacted with an

adjustable robotic linkage supporting their right arm against

gravity and allowing motion in the horizontal plane (KINARM,

BKIN Technologies, Kingston, ON) [76,77]. Visual targets and

feedback about the fingertip position (1 cm radius white circle)

were projected on a virtual reality display while direct vision of the

arm was blocked (Figure 2 A). The shoulder joint was physically

locked and perturbations only induced motion at the elbow joint.

The time course of a trial is represented in Figure 2 C. The start

target (red dot, radius = 0.6 cm) and goal target (red circle,

radius = 1 cm) were presented at 90 deg of elbow angle.

Participants were instructed to stabilize in the start target and

compensate for the perturbations applied after a random delay

uniformly distributed between 2 s and 4 s. The perturbations

applied on the elbow were square pulses of 5 Nm amplitude

applied for 50 ms with 10 ms build up/down (Figure 2 B). The

perturbations were applied with three different levels of back-

ground load: extensors pre-excited (Figure 1 B, L0 = +2 Nm),

flexors pre-excited (L0 = 22 Nm) or no pre-loading (L0 = 0 Nm).

Flexion and extension perturbations were randomly interleaved to

avoid anticipation. The task was to return within an imposed time

constraint and stabilize the fingertip in the goal target for 2 sec

(Figure 2 C, tMAX). Task success was displayed with a green goal

target when participants returned and stabilized within the

prescribed time limit. Otherwise, the goal target remained red,

indicating an unsuccessful trial (Figure 2 C). Visual feedback of the

index fingertip was always displayed.

We varied the time constraints to return to the spatial goal to

compare response profiles across timing conditions with theoret-

ical simulations. Participants first performed a block of 40 trials (20

6 flexion or extension pulses) per pre-loading condition (3 blocks)

with tMAX = 600 ms, followed by a second similar series of three

blocks with tMAX = 300 ms. The blocks were separated by short

pauses of a few minutes to avoid fatigue. Participants were aware

from the beginning of the experiment that the second series of

three blocks would test their fastest response. There was no lower

time limit applied in the 600 ms condition and some participants

already attempted to respond as quickly as possible.

Control experiment. This experiment aimed to test the

effect of muscles co-activation on rapid feedback responses to

perturbations. Participants (N = 6) performed three blocks of trials

identical to those of the main experiment. One of these blocks was

performed with an extensor background load (22 Nm), another

block was performed with a flexor background load (+2 Nm) and

the third block was performed without any background load, but

with the explicit instruction to increase muscles co-activation to

make the elbow joint as rigid as possible, while being able to

maintain this level of co-activation relatively constant across the 40

trials. This instruction was provided only for the block of trials in

which there was no pre-loading. The temporal requirement for the

control experiment was 300 ms.

Data Collection and Analysis
The elbow angle, velocity and the activity of the major muscles

spanning the elbow joint were sampled at 1 kHz. Position signals

were digitally low-pass filtered with a dual pass 4th order Butterwoth

filter with 50 Hz cutoff frequency. The activity of elbow muscles was

collected with surface electrodes (DE-2.1, Delsys, Boston, MA)

attached over the muscle belly after light abrasion of the skin with

alcohol. We collected the activity of bi- and mono-articular elbow

flexors and extensors (brachioradialis, biceps, triceps lateralis and

triceps long). Muscle recordings were digitally band-pass filtered

with a dual-pass, 4th order Butterworth filter (band-pass 10–

400 Hz), rectified and averaged across trials. Normalization was

performed relative to the activity evoked by a 2 Nm background

load when maintaining postural control at the start target (90

degrees of elbow angle). We present the ensemble-averaged activity

as we found qualitatively similar behaviour across muscles.

We extracted the maximum elbow angle following the

perturbation and the maximum target overshoot when returning

to the goal. The maximum target overshoot was computed relative

to the centre of the goal target. We also extracted the return times,

defined as the time when the elbow angle returned within 61.5

deg of the initial angle, corresponding to a virtual goal target of 3

degrees centered on the start position. Trial success was
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determined offline based on the return time of each individual

trial. Comparisons of parameters from individual trials across

conditions were performed for each participant independently

with a non-parametric Wilcoxon ranksum test. Group compari-

sons across conditions were based on paired t-tests performed on

each participants’ individual means.

The control experiment addressed the onset of divergence

between perturbation-related changes in joint angles across pre-

activation conditions. The onset of divergence across trials was

computed for each participant based on time series of ROC areas

following procedures described earlier [78]. We also addressed the

onset of divergence across participants. For this analysis, a time

series of paired t-tests was preferred in order to mitigate the impact

of inter-participants variability. For each analysis (ROC on

individual trials or running t-tests across participants), we extracted

the divergence onset as the last chance-crossing time.

Derivation of Model Parameters
The estimate of joint intrinsic stiffness and viscosity is based on

the static force-length/velocity curves as described in [23,24]. The

normalized fascicle tension (F) is a function of the normalized

muscle activation level (a), length (L) and velocity (V). The

normalized tension must be multiplied by a constant proportional

to the physiological cross-sectional area to estimate the total

muscle force (S), and by the muscle moment arm to estimate the

muscle torque (d). Thus, the resultant muscle torque is given by:

T{d|S|F a,L,Vð Þ: ð5Þ

The intrinsic joint impedance (Equation 1) is the ratio between

changes in the joint torque and the changes in joint angle or

velocity. Thus, a first approximation, the intrinsic elastic (K, [Nm/

rad]) and viscous (G, [Nms/rad]) component of the muscle

impedance is given by computing the derivative of the muscle

torque with respect to muscle length or velocity as follows

(p0 = [a0, L0, V0]T is the parameter vector around which the

derivatives were computed):

K~
LT

LL

� �
p0

LL

Lh

� �
h0

, G~
LT

LV

� �
p0

LV

L _hh

� �
_hh0

: ð6Þ

The numerical values used to compute K and G were either

measured or taken from the literature. We used d = 4 cm for the

moment arm [79,80]. The physiological cross-sectional areas

(PCSA) and muscle fascicle lengths were measured on human

muscles samples from 9 cadavers following standard techniques

(see Supporting Information) [81]. We considered the sum of

PCSA over muscle groups (flexors or extensors), and averaged it

across groups and individuals. The average PCSA across human

muscle samples was 16.38 cm2, which must be multiplied by the

maximum tension generated per square centimeter (31.8 N/cm2,

[23]), which gives S = 520.9 N. Muscles fascicle length was also

measured for each muscle group, and averaged across samples

(L = 13.38 cm) to calculate the relationship between changes in

joint angle and changes in normalized length and velocity. We

added 0.05 Nms/rad to the constant G to account for joint friction

independent from muscle dynamics. To estimate the level of

activation a0, we calculated the activation needed to produce

2 Nm joint torque according to Equation 5, and used the fraction

corresponding to the pre-perturbation activity measured in the

300 ms condition averaged across participants (54% of the activity

evoked by 2 Nm background load). The other values used in

Equation 6 were L0 = 1, V0 = _hh0 = 0 and h0 = 90 deg. With these

parameters, we obtained K = 1.61 Nm/rad and G = 0.14 Nms/

rad. The short-range stiffness was obtained by estimating the slope

for force-length relationship based on Rack and Westbury [22]

(Figure 2 in this reference, ,7 N/mm), and scaling this number to

human muscles properties. This computation gave us an elastic

stiffness 9.4 times greater than the value obtained from the static

force-length curve (,15 Nm/rad, see also [17]). The viscosity was

scaled by the same factor to generate the simulations with short-

range impedance presented in Figure 1.

We validated these parameters by comparing simulations of a

passive joint following perturbation pulses. The motion was

generated by considering a system corresponding to Equation 1

with T = 0. We varied the parameters K and G across simulations

and compared the perturbation-related motion with participants’

data from the main experiment. This approach allowed us to

derive sets of values for K and G representing upper bounds and

admissible combinations given participants’ data (Figure 7).

The equations of motion and control models were defined in

Equations 1–4. The system inertia was estimated based on

average anthropometric data [82] and on the robot linkage mass

and geometry (I = 0.11 Kgm2). The time constant of the muscle

model (Equation 2) is t = 66 ms, compatible with first order

approximation of muscle dynamics [24]. Sensorimotor delays

were measured as the time when muscle responses exceed 2

standard deviation of their baseline activity. Individual onset

times were averaged across muscles and participants (Figure 9,

50.5 ms65.5 ms, mean 6 SD across participants). This value

corresponds to long-latency delays typically observed in absence

of muscle pre-loading [2].

One limitation of our approach is to consider a linear model of

muscles visco-elastic properties, which is clearly a crude approx-

imation given the non-linearity of muscles biomechanics [24].

Two important points can be examined: first we ignored the

contribution of heterogeneous connecting tissues acting in series

with contractile tissues in the quantification of the overall elastic

component of muscles. Second, we ignored that the force-velocity

relationship rapidly plateaus for moderate joint velocities [23].

Observe these two modeling choices yield an overestimation of the

parameters K and G. Indeed, our approach effectively considers

that tendons have infinite stiffness and therefore likely overestimate

the actual elastic force beyond the short range. This approxima-

tion is partially justified by the fact that tendon stiffness was

reported to be much greater than the stiffness of the contractile

elements [83]. Similarly, considering a constant viscosity across all

velocities overestimates the true (time varying) muscle viscosity

resulting from the non-linear force-velocity curve.

Identification techniques are sometimes used in the literature to

quantify the contribution from intrinsic and reflexive components

of joint torque following a perturbation [16,17]. Although the

values of stiffness can clearly vary across joints and muscles due to

different properties, several estimates published with this technique

seem extremely high (.100 Nm/rad), and almost certainly non

physiological. One potential problem with this approach is that it

is often based on fitting procedures, and the conditioning of the fit

is not systematically verified. As a result the fitting procedure may

by extremely sensitive to model errors and data variability. An

important question for future studies is to investigate the origin of

disagreement between this approach and ours.

Control Models and Simulations
We considered three candidate controllers corresponding to

Equation 3, minimizing the spectral abscissa, the sensitivity to
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parameters error (robust control) and the return times. The

eigenvalues of the closed-loop system were computed with the

freely available Matlab package DDE-BIFTOOL [84]. Each

optimization procedure was based on first order evaluation of the

sensitivity of the objective function (spectral abscissa, stability

radius or return time) relative to the feedback gains [30].

The second class of control models corresponding to Equation 5

is based on an estimation of the state of the system [51,85,86]. The

cost-function used for this model penalizes position errors (ht?0)

and motor costs (u) as follows:

J{
XN

t{1

wh2
t zrtu

2
t , ð7Þ

where N is the time horizon (.2 sec, 5 ms time steps), w and rt

(1#t#N-1) are parameters adjusted to get return times ,600 ms

(w = 0.01, rt = 1024, rN = 0). We followed the procedures fully

described earlier to derive the optimal Kalman gains and control

gains (C in Equation 4), while taking the feedback delays into

account [87,88]. We varied w to increase the feedback gains until

the simulated trajectories matched participants’ return times.

Varying w to match participants’ behaviour was the only fitting

procedure used in this study. The noise parameters (additive and

signal dependent) were identical for each model simulation and

were not fitted to participants’ data. We verified that the variability

across simulations was lesser than participants’ trial-to-trial

variability, which ensures conservative conclusions. All other

parameters were measured experimentally or taken from the

literature.

Our model assumes that the brain receives feedback about the

joint position, velocity and joint torque. However, previous work

emphasizes that information about the joint acceleration is also

encoded in the discharge rate of muscle spindles [89]. Observe

that the differential equation describing joint dynamics (Equations

1 and 2) can be transformed into its canonical form in which the

joint acceleration becomes a state variable as follows:

1zt
d

dt

� �
I€hhzKhzG _hh
� �

{u: ð8Þ

Thus, the systems considering torque or acceleration derivatives

(Equations 2 or 8) are equivalent in the sense that similar control

inputs generate the same motion. We verified that the predictions

obtained with Equation 8 gave the same results as those obtained

based on Equations 1 and 2.

Supporting Information

Table S1 List of muscle parameters. Physiological cross

sectional areas (PCSA) and fascicle lengths of elbow flexor and

extensor muscle groups from nine human cadavers.

(XLS)
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