

Supplementary Figure 1. Q-Q plots for iron, transferrin, saturation and ferritin in the Discovery meta-analysis. The genomic inflation factors (λ) are 1.035, 1.092, 1.051 and 1.067 for serum iron, transferrin, transferrin saturation and ferritin, respectively.

Supplementary Figure 2.

DISCOVERY.

Supplementary Figure 2 (continued).

Supplementary Figure 2 (continued).

DISCOVERY + REPLICATION (data from Discovery meta-analysis only, but these loci become significant in the combined data)

13.2

13.25

13.3

13.35

Position on chr11 (Mb)

Supplementary Figure 2. Regional association plots for loci with significant results in metaanalysis of data from the Discovery cohorts or the Discovery + Replication cohorts.

13.5

-BTBD10

13.45

13.4

Supplementary Figure 3. Patterns of allelic effects on the four phenotypes, serum iron, transferrin, transferrin saturation and ferritin, for the most significant SNP at each locus (from the Discovery + Replication data). The top row shows loci which mainly affect ferritin, the second row shows loci which mainly affect iron and transferrin saturation, and loci in the bottom row mainly affect transferrin.

Supplementary Figure 4. Results from conditional analysis, in which original results (top panels) are compared with results obtained after including the lead SNP from the initial analysis as a covariate (bottom panels). A: serum iron at the *TMPRSS6* locus; B: serum transferrin at the *TF* locus; C: transferrin saturation at the *TF* locus.

Supplementary Figure 6. Summary of disease and biological process overlap with genes identified through transferrin saturation and ferritin associations at p < 0.01 and p < 0.001, using Ingenuity Pathway Analysis.

Supplementary Figure 7. Comparison of allelic effects in Discovery + Replication meta-analysis and in C282Y homozygotes from the HEIRS study. Error bars show standard errors for betas.

Supplementary Tables

Supplementary Table 1. Cohort information and acknowledgements

Cohort Name	Cohort description, ethical approvals and references	Acknowledgements	Acknowledgements
		Financial support	Other
Discovery Cohorts:			
Australia- Adult	Study participants comprised (a) adult twins, their spouses and first- degree relatives who volunteered for studies on risk factors or biomarkers for physical or psychiatric conditions; (b) people with self- reported migraine or endometriosis and unaffected relatives. These studies were approved by The Queensland Institute of Medical Research Human Research Ethics Committee and, for the studies on alcohol and nicotine genetics, also by Washington University School of Medicine Human Subjects Committee.Benyamin et al. Common variants in TMPRSS6 are associated with iron status and erythrocyte volume. Nat Genet. 2009;41:1173-5. PMID 19820699 Painter et al. Genome-wide association study identifies a locus at 7p15.2 associated with endometriosis. Nat Genet. 2011;43:51-4. PMID: 21151130 Anttila et al. Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1. Nat Genet. 2010;42:869-73. PMID: 20802479	We acknowledge funding from the Australian National Health and Medical Research Council (NHMRC grants 241944, 389875, 389891,389892, 389938, 442915, 442981, 496739 and 552485), US National Institutes of Health (NIH grants AA07535, AA10248 and AA014041) and the Australian Research Council (ARC grant DP0770096). D.R.N. and G.W.M . are supported by the NHMRC Fellowship Scheme.	
Australia-Adolescent	Adolescent twins and their non-twin siblings who participated in studies on skin cancer risk factors at ages 12 and 14, and on cognition at age 16. These studies were approved by The Queensland Institute of Medical Research Human Research Ethics Committee, and both the participants and their parents or guardians gave informed consent. Middelberg RPS, Martin NG, Whitfield JB. A longitudinal genetic study of plasma lipids in adolescent twins. Twin Research and Human Genetics 2007;10:127-135. Powell JE, Henders AK, McRae AF, et al. The Brisbane Systems Genetics Study: genetical genomics meets complex trait genetics. PLoS One. 2012;7:e35430.	Financial support for aspects of the adolescent studies was provided by grants from the National Health and Medical Research Council of Australia, and the National Institute on Alcohol Abuse and Alcoholism (AA007535, AA014041).	
Estonian Biobank (original cohort)	The Estonian cohort comes from the population-based biobank of the Estonian Genome Project of University of Tartu (EGCUT). The project is conducted according to the Estonian Gene Research Act and all	This work was supported by the Targeted Financing from the Estonian Ministry of Science and Education [SF0180142s08];	We acknowledge EGCUT technica personnel, especially Mr V. Soo and S Smit. Data analyzes were carried out

Cohort Name	Cohort description, ethical approvals and references	Acknowledgements	Acknowledgements
		Financial support	Other
	participants have signed the broad informed consent	the US National Institute of Health	in part in the High Performance
	(www.biobank.ee). In total, 52 000 individuals aged 18 years or older	[R01DK075787]; the Development Fund	Computing Center of University of
	participated in this cohort (33% men, 67% women). The population	of the University of Tartu (grant	Tartu.
	distributions of the cohort reflect those of the Estonian population	SP1GVARENG); the European Regional	
	(83% Estonians, 14% Russians and 3% other). General practitioners	Development Fund to the Centre of	
	(GP) and physicians in the hospitals randomly recruited the	Excellence in Genomics (EXCEGEN; grant	
	participants. A Computer-Assisted Personal interview was conducted	3.2.0304.11-0312); and through FP7	
	during 1–2 h at doctors' offices. Data on demographics, genealogy,	grant 313010.	
	educational and occupational history, lifestyle and anthropometric and		
	physiological data were assessed. These studies were approved by the		
	Research Ethics Committee of the University of Tartu.		
	Website: http://www.biobank.ee/		
	Leitsalu L, et al. Cohort Profile: Estonian Biobank of the Estonian		
	Genome Center, University of Tartu. Int J Epidemiol. 2014 Feb 11.		
Kora (F3, F4)	The KORA study is a series of independent population-based	The KORA research platform (KORA,	
	epidemiological surveys of participants living in the region of Augsburg,	Cooperative Health Research in the	
	Southern Germany. All survey participants are residents of German	Region of Augsburg) was initiated and	
	nationality identified through the registration office and were	financed by the Helmholtz Zentrum	
	examined in 1994/95 (KORA S3) and 1999/2001 (KORA F4). In the KORA	München - German Research Center for	
	S3 and S4 studies 4,856 and 4,261 subjects have been examined	Environmental Health, which is funded	
	implying response rates of 75% and 67%, respectively. 3,006 subjects	by the German Federal Ministry of	
	participated in a 10-year follow-up examination of S3 in 2004/05 (KORA	Education and Research and by the State	
	F3), and 3080 of S4 in 2006/2008 (KORA F4). Individuals for genotyping	of Bavaria. Furthermore, KORA research	
	in KORA F3 and KORA F4 were randomly selected. The age range of the	was supported within the Munich Center	
	participants was 25 to 74 years of recruitment. Informed consent has	of Health Sciences (MC Health), Ludwig-	
	been given by all participants. The study has been approved by the	Maximilians-Universität, as part of	
	local ethics committee (Ethik-Kommission der Bayerische	LMUinnovativ.	
	Landesärztekammer).		
	Holle R, Happich M, Löwel H, Wichmann HE (2005) KORA–a research		
	platform for population based health research. Gesundheitswesen		
	2005 Aug;67(Suppl 1): S19–25.		
	Wichmann H-E, Gieger C, Illig T (2005) KORA-gen-resource for		
	population genetics, controls and a broad spectrum of disease		
	phenotypes. Gesundheitswesen 2005Aug ;67(Suppl 1): S26–30.		
Val Borbera	Val Borbera: The INGI-Val Borbera population is a collection of 1,664	The research was supported by funds	We thank the inhabitants of the VB
	genotyped samples collected in the Val Borbera Valley, a	from Compagnia di San Paolo, Torino,	that made this study possible, the
	geographically isolated valley located within the Appennine Mountains	Italy; Fondazione Cariplo, Italy and	local administrations, the Tortona and

Cohort Name	Cohort description, ethical approvals and references	Acknowledgements	Acknowledgements
		Financial support	Other
	in Northwest Italy1. The valley is inhabited by about 3,000 descendants from the original population, living in 7 villages along the valley and in the mountains. Participants were healthy people 18-102 years of age that had at least one grandfather living in the valley. The study plan and the informed consent form were reviewed and approved by the institutional review boards of San Raffaele Hospital in Milan. Traglia, M. et al. Heritability and demographic analyses in the large isolated population of Val Borbera suggest advantages in mapping complex traits genes. PLoS One 4, e7554 (2009). ⁺ Colonna V, et al. Small effective population size and genetic homogeneity in the Val Borbera isolate. Eur J Hum Genet. 2):89-94. 2013	Ministry of Health, Ricerca Finalizzata 2008 and CCM 2010, PRIN 2009 and Telethon, Italy to DT. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.	Genova archdiocese and the ASL-22, Novi Ligure (Al) for support. We also thank Fiammetta Viganò for technical help, Corrado Masciullo and Massimiliano Cocca for building the analysis platform.
NBS (Nijmegen Biomedical Study)	The Nijmegen Biomedical Study (NBS; http://www.nijmegenbiomedischestudie.nl) is a population-based survey conducted by the Department for Health Evidence and the Department of Laboratory Medicine of the Radboud University Medical Centre, Nijmegen, The Netherlands. The study has been described before (1). Briefly, in 2002, 22,451 age and sex-stratified randomly selected adult inhabitants of Nijmegen, a city located in the eastern part of the Netherlands, received an invitation to fill out a postal questionnaire (QN) including questions about lifestyle, health status, and medical history, and to donate a blood sample for DNA isolation and biochemical studies. A total of 9350 (43%) persons filled out the QN, of which 6468 (69%) donated blood samples. A second, third and fourth questionnaire were sent out in 2005, 2008 and 2012, respectively. Approval to conduct the NBS was obtained from the Radboud University Medical Centre Institutional Review Board. All participants gave written informed consent for participation in the NBS. For this study we used the subset of 1980 NBS participants that was selected to serve as controls in GWAS (2). 1. Hoogendoorn EH, Hermus AR, de Vegt F, Ross HA, Verbeek AL, Kiemeney LA, Swinkels DW, Sweep FC, den Heijer M. Thyroid function and prevalence of anti-thyroperoxidase antibodies in a population with borderline sufficient iodine intake: influences of age and sex. Clin Chem 2006;52:104-11. 2. Kiemeney LA, Thorlacius S, Sulem P, et al. Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat Genet	This work was sponsored by the Stichting Nationale Computerfaciliteiten (National Computing Facilities Foundation, NCF) for the use of supercomputer facilities, with financial support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organization for Scientific Research, NWO).	The Nijmegen Biomedical Study is a population-based survey conducted at the Department for Health Evidence, and the Department of Laboratory Medicine of the Radboud University Medical Centre. Principal investigators of the Nijmegen Biomedical Study are Lambertus A. Kiemeney, Martin den Heijer, André L.M. Verbeek, Dorine W. Swinkels and Barbara Franke.

Cohort Name	Cohort description, ethical approvals and references	Acknowledgements	Acknowledgements
		Financial support	Other
	2008;40:1307-12.		
Cambridge	The UK Blood Services (UKBS) Common Controls Panel 1 and 2 (UKBS - CC1 and UKBS - CC2) is a national collection of 3,000 DNA samples from the 12 health regions of Great Britain established in 2005 - 2006 by a partnership between NHS Blood and Transplant (NHSBT) of England, the Scottish National Blood Transfusion Service and the Welsh Blood Service. The Common Controls collection was established for use as the shared controls in the WTCCC Genome - Wide Association Studies (WGAS), and was approved by the Peterborough & Fenland Local Research Ethics Committee	Research in the Ouwehand laboratory is supported by program grants from the National Institute for Health Research (NIHR) to WHO and the British Heart Foundation (to AR) under numbers RP- PG-0310-1002 and RG/09/12/28096.	
	Wellcome Trust Case Control Consortium. Genome - wide association study of 14, 000 cases of seven common diseases and 3,000 shared controls. Nature 447 , 661 - 78 (2007).		
Micros/EURAC	The MICROS study is part of the genomic health care program 'GenNova' and was carried out in three villages of the Val Venosta, South Tyrol (Italy), in 2001-2003. It comprised members of the populations of Stelvio, Vallelunga and Martello. A detailed description of the MICROS study is available elsewhere (Pattaro et al. 2007). Briefly, study participants were volunteers from three isolated villages located in the Italian Alps, in a German-speaking region bordering with Austria and Switzerland. Owing to geographical, historical and political reasons, the entire region experienced a prolonged period of isolation from surrounding populations. Information on the participant's health status was collected through a standardized questionnaire. Laboratory data were obtained from standard blood analyses. The study participants are connected among each other in a unique genealogy for the three villages. The study was approved by the Landesethikkomitee (ethics committee) of the autonomous province of Bolzano.	The study was supported by the Ministry of Health and Department of Educational Assistance, University and Research of the Autonomous Province of Bolzano and the South Tyrolean Sparkasse Foundation.	For the MICROS study, we thank the primary care practitioners Raffaela Stocker, Stefan Waldner, Toni Pizzecco, Josef Plangger, Ugo Marcadent and the personnel of the Hospital of Silandro (Department of Laboratory Medicine) for their participation and collaboration in the research project.
	Pattaro C, Marroni F, Riegler A, Mascalzoni D, Pichler I, Volpato CB, Dal Cero U, De Grandi A, Egger C, Eisendle A, Fuchsberger C, Gögele M, Pedrotti S, Pinggera GK, Stefanov SA, Vogl FD, Wiedermann CJ, Meitinger T, Pramstaller PP. The genetic study of three population microisolates in South Tyrol (MICROS): study design and epidemiological perspectives. BMC Med Genet. 2007 Jun 5;8:29.		
ERF/Rotterdam	The Erasmus Rucphen Family study is part of the Genetic Research in Isolated Populations (GRIP) program. It is a cross-sectional population- based study that includes over 3000 participants descending from 22	ERF: The genotyping for the ERF study was supported by EUROSPAN (European Special Populations Research Network)	

Cohort Name	Cohort description, ethical approvals and references	Acknowledgements	Acknowledgements
		Financial support	Other
	couples who lived in the Rucphen region in the southwest Netherlands	and the European Commission FP6 STRP	
	and had at least 6 children baptized in the community church between	grant (018947; LSHG-CT-2006-01947).	
	1850 and 1900. All living descendants of these pairs (as well as their	The ERF study was further supported by	
	spouses), ascertained on the basis of municipal and baptismal records,	grants from the Netherlands	
	were traced and invited to participate (n = 3000). Selection of the	Organisation for Scientific Research,	
	study participants was not based on any disease. The Medical Ethical	Erasmus MC, the Centre for Medical	
	Committee of the Erasmus Medical Center, Rotterdam approved the	Systems Biology (CMSB) and the	
	study and informed consent was obtained from all participants.	Netherlands Brain Foundation	
		(HersenStichting Nederland). We are	
	Aulchenko YS, Heutink P, Mackay I, et al. Linkage disequilibrium in	grateful to all participating individuals	
	young genetically isolated Dutch population. Eur J Hum Genet	and their relatives, general practitioners	
	2004;12:527-34. PMID:15054401	and neurologists for their contributions	
		and to P. Veraart for her help in	
		genealogy, Jeannette Vergeer for the	
		supervision of the laboratory work and P.	
		Snijders for his help in data collection.	
Busselton Health	Residents of the town of Busselton in the southwest of Western	The Busselton Health Study (BHS)	
Study	Australia have been involved in a series of health surveys since 1966.a	acknowledges the generous support for	
	The population is predominantly of European origin. In 1994/95 there	the 1994/5 follow-up study from	
	was a follow-up study involving a subset of those who had attended	Healthway, Western Australia and the	
	any of the previous surveys. Cases of asthma were defined as those	numerous Busselton community	
	who reported doctor-diagnosed asthma at any survey that they	volunteers who assisted with data	
	attended from 1966 to 1994 (answer 'Yes' to 'Has your doctor ever told	collection and the study participants	
	you that you had asthma?').b Controls are those who have consistently	from the Shire of Busselton. The	
	answered 'No' to 'Has your doctor ever told you that you had asthma?'	Busselton Health Study is supported by	
	at all previous surveys that they have attended from 1996 to 1994. For	The Great Wine Estates of the Margaret	
	the GWA study, a case control sample of unrelated individuals was	River region of Western Australia.	
	selected. After QC a total of 1,207 subjects were retained in the GWAS		
	analyses. Ethical approval was obtained through the Human Research		
	Ethics Office, University of Western Australia		
	Website: http://www.busseltonhealthstudy.com/		
	James AL, Knuiman MW, Divitini ML et al. Changes in the prevalence of		
	asthma in adults since 1966: the Busselton Health Study. Eur Respir J		
	2009		
Replication Cohorts:			
Estonian Biobank	The Estonian cohort comes from the population-based biobank of the	This work was supported by the Targeted	We acknowledge EGCUT technical
(replication cohort)	Estonian Genome Project of University of Tartu (EGCUT). The project is	Financing from the Estonian Ministry of	personnel, especially Mr V. Soo and S.
	conducted according to the Estonian Gene Research Act and all	Science and Education [SF0180142s08];	Smit. Data analyzes were carried out
	participants have signed the broad informed consent	the US National Institute of Health	in part in the High Performance

Cohort Name	Cohort description, ethical approvals and references	Acknowledgements	Acknowledgements
		Financial support	Other
	(www.biobank.ee). In total, 52 000 individuals aged 18 years or older participated in this cohort (33% men, 67% women). The population distributions of the cohort reflect those of the Estonian population (83% Estonians, 14% Russians and 3% other). General practitioners (GP) and physicians in the hospitals randomly recruited the participants. A Computer-Assisted Personal interview was conducted during 1–2 h at doctors' offices. Data on demographics, genealogy, educational and occupational history, lifestyle and anthropometric and physiological data were assessed. These studies were approved by the Research Ethics Committee of the University of Tartu. Website: http://www.biobank.ee/	Financial support [R01DK075787]; the Development Fund of the University of Tartu (grant SP1GVARENG); the European Regional Development Fund to the Centre of Excellence in Genomics (EXCEGEN; grant 3.2.0304.11-0312); and through FP7 grant 313010.	Other Computing Center of University of Tartu.
	Leitsalu L, et al. Cohort Profile: Estonian Biobank of the Estonian		
InCHIANTI	 Genome Center, University of Tartu. Int J Epidemiol. 2014 Feb 11. The InCHIANTI study is a population-based epidemiological study aimed at evaluating the factors that influence mobility in the older population living in the Chianti region in Tuscany, Italy. The details of the study have been previously reported[1]. Briefly, 1616 residents were selected from the population registry of Greve in Chianti (a rural area: 11,709 residents with 19.3% of the population greater than 65 years of age), and Bagno a Ripoli (Antella village near Florence; 4,704 inhabitants, with 20.3% greater than 65 years of age). The participation rate was 90% (n=1453), and the subjects ranged between 21-102 years of age. Overnight fasted blood samples were for genomic DNA extraction, and measurement of iron-related traits. Illumina Infinium HumanHap 550K SNP arrays were used for genotyping [2]. The study protocol was approved by the Italian National Institute of Research and Care of Aging Institutional Review, and Medstar Research Institute (Baltimore, MD). 	The InCHIANTI study baseline (1998- 2000) was supported as a "targeted project" (ICS110.1/RF97.71) by the Italian Ministry of Health and in part by the U.S. National Institute on Aging (Contracts: 263 MD 9164 and 263 MD 821336).	
	 Ferrucci, L., et al., Subsystems contributing to the decline in ability to walk: bridging the gap between epidemiology and geriatric practice in the InCHIANTI study. J Am Geriatr Soc, 2000. 48(12): p. 1618-25. PMID: 11129752 Melzer, D., et al., A genome-wide association study identifies protein quantitative trait loci (pQTLs). PLoS Genet, 2008. 4(5): p. e1000072. PMID: 18464913 		
SardiNIA	The SardiNIA study is a longitudinal study which recruited and phenotyped 6,148 individuals, males and females, aged 14–102 y, from a cluster of four towns in the Lanusei Valley [Pilia et al Plos Genetic	We thank the many individuals who generously participated in this study. We are also grateful for the important	

Cohort Name	Cohort description, ethical approvals and references	Acknowledgements	Acknowledgements
		Financial support	Other
	2006], located in the central east coast of the Sardinia island, Italy.	computing resources made available for	
	During physical examination of each individual, a blood sample was	imputation and analysis by the CRS4 HP	
	collected and divided into two aliquots. One aliquot was used for DNA	Computing Cluster in Pula (Cagliari, Italy),	
	extraction and the other to characterize several blood phenotypes.	and in particular to Lidia Leoni, Luca	
	During the study, we genotyped, by common GWAS arrays (Affymtrix	Carta e Michele Muggiri. This work was	
	10K, Affymetrix 500K and Affymetrix 6.0), 4,694 individuals selected	supported by the Intramural Research	
	from the whole sample to represent the largest available families,	Program of the National Institute on	
	regardless of their phenotypic values. Genotyping protocol and quality	Aging (NIA), National Institutes of Health	
	checks for the genotyping arrays were described previously [Naitza et	(NIH). The SardiNIA ("Progenia") team	
	al Plos Genet 2012]. The quality controlled 731,209 autosomal markers	was supported by Contract NO1-AG-1-	
	were used to estimate genotypes for additional 1,594,772 polymorphic	2109 from the NIA.	
	SNPs assessed in the CEU HapMap population (release 22) by genotype		
	imputation. The SardiNIA study was approved by both the IRB at the		
	National Institute on Ageing and the local Italian Ethical Committee		
	"Azienda Unita' Sanitaria Locale (U.S.L.) N 4, Lanusei.		
CoLAUS	The CoLaus study is a population-based cohort study in Lausanne,	The CoLaus study was supported by	The authors thank Peter
	Switzerland and has been described previously [Firmann M, BMC	research grants from GlaxoSmithKline,	Vollenweider, Vincent Mooser and
	Cardiovascular Disorders, 2008, PMID 18366642]. Briefly, the baseline	the Faculty of Biology and Medicine of	Dawn Waterworth, Co-PIs of the
	study was conducted between 2003 and 2006, recruiting over 6,000	Lausanne, Switzerland, and the Swiss	CoLaus study. Special thanks to
	subjects. The following inclusion criteria were applied: a) voluntary	National Science Foundation (grant no:	Murielle Bochud, Yolande Barreau,
	participation in the examination, including blood sample, b) aged 35-75	33CSCO-122661, 33CS30-139468). ZK	Mathieu Firmann, Vladimir Mayor,
	years, and c) Caucasian origin defined as having both parents and	was supported by the Leenaards	Anne-Lise Bastian, Binasa Ramic,
	grand-parents Caucasian (determined by birth place). A follow-up visit	Foundation and the Swiss National	Martine Moranville, Martine Baumer,
	took place from 2009-2012, hence 5 years after the baseline study,	Science Foundation (31003A-143914).	Marcy Sagette, Jeanne Ecoffey and
	(n=5,228, 78% follow-up) and similar measurements were repeated.		Sylvie Mermoud for data collection.
	The Institutional Review Board of the Centre Hospitalier Universitaire		
	Vaudois (CHUV) in Lausanne and the Cantonal Ethics Committee		
	(Commission Cantonale d'éthique de la recherche sur l'être humain)		
	approved the study protocol for both the baseline and follow-up		
	studies and signed informed consent was obtained from participants.		
PREVEND	The PREVEND Study is a prospective, observational cohort study,	This work was supported by the	
	focussed to assess the impact of elevated urinary albumin loss in non-	following grants: PREVEND genetics is	
	diabetic subjects on future cardiovascular and renal disease.	supported by the Dutch Kidney	
	PREVEND is an acronym for Prevention of REnal and Vascular ENd-	Foundation (Grant E033), the National	
	stage Disease. This study started with a population survey on the	Institutes of Health (grant LM010098),	
	prevalence of micro-albuminuria and generation of a study cohort of	The Netherlands Organization for	
	the general population. The goal is to monitor this cohort for the long-	Scientific Research (NWO-Groot	
	term development of cardiac-, renal- and peripheral vascular end-stage	175.010.2007.006, NWO VENI grant	
	disease. For that purpose the participants receive questionnaires on	916.761.70, ZonMW 90.700.441), and	

Cohort Name	Cohort description, ethical approvals and references	Acknowledgements	Acknowledgements
		Financial support	Other
	events and are seen every three/four years for a survey on cardiac-, renal- and peripheral vascular morbidity. 'The PREVEND study was approved by the medical ethics committee of the University Medical Center Groningen and conducted in accordance with the guidelines of the Declaration of Helsinki. All participants gave written informed consent. Website: http://www.prevend.org/index.php	the Dutch Inter University Cardiology Institute Netherlands. N. Verweij is supported by the Netherlands Heart Foundation (grant NHS2010B280).	
FENLAND	The Fenland study is a population based cohort in Eastern England (UK) designed to analyse gene-lifestyle interactions on intermediate quantitative traits related to obesity and type 2 diabetes risk. It combines detailed measurement of the lifestyle exposures with accurate metabolic and anthropometric phenotyping. More than 10,000 men and women born between 1950 and 1975 have been recruited since 2004 and is still ongoing. Exclusion criteria were people suffering from a psychotic illness, pregnant and lactating females, people unable to walk unaided, individuals with diagnosed diabetes or a prognosis of less than 1 year. GWAS data is currently available on 1,500 randomly selected participants. The study was approved by Cambridge Local Research Ethics Committee (NHS).	The Fenland Study is funded by the Medical Research Council (MC_UU_12015/1 and MC_UU_12015/8); the Support Funding programme; Camstrad; and the British Heart Foundation (PG/07/108/23369). Clara Podmore is funded by the Wellcome Trust (097451/Z/11/Z).	We are grateful to all the volunteers for their time and help, and to the General Practitioners and practice staff for assistance with recruitment. We thank the Fenland Study Investigators, Fenland Study Co- ordination team and the Epidemiology Field, Data and Laboratory teams. Biochemical assays were performed by the National Institute for Health Research, Cambridge Biomedical Research Centre, Core Biochemistry Assay Laboratory, and the Cambridge University Hospitals NHS Foundation Trust, Department of Clinical Biochemistry.
INTERACT	The InterAct study is a case-cohort study of incident cases of type 2 diabetes (T2D) from eight of the ten countries involved in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohorts [Langenberg C, Diabetologia 2011 PMID 21717116]. In brief, 12,403 verfied incident cases of T2D occured between 1991 and 2007 among the participants eligible for inclusion in InterAct, and a centre-stratified subcohort of 16,154 individuals was defined for comparative analysis. As part of EPIC, standardised information had been collected on participants, including information on lifestyles exposures, diet, physical activity, standard anthropometric data and biomarker measurements on stored blood samples. The study was approved by the Internal Review Board of the International Agency for Research on Cancer, in addition to the local ethics committees in the participating countries.	InterAct was funded by the EU Integrated Project LSHM-CT-2006- 037197.	We thank all EPIC participants and staff for their contribution to the study.

Supplementary Table 2. Cohort, phenotype and method information.

					Cohort Statistics, Means ± SD							Laboratory Methods			
Cohort	Cohort Full Name	Sex	N	References (for Cohort)	Age (Years)	lron (μmol/l)	Transferrin (g/l)	TIBC (µmol/l)	Saturation (Percent)	Ferritin (µg/l)	Log Ferritin	Method for serum iron	Method for serum transferrin (or total iron binding capacity)	Method for ferritin	
Discovery C	ohorts:														
Australia- Adult	Istralia- lult QIMR M 3432 PMID 47.5 ± 21.2 ± 2.7 ± 32.1 ± 257. lult Berghofer (1868 19820699; 12.3 6.4 0.35 10.5 190 Adult families) 21151130; 10.5 190	257.3 ± 190.3	2.30 ± 0.34	Colorimetric, Ferrozine, Roche 917 or Modular P analyser	lmmunoturbidimetric, Roche 917 or Modular P analyser	Latex particle immunoturbidimetry, Roche 917 or Modular P									
		F	5716 (3204 families)	20802479.	46.0 ± 12.8	18.5 ± 6.7	2.9 ± 0.47		26.7 ± 10.4	99.1 ± 108.6	1.82 ± 0.41			analyser	
Australia- Adolescent	QIMR Berghofer Adolescent	М	1230 (741 families)	PMID 17539372; 22563384.	14.6 ± 2.0	17.3 ± 5.5	2.9 ± 0.36		24.0 ± 8.22	60.3 ± 44.9	1.70 ± 0.23	Colorimetric, Ferrozine, Roche 917 or Modular P analyser	Immunoturbidimetric, Roche 917 or Modular P analyser	Latex particle immunoturbidimetry, Roche 917 or Modular P	
		F 1314 (760 familie			14.9 ± 2.3	16.3 ± 5.4	3.0 ± 0.38		22.3 ± 7.7	43.7 ± 30.4	1.56 ± 0.26			analyser	
Estonia (original)	Estonian Genome	М	440	PMID: 24518929	37.3 ±	19.4 ±	2.7 ±		29.9 ±	143.6 ±	1.99 ±	Colorimetric method	Electro-chemiluminescence	Immunoturbidimetry	
(01.8.1.0.)	Project	F	453		37.5 ± 15.7	16.9 ± 7.4	2.9 ± 0.58		24.0 ± 11.7	50.1 ± 51.9	1.51 ± 0.44	-			
					l										
Val Borbera	Val Borbera Study	Μ	733	_	54.4 ± 18.4	17.7 ± 6.3	2.4 ± 0.4		29.6 ± 11.4	109.4 ± 112.2	1.9 ± 0.4	Standard methods	Standard methods	Standard methods	
		F	926		54.8 ± 18.7	16.4 ± 5.8	2.5 ± 0.5		26.9 ± 10.5	108.2 ± 112.1	1.8 ± 0.4				
NBS	Nijmegen Biomedical	Μ	889		66.3 ± 7.1	18.3 ± 5.8		58.1 ± 8.7	32.0± 11.0	209.9 ± 191.1	2.19 ± 0.36	Colorimetric measurement using ascorbate/FerroZine	t Unsaturated iron binding capacity was measured by	Serum ferritin concentration was	
	Study	F	902		56.6 ± 10.8	16.3 ± 5.5		60.6 ± 9.7	27.5 ± 10.0	105.8 ± 89.1	1.87 ± 0.39	Tragents(Rocne Diagnostics) on an Abbott Aeroset analyzer.	adding a known quantity of Fe3+ to the serum samples, reducing it with ascorbate to Fe2+ and measuring it with FerroZine as described for total serum iron (Roche reagents on an Aeroset). TIBC was calculated by adding serum iron and unsaturated iron-binding capacity.	determined by a chemiluminescent microparticle immunoassay on the Abbott Architect calibrated against the ferritin assay on the Immulite 2000 of Diagnostic Products Corporation.	
Cambridge	UK Blood Services (UKBS))	1198	PMID: 17554300	45.1 ± 11.9	N/A	N/A		N/A	34.7 ± 27.1	3.29 ± 0.73	N/A	N/A	Ferritin concentrations from plasma collected	

							Cohort S	tatistics, N	Means ± SD			Laboratory Methods			
Cohort	Cohort Full	Sex	N	References	Age	Iron	Transferrin	TIBC	Saturation	Ferritin	Log	Method for serum iron	Method for serum transferrin	Method for ferritin	
	Name			(for Cohort)	(Years)	(µmol/l)	(g/l)	(µmol/l)	(Percent)	(µg/l)	Ferritin		(or total iron binding capacity)		
	Common Controls panel	F	1221		42.1 ± 12.7	N/A	N/A		N/A	19.4 ± 16.0	2.69 ± 0.76			from a blood donation pack (containing anitcoagulant) were measured by a two-site sandwich immunoassay using direct chemiluminometric technology.	
Micros/		М	528		45.5 ±	20.3 ±	2.60 ±		31.8 ±	170.1 ±	2.08 ±	Photometry	PEG-Enhanced	Microparticle enzyme	
EURAC		F	690		46.0 ± 16.7	7.3 18.0 ± 7.4	0.34 2.79 ± 0.48		26.4 ± 11.2	53.3 ± 54.2	0.41 1.53 ± 0.43		inninotarbiainetry	AxSym, Abbott, USA	
ERF/		М	342	PMID:	54.6 ±	21.3 ±			36.1 ±	229.8 ±	5.16 ±	Serum iron was measured	Transferrin saturation (%) was	Serum ferritin levels were	
Rotterdam		F	529	15054401; 16877869	14.1 52.8 ±	7.0 18.8 ±			13.4 31.0 ±	186.0 105.7 ±	0.77 4.23 ±	by the Ferrozine methor using Roche/Hitachi 747	calculated as serum iron levels divided by serum total iron	measured by a two-site chemiluminescencent	
					15.1	6.5			11.9	163.3	0.92	400 Kit(Roche).	binding capacity.	immunometric assay using the Immulite 2000 (Diagnostics Products Corporation).	
KORA F3	Kooperative	М	809	PMID:	63.0 ±	17.5 ±	2.45 ±		28.9 ±	289.8 ±	2.33 ±	Colorimetric assay,	Immunonephelometry,	Electrochemiluminescence	
	Gesundheitsfor			16032513;	10.1	5.5	0.33		9.5	245.6	0.35	(Cobas [®] , Roche)	(Behring Nephelometer®,	immunoassay (ECLIA)	
	schung in der Region Augsburg	F	825	16032514	62.1 ± 10.1	16.1 ± 5.2	2.57 ± 0.36		25.4 ± 8.7	141.0 ± 120.4	2.00 ± 0.39		Siemens)	Cobas, Roche	
KORA F4	Kooperative	М	882	PMID:	61.2 ±	22.2 ±	2.52 ±		35.7 ±	282.7 ±	2.31 ±	Colorimetric assay,	Immunonephelometry,	Electrochemiluminescence	
	Gesundheitsfor			16032513;	8.9	6.9	0.36		12.4	255.9	0.37	(Cobas [®] , Roche)	(Behring Nephelometer®,	immunoassay (ECLIA)	
	in der Region Augsburg	F	927	10032314	60.6 ± 8.8	20.2 ± 6.5	2.55 ± 0.35		32.2 ± 11.1	133.5 ± 132.6	1.97 ± 0.40		Siemens)		
						[
BHS	Busselton Health Study	М	397		54.0 ± 15.4	18.6 ± 5.7	2.59 ± 0.21		29.5 ± 10.0	234.6 ± 397.0	2.20 ± 0.37	Colorimetric	Immunoturbidimetric	Electrochemiluminescence	
			480		55.5 ± 14.9	17.1 ± 5.8	2.69 ± 0.50		26.6 ± 11.4	98.6 ± 95.7	1.81 ±0.43				
Poplication	Cohorts:														
Estonia	Estonian	М	547	PMID:	54.4 ±	19.0 ±	2.7 ±		31.9 ±	181.9 ±	2.11 ±	Colorimetric method	Electro-chemiluminescence	Immunoturbidimetry	
(replication)	Genome			24518929	16.1	6.6	0.40		11.5	189.4	0.37		immunoassay	,	

					Cohort Statistics, Means ± SD							Laboratory Methods			
Cohort	Cohort Full Name	Sex	Ν	References (for Cohort)	Age (Years)	lron (μmol/l)	Transferrin (g/l)	TIBC (µmol/l)	Saturation (Percent)	Ferritin (µg/l)	Log Ferritin	Method for serum iron	Method for serum transferrin (or total iron binding capacity)	Method for ferritin	
	Project	F	470		53.4 ± 15.9	17.3 ± 6.5	2.8 ± 0.51		29.0 ± 12.7	88.9 ± 96.2	1.74 ± 0.45				
InCHIANTI	InCHIANTI study	M F	536 670	PMID: 19880490	67.1 ± 15.3 69.1 ±	15.4 ± 5.0 14.5 ±	1.23 ± 0.5 1.25 ±			185.2 ± 180 105.1 ±	4.28 ± 1.0 4.26 ±	Colorimetric assay (Roche Diagnostics, Mannheim, Germany)	Chemiluminescent immunoassay (Abbott Diagnostics and Nichols	Chemiluminescent immunoassay (Abbot Diagnostics).	
					15.6	4.4	0.43			94.5	0.95		Institute Diagnostics).		
SardiNIA	SardiNIA study on aging	M F	2051 2643	PMID: 16934002	43.7 ± 18.1 43.1 ± 17.3	17.3 ± 6.4 14.8 ± 6.0	2.96 ± 0.57 3.15 ± 0.65					Express 560 Plus chemistry analyzer (Bayer)	Express 560 Plus chemistry analyzer (Bayer)	-	
	•						1					1	•		
CoLAUS	Cohorte Lausanne	М	2550	PMID: 18366642	52.9 ± 10.8	18.3 ± 6.1	2.33 ± 0.33		35.69 ± 12.35	256.9 ± 219.2	2.28 ± 0.35	Timed-endpoint method (SYNCHRON [®] System)	Turbidimetric method (SYNCHRON [®] system, Beckman	Immunoturbidimetric method (Ferritin Tina-	
		F	2869		52.9 ± 10.8	18.3 ± 6.1	2.33 ± 0.33		35.69 ± 12.35	256.9 ± 219.2	2.28 ± 0.35		Coulter)	quant fourth generation, Roche Diagnostics, measured on Modular P).	
	1											1		L	
PREVEND	Prevention of Renal and	М	1875		50.9 ± 12.8	16.5 ± 5.5	2.54 ± 0.37		26.30 ± 8.99	180.2 ± 166.1	2.12 ± 0.35	Colorimetric assay, Roche Modular P	Immunoturbidimetric assay,Roche Modular P	Sandwich immunoassay, Roche Modular E	
	Vascular Endstage Disease	F	1769		48.2 ± 12.0	15.0 ± 5.6	2.64 ± 0.43		23.30 ± 9.51	87.0 ± 96.9	1.75 ± 0.43				
						1		1	1			1	T	Γ	
FENLAND	Fenland Study	Μ	615	PMID: 21248185	44.5 ± 7.4	20.0 ± 6.4	2.53 ± 0.37		34.78 ± 12.03	n/a	n/a	Colorimetric assay (Siemens Healthcare	Immunoturbidimetric assay (Siemens Healthcare		
		F	787		45.4 ± 7.2	17.6 ± 6.8	2.65 ± 0.45		29.48 ± 12.68	n/a	n/a	Diagnostics [®]) on a Siemens Dimension [®] RxL analyser.	Diagnostics®) on a Siemens Dimension® RxL analyser.		
-	<u>г. </u>					1	T	1		[
INTERACT (cases)	InterAct (cases)	Μ	2087	PMID: 21717116	54.7 ± 8.0	18.5 ± 6.2	2.76 ± 0.40		27.37 ± 10.03	249.6 ± 219.7	2.24 ± 0.39	Colorimetric assay (Roche Diagnostics, Mannheim,	Immunoturbidimetric assay (Roche Diagnostics,	Electrochemiluminescence immunoassay (ECLIA) with	
		F	2251		55.6 ± 8.3	16.1 ± 5.6	2.89 ± 0.45		22.91 ± 8.68	124.0 ± 121.6	1.89 ± 0.46	Germany), on a Roche Hitachi Modular P	Mannheim, Germany), on a Roche Hitachi Modular P	a sandwich principle (Roche Diagnostics,	
INTERACT (subcohort)	InterAct (sub- cohort)	Μ	1816		52.2 ± 9.2	18.3 ± 6.0	2.72 ± 0.38		27.32 ± 9.38	186.1 ± 171.7	2.12 ± 0.39	analyser.	analyser.	Mannheim, Germany), on a Roche Hitachi Modular E	
,		F	3140	1	51.7 ± 9.6	16.5 ± 5.9	2.82 ± 0.44		23.91 ± 9.34	80.4 ± 90.1	1.71 ± 0.43	1		analyser.	

Supplementary Table 3. Genotyping, imputation and quality control procedures

Cohort	Sample QCs	Genotyping	Imputation		Statistical Analysis	Covariates					
		Platforms	Exclusion Criteria	N Clean SNPs	N imputed SNPs	Exclusion Criteria	N Clean SNPs	Imputatio n Method	Reference panel		
Australia- Adult	ethnic outliers; duplicates; Mendelian error; Sex mismatch;	HumanCNV370- Quadv3;HumanCNV370- Quadv3;Human610- Quad;Human317K;Human6 10-Quad;Human610- Quad;Human610-Quad	MAF<1%; Call Rate<99; P HWE<10-6; genecall<0.7	312,937- 531,042	2543887	MAF<1%; Call Rate<99; P HWE<10-6; Rsq<0.30	2377358	Mach	HAPMAP II CEU Panel (Release 22, NCBI Build36, dbSNP b126)	Merlin	Age, 5 PCs
Australia- Adolescent	ethnic outliers; duplicates; Mendelian error; Sex mismatch;	HumanCNV370- Quadv3;HumanCNV370- Quadv3;Human610- Quad;Human317K;Human6 10-Quad;Human610- Quad;Human610-Quad	MAF<1%; Call Rate<99; P HWE<10-6; genecall<0.7	312,937- 531,042	2543887	MAF<1%; Call Rate<99; P HWE<10- 6;Rsq<0.3	2374850	Mach	HAPMAP II CEU Panel (Release 22, NCBI Build36, dbSNP b126)	Merlin	Age, 5 PCs
Estonia (original)	ethnic outliers; duplicates; Sex mismatch;	Illumina HumanCNV370	MAF<1%; Call Rate<95%; P HWE<10-6	320,955	2548513	MAF<1%; Call Rate<99; P HWE<10-6; Rsq<0.30	2198922	IMPUTE v0.5	HapMap II , CEU, Build 36	SNPTEST (v2.1)	Age, sex, 5 PCs
KORA F3	call rate 93%	Affymetrix 500K	call rate < 95%, pHWE < 5x10-6, maf < 0.01	379,392	2549999	MAF<1%; Call Rate<99; P HWE<10-6; Rsq<0.30	2471287	Impute v1.0.0	Нар Мар 2	SNPTEST v2.1.1, method expected	age, (separate analysis for males and females)
KORA F4	call rate 93%	Affymetrix 6.0	call rate 93%, hapmap snps only	651,596	2543887	MAF<1%; Call Rate<99; P HWE<10-6; Rsq<0.30	2424291	MACH v1.0.15	Нар Мар 2	mach2QTL	age, (separate analysis for males and females)
Val Borbera	Mendelian error; Sex mismatch	Illumina 370 Quad-CNV array, v3	MAF<1%; Call Rate<90; P HWE<10-4	332,887	2471497	MAF<1%; Call Rate<90; P HWE<10- 4;Rsq<0.3	2423712	МАСН	HapMap release 22 build 36	R, GenABEL, ProbABEL (mmscore function was used to account for relatedness)	Age, 5 PCs
NBS/Nijmegen		Illumina HumanHap370CNV-Duo BeadChip			2542995	MAF<1%; Call Rate<99; P HWE<10-6; Rsq<0.30	2366475	IMPUTE v0.5	CEU HapMap Phase II (version 22, build 36)	SNPTEST (v2.1)	

Cambridge	call rate 90%	Affymetrix v6.0 and Illumina 1.2M SNP arrays	MAF<1%; Call Rate<90; P HWE<10-6	2492005	2622175	MAF<1%; Call Rate<99; P HWE<10-6; Rsq<0.30	2497685	IMPUTE v2	NCBI build 36	SNPTEST	
Micros/EURAC		Illumina 300k (HumHap300v2)			2543887	MAF<1%; Call Rate<99; P HWE<10-6; Rsq<0.30	2377883	MACH version 1.0.16	HapMap II , CEU, Build 36	regression using linear mixed models based on genomic kinship with ProbABEL v. 0.0-6	;
ERF/Rotterdam	Mendelian error; Sex mismatch	Illumina 318K, Illumina 370K and Affymetrix 250K	MAF<1%; Call Rate<98; P HWE<10-6	450,877	2543887	MAF<1%; Call Rate<99; P HWE<10-6; Rsq<0.30	2395264	МАСН	HapMap II , CEU, Build 36	regression using linear mixed models based on genomic kinship with ProbABEL v. 0.0-6	;age
BHS-WA					2543887	MAF<1%; Call Rate<99; P HWE<10-6; Rsq<0.30	2416309	MACH	HapMap r22 b36	ProbABEL	
Estonia (replication)	ethnic outliers; duplicates; Sex mismatch;	Illumina OmniExpress	MAF<1%; Call Rate<95%; P HWE<10-6	647,357	2543887	none	2543887	IMPUTE2	HapMap II , CEU, Build 36	SNPTEST (v2.1)	Age, sex, 5 PCs
InCHIANTI	call rate < 97%, sex mismatch, heterozygosity > 0.3, missing data	Illumina 550K	MAF<1% call rate<99, HWE<10-6	498,838	2557230	None	2557230	MACH	HapMap release 22 build 36	Merlin-offline	age, sex, center
SardiNIA	call rate >95%	Affymetrix 10K, 500K, 6.0	MAF>5% (10K, 500K) or >1% (6.0); HWE <10-6 ; call rate >90% (10K,. 500K) or >95% (6.0); >2% Mendelian Inheritance Errors; >2% discrepancies for SNPs present in different arrays	731209	2561960	rsqr<0.3, MAF <1%, Excess Mendelian Errors	2353985	МАСН	HapMap r22 b36	Merlin (fastassoc)	age, age- squared, sex
CoLAUS	 ethnic outliers; related individuals and duplicates; Missing body weight and height 	Affymetrix GeneChip Human Mapping 500k t	MAF<1%; call rate <70%; HWE <10-7	390,631	2557249	None	2557249	IMPUTE	HapMap r21 b35	Matlab	age, sex and the first 5 ancestry PCs

PREVEND	 callrate <95%, Duplicates, sex mismatches, Samples were excluded when for they diverged from the mean with at least 3 standard for the first 5 principal components. 	Illumina Cyto SNP12 v2	MAF<1%, call rate <95%, HWE <10-5	232571	2442175	maf<0.01, info<0.1	2289008	Beagle	HapMap r22 b36	Plink 1.07	Age, Sex, first 5 PCs
FENLAND	ethnic outliers; duplicates and relatedness check; Sex mismatch check; heterozygosity check; call-rate>=95%	Affymetrix SNP5.0	MAF<1%, call rate <90%, HWE <10-6	369,945	2252514	NA	2622459	IMPUTE2	НарМар2	SNPTEST2	age, sex, 4 PCs
INTERACT (cases and subcohort)	call-rate>=95%; ethnic outliers; duplicates and relatedness check; Sex mismatch check; heterozygosity check; sequenom identity fail; missing data	Illumina 660w quad chip	leftover fails; failed to map 1000G(v3);call rate <95%, HWE <10-6;	564371	30505916	MAF=0; Impute- info<0.3	21023929	IMPUTE2	1,000 Genomes haplotypes Phase I integrated variant set release (v3) _no singleton	SNPTEST2	age, sex, centre, 5 PCs
INTERACT (others)	as above										

Supplementary Table 4. Initial meta-analysis; lead SNP at loci showing suggestive results (p < 5 x 10⁻⁶) from meta-analysis of the Discovery datasets. Statistical

tests and numbers of subjects are as described in the paper.

CHR	SNP	BP(B37)	BP (B36)	A1	A2	Freq1	Effect	StdErr	P.value	Nearby gene(s)
Iron										
2	rs12693541	190,418,690	190,126,935	t	С	0.871	-0.106	0.014	4.18E-14	SLC40A1
2	rs6726348	239,084,119	238,748,858	t	С	0.444	0.047	0.010	3.12E-06	ILKAP
3	rs7638018	133,495,461	134,978,151	а	g	0.667	-0.074	0.010	1.87E-12	TF
5	rs17236666	50,940,708	50,976,465	t	С	0.950	0.100	0.022	4.39E-06	ISL1
5	rs173780	60,903,201	60,938,958	а	g	0.135	-0.068	0.015	3.35E-06	FLJ37543
6	rs1800562	26,093,141	26,201,120	а	g	0.067	0.372	0.020	3.96E-77	HFE
6	rs4715597	56,103,037	56,210,996	С	g	0.294	0.056	0.011	4.66E-07	COL21A1
6	rs6920211	135,431,318	135,473,011	t	С	0.758	-0.054	0.012	3.14E-06	HBS1L, MYB
7	rs2075672	100,240,296	100,078,232	а	g	0.379	-0.056	0.010	5.95E-08	TFR2
8	rs604302	37,004,569	37,123,727	t	С	0.200	0.058	0.012	3.07E-06	FKSG2
9	rs1752162	126,551,037	125,590,858	t	С	0.146	0.061	0.013	4.80E-06	DENND1A
12	rs1050045	58,115,271	56,401,538	t	С	0.559	0.043	0.009	4.12E-06	OS9
15	rs16976620	45,249,892	43,037,184	а	g	0.098	-0.081	0.016	4.52E-07	C15orf43
15	rs7172337	61,767,743	59,555,035	t	С	0.728	-0.052	0.011	2.63E-06	RORA
17	rs7209063	1,892,031	1,838,781	С	g	0.487	0.048	0.010	3.61E-06	RTN4RL1
17	rs2007993	56,590,643	53,945,642	t	С	0.785	0.057	0.011	4.18E-07	MTMR4
20	rs6067410	48,973,912	48,407,319	а	t	0.456	-0.047	0.010	3.93E-06	LOC284751
22	rs855791	37,462,936	35,792,882	а	g	0.446	-0.187	0.010	4.31E-77	TMPRSS6
Transferr	in									
1	rs946526	46,487,168	46,259,755	t	С	0.042	-0.122	0.026	2.98E-06	MAST2
2	rs11680788	33,059,096	32,912,600	t	С	0.046	-0.115	0.025	4.57E-06	TTC27
2	rs744653	190,378,750	190,086,995	t	С	0.854	0.092	0.014	2.00E-10	WDR75, SLC40A1
3	rs8177240	133,477,701	134,960,391	t	g	0.671	-0.423	0.011	< E-340	TF
3	rs9990333	195,827,205	197,311,602	t	С	0.460	-0.067	0.010	3.01E-11	TFRC
4	rs1865383	73,110,424	73,329,288	t	g	0.316	-0.052	0.011	2.17E-06	NPFFR2, ADAMTS3
5	rs10055024	11,149,808	11,202,808	t	С	0.386	0.051	0.010	8.98E-07	CTNND2

CHR	SNP	BP(B37)	BP (B36)	A1	A2	Freq1	Effect	StdErr	P.value	Nearby gene(s)
6	rs1800562	26,093,141	26,201,120	а	g	0.066	-0.550	0.021	1.26E-153	HFE
7	rs4291160	11,974,451	11,940,976	t	g	0.754	-0.055	0.012	3.68E-06	TMEM106B
8	rs1495741	18,272,881	18,317,161	а	g	0.782	0.083	0.012	1.57E-11	NAT2
8	rs1354342	107,200,980	107,270,156	а	g	0.051	0.126	0.024	1.28E-07	ZFPM2, OXR1
9	rs2165554	119,479,774	118,519,595	t	С	0.392	-0.048	0.011	4.19E-06	ASTN2
11	rs6486121	13,355,770	13,312,346	t	С	0.627	-0.056	0.011	1.04E-07	ARNTL
11	rs174577	61,604,814	61,361,390	а	С	0.333	0.068	0.011	1.90E-10	FADS2
12	rs12371237	29,831,076	29,722,343	а	С	0.336	-0.050	0.011	3.48E-06	TMTC1
12	rs2374503	106,034,829	104,558,959	С	g	0.421	-0.048	0.010	2.95E-06	LOC387882
19	rs12978009	17,113,634	16,974,634	а	g	0.179	-0.064	0.014	3.17E-06	CPAMD8
22	rs2275901	19,135,603	17,515,603	а	g	0.239	0.060	0.013	1.77E-06	GSCL
Saturatio	n									
3	rs8177272	133,482,870	134,965,560	а	g	0.331	-0.097	0.011	5.52E-20	TF
3	rs2061336	164,591,618	166,074,312	а	g	0.913	-0.093	0.018	1.99E-07	SI
3	rs9990333	195,827,205	197,311,602	t	С	0.460	0.049	0.010	7.37E-07	TFRC
6	rs1800562	26,093,141	26,201,120	а	g	0.067	0.577	0.020	1.52E-178	HFE
6	rs2841000	56,077,917	56,185,876	t	С	0.701	-0.051	0.011	2.78E-06	COL21A1
6	rs9389269	135,427,159	135,468,852	t	С	0.727	-0.055	0.011	9.78E-07	HBS1L, MYB
7	rs11765024	100,125,975	99,963,911	а	g	0.897	-0.091	0.017	3.32E-08	AGFG2 (TFR2, EPO)
7	rs221834	100,343,175	100,181,111	С	g	0.928	-0.123	0.021	2.38E-09	ZAN (TFR2, EPO)
8	rs604302	37,004,569	37,123,727	t	С	0.200	0.058	0.012	3.26E-06	FKSG2
12	rs11046313	22,274,788	22,166,055	а	С	0.286	-0.056	0.011	6.86E-07	CMAS, ST8SIA1
17	rs4790859	1,897,820	1,844,570	а	g	0.474	0.048	0.010	2.29E-06	RTN4RL1
22	rs855791	37,462,936	35,792,882	а	g	0.446	-0.192	0.010	3.50E-80	TMPRSS6
Ferritin										
2	rs7603193	60,478,727	60,332,231	t	С	0.033	-0.129	0.027	1.38E-06	BCL11A
2	rs12693541	190,418,690	190,126,935	t	С	0.871	-0.106	0.014	4.18E-14	SLC40A1
3	rs4376025	3,419,984	3,394,984	t	С	0.680	0.046	0.010	3.62E-06	CRBN, LRRN1
5	rs17236666	50,940,708	50,976,465	t	С	0.950	0.100	0.022	4.39E-06	ISL1
5	rs173780	60,903,201	60,938,958	а	g	0.135	-0.068	0.015	3.35E-06	FLJ37543
6	rs1800562	26,093,141	26,201,120	а	g	0.068	0.211	0.019	1.43E-29	HFE
6	rs9322487	155,255,431	155,297,123	а	g	0.080	0.085	0.018	3.47E-06	RBM16, TIAM2
9	rs1752162	126,551,037	125,590,858	t	С	0.146	0.061	0.013	4.80E-06	DENND1A

CHR	SNP	BP(B37)	BP (B36)	A1	A2	Freq1	Effect	StdErr	P.value	Nearby gene(s)
g	rs651007	136,153,875	135,143,696	t	С	0.203	-0.060	0.012	2.54E-07	ABO
11	rs7395347	9,152,463	9,109,039	t	С	0.341	0.045	0.010	3.20E-06	SCUBE2, RAB6IP1
12	rs1050045	58,115,271	56,401,538	t	С	0.559	0.043	0.009	4.12E-06	<i>OS9</i>
15	rs16976620	45,249,892	43,037,184	а	g	0.098	-0.081	0.016	4.52E-07	C15orf43
17	rs368243	56,708,979	54,063,978	t	С	0.440	0.051	0.009	3.80E-08	TEX14
22	rs2413450	37,470,224	35,800,170	t	С	0.463	-0.056	0.010	3.57E-09	TMPRSS6

Supplementary Table 5. List of additional genes significantly associated with iron status ($p < 3.0 \times 10^{-6}$, based on ~17,000 genes), from the gene-based analyses of the discovery dataset, performed using VEGAS statistical package, <u>http://gump.qimr.edu.au/VEGAS/</u>.

						Test	Gene-based		Top SNP P-
Phenotype	Chr	Gene	N of SNPs	Region Start	Region Stop	statistic	P-value	Best SNP	value
Iron	6	FKSG83	103	27,400,556	27,401,720	834.0128	3.00E-06	rs2235233	5.51E-06
Iron	7	TFR2	26	100,055,974	100,077,109	329.942	1.00E-06	rs2075672	5.95E-08
Saturation	7	TFR2	26	100,055,974	100,077,109	326.6695	1.00E-06	rs11761260	6.45E-08
Saturation	7	EPO	32	100,156,358	100,159,259	411.2104	1.00E-06	rs221834	2.38E-09 ¹
Ferritin	15	C15orf43-SORD	27	43,036,194	43,058,713	621.26896	1.00E-06	rs16976620	4.52E-07

¹ The VEGAS output associated this SNP with the EPO region, but rs221834 is within ZAN and the regional plot (Supplementary Figure 3) shows allelic associations across a region \approx 200 kb which includes *TFR2* and *EPO*.

Supplementary Table 6. Effects of omitting subjects with low ferritin on allelic effects on serum iron, transferrin, transferrin saturation and ferritin. The lead SNPs at loci which were significant ($p < 5 \times 10^{-8}$) or suggestive (p between 5×10^{-8} and 5×10^{-6}) for one or more phenotypes in the initial analysis of the entire Discovery dataset are listed, and effects and p-values are omitted for each phenotype where results were neither significant nor suggestive.

Marker Infori	mation	l		Iron								
					В	efore exc with l	luding su ow ferriti	bjects in	А	fter exclu with lo	ding subj w ferritir	jects 1
SNP	CHR	BP (build36)	A1	A2	Freq	Effect	StdErr	P.value	Freq	Effect	StdErr	P.value
rs946526	1	46,259,755	t	С								
rs7603193	2	60,332,231	t	С								
rs744653	2	190,086,995	t	С								
rs4376025	3	3,394,984	t	С								
rs8177240	3	134,960,391	t	g	0.669	-0.073	0.011	2.37E-12	0.669	-0.067	0.012	8.84E-09
rs2061336	3	166,074,312	а	g								
rs9990333	3	197,311,602	t	С								
rs4547769	4	73,299,023	а	g								
rs17236666	5	50,976,465	t	С								
rs1800562	6	26,201,120	а	g	0.067	0.372	0.020	3.96E-77	0.068	0.376	0.022	1.87E-66
rs4895441	6	135,468,266	а	g								
rs2075672	7	100,078,232	а	g	0.379	-0.056	0.010	5.95E-08	0.375	-0.068	0.011	2.41E-09
rs1495741	8	18,317,161	а	g								
rs604302	8	37,123,727	t	С	0.200	0.058	0.012	3.07E-06	0.202	0.042	0.014	0.0020
rs1354342	8	107,270,156	а	g								
rs1752162	9	125,590,858	t	С								
rs651007	9	135,143,696	t	С								
rs7395347	11	9,109,039	t	С								
rs6486121	11	13,312,346	t	С								
rs174577	11	61,361,390	а	С								
rs11046313	12	22,166,055	а	С								
rs12371237	12	29,722,343	а	С								
rs2374503	12	104,558,959	С	g								
rs16976620	15	43,037,184	а	g								
rs7172337	15	59,555,035	t	С	0.728	-0.052	0.011	2.63E-06	0.726	-0.042	0.012	0.00071
rs4790859	17	1,844,570	а	g								
rs411988	17	54,064,033	а	g								
rs12978009	19	16,974,634	а	g								
rs6067410	20	48,407,319	а	t	0.456	-0.047	0.010	3.93E-06	0.457	-0.048	0.011	2.28E-05
rs2275901	22	17,515,603	а	g								
rs855791	22	35,792,882	а	g	0.446	-0.187	0.010	4.31E-77	0.445	-0.185	0.011	8.15E-61

Marker Infor	mation			Transferrin								
					В	efore exc with l	:luding รเ ow ferrit	ubjects in	А	fter exclu with lo	ding sub w ferriti	jects 1
SNP	CHR	BP (build36)	A1	A2	Freq	Effect	StdErr	P.value	Freq	Effect	StdErr	P.value
rs946526	1	46,259,755	t	С	0.042	-0.122	0.026	2.98E-06	0.043	-0.091	0.030	0.0022
rs7603193	2	60,332,231	t	с								
rs744653	2	190,086,995	t	с	0.854	0.092	0.014	2.00E-10	0.855	0.082	0.016	1.92E-07
rs4376025	3	3,394,984	t	С								
rs8177240	3	134,960,391	t	g	0.671	-0.423	0.011	0	0.671	-0.408	0.012	1.86E-258
rs2061336	3	166,074,312	а	g								
rs9990333	3	197,311,602	t	С	0.460	-0.067	0.010	3.01E-11	0.460	-0.047	0.011	2.57E-05
rs4547769	4	73,299,023	а	g	0.332	-0.050	0.011	2.25E-06	0.333	-0.026	0.012	0.025
rs17236666	5	50,976,465	t	С								
rs1800562	6	26,201,120	а	g	0.066	-0.550	0.021	1.26E-153	0.067	-0.437	0.022	2.14E-86
rs4895441	6	135,468,266	а	g								
rs2075672	7	100,078,232	а	g								
rs1495741	8	18,317,161	а	g	0.782	0.083	0.012	1.57E-11	0.781	0.078	0.013	4.04E-09
rs604302	8	37,123,727	t	С								
rs1354342	8	107,270,156	а	g	0.051	0.126	0.024	1.28E-07	0.050	0.094	0.026	0.00039
rs1752162	9	125,590,858	t	С								
rs651007	9	135,143,696	t	С								
rs7395347	11	9,109,039	t	С								
rs6486121	11	13,312,346	t	С	0.627	-0.056	0.011	1.04E-07	0.634	-0.044	0.012	0.00015
rs174577	11	61,361,390	а	С	0.333	0.068	0.011	1.90E-10	0.332	0.065	0.012	3.59E-08
rs11046313	12	22,166,055	а	С								
rs12371237	12	29,722,343	а	С	0.336	-0.050	0.011	3.48E-06	0.340	-0.042	0.012	0.00036
rs2374503	12	104,558,959	С	g	0.421	-0.048	0.010	2.95E-06	0.425	-0.034	0.011	0.0022
rs16976620	15	43,037,184	а	g								
rs7172337	15	59,555,035	t	С								
rs4790859	17	1,844,570	а	g								
rs411988	17	54,064,033	а	g								
rs12978009	19	16,974,634	а	g	0.179	-0.064	0.014	3.17E-06	0.178	-0.053	0.015	0.00041
rs6067410	20	48,407,319	а	t								
rs2275901	22	17,515,603	а	g	0.239	0.060	0.013	1.77E-06	0.238	0.053	0.014	0.00016
rs855791	22	35,792,882	а	g								

Marker Infor	mation				Saturation								
					В	efore exc with l	luding su ow ferrit	ıbjects in	А	fter exclu with lo	ding sub w ferriti	jects n	
SNP	CHR	BP (build36)	A1	A2	Freq	Effect	StdErr	P.value	Freq	Effect	StdErr	P.value	
rs946526	1	46,259,755	t	С									
rs7603193	2	60,332,231	t	С									
rs744653	2	190,086,995	t	С									
rs4376025	3	3,394,984	t	С									
rs8177240	3	134,960,391	t	g	0.669	0.097	0.011	5.85E-20	0.669	0.039	0.012	0.00087	
rs2061336	3	166,074,312	а	g	0.913	-0.093	0.018	1.99E-07	0.911	-0.076	0.020	0.00010	
rs9990333	3	197,311,602	t	С	0.460	0.049	0.010	7.37E-07	0.459	0.032	0.011	0.0029	
rs4547769	4	73,299,023	а	g									
rs17236666	5	50,976,465	t	С									
rs1800562	6	26,201,120	а	g	0.067	0.577	0.020	1.52E-178	0.068	0.495	0.022	9.93E-113	
rs4895441	6	135,468,266	а	g	0.727	-0.055	0.011	1.02E-06	0.729	-0.042	0.012	0.00065	
rs2075672	7	100,078,232	а	g	0.379	-0.055	0.010	1.39E-07	0.375	-0.063	0.011	3.50E-08	
rs1495741	8	18,317,161	а	g									
rs604302	8	37,123,727	t	С	0.200	0.058	0.012	3.26E-06	0.203	0.047	0.014	0.00055	
rs1354342	8	107,270,156	а	g									
rs1752162	9	125,590,858	t	С									
rs651007	9	135,143,696	t	С									
rs7395347	11	9,109,039	t	С									
rs6486121	11	13,312,346	t	С									
rs174577	11	61,361,390	а	С									
rs11046313	12	22,166,055	а	С	0.286	-0.056	0.011	6.86E-07	0.291	-0.045	0.013	0.00034	
rs12371237	12	29,722,343	а	С									
rs2374503	12	104,558,959	С	g									
rs16976620	15	43,037,184	а	g									
rs7172337	15	59,555,035	t	С									
rs4790859	17	1,844,570	а	g	0.474	0.048	0.010	2.29E-06	0.473	0.032	0.011	0.0052	
rs411988	17	54,064,033	а	g									
rs12978009	19	16,974,634	а	g									
rs6067410	20	48,407,319	а	t									
rs2275901	22	17,515,603	а	g									
rs855791	22	35,792,882	а	g	0.446	-0.192	0.010	3.50E-80	0.445	-0.181	0.011	5.23E-58	

Marker Infor	mation	l		Ferritin								
					В	efore exc	luding su	ıbjects	A	fter exclu	ding sub	jects
						with I	ow ferrit	in		with lo	w ferritir	า
SNP	CHR	BP (build36)	A1	A2	Freq	Effect	StdErr	P.value	Freq	Effect	StdErr	P.value
rs946526	1	46,259,755	t	С								
rs7603193	2	60,332,231	t	С	0.033	-0.129	0.027	1.38E-06	0.033	-0.097	0.030	0.0011
rs744653	2	190,086,995	t	С	0.855	-0.098	0.013	1.20E-13	0.855	-0.092	0.015	3.55E-10
rs4376025	3	3,394,984	t	С	0.680	0.046	0.010	3.62E-06	0.680	0.028	0.011	0.012
rs8177240	3	134,960,391	t	g								
rs2061336	3	166,074,312	а	g								
rs9990333	3	197,311,602	t	С								
rs4547769	4	73,299,023	а	g								
rs17236666	5	50,976,465	t	С	0.950	0.100	0.022	4.39E-06	0.951	0.074	0.025	0.0028
rs1800562	6	26,201,120	а	g	0.068	0.211	0.019	1.43E-29	0.069	0.265	0.021	2.73E-38
rs4895441	6	135,468,266	а	g								
rs2075672	7	100,078,232	а	g								
rs1495741	8	18,317,161	а	g								
rs604302	8	37,123,727	t	С								
rs1354342	8	107,270,156	а	g								
rs1752162	9	125,590,858	t	С	0.146	0.061	0.013	4.80E-06	0.148	0.044	0.015	0.0032
rs651007	9	135,143,696	t	С	0.203	-0.060	0.012	2.54E-07	0.200	-0.068	0.013	1.65E-07
rs7395347	11	9,109,039	t	С	0.341	0.045	0.010	3.20E-06	0.344	0.043	0.011	6.45E-05
rs6486121	11	13,312,346	t	С								
rs174577	11	61,361,390	а	С								
rs11046313	12	22,166,055	а	С								
rs12371237	12	29,722,343	а	С								
rs2374503	12	104,558,959	С	g								
rs16976620	15	43,037,184	а	g	0.098	-0.081	0.016	4.52E-07	0.096	-0.054	0.018	0.0029
rs7172337	15	59,555,035	t	С								
rs4790859	17	1,844,570	а	g								
rs411988	17	54,064,033	а	g	0.564	-0.049	0.009	1.28E-07	0.564	-0.040	0.010	0.00012
rs12978009	19	16,974,634	а	g								
rs6067410	20	48,407,319	а	t								
rs2275901	22	17,515,603	а	g								
rs855791	22	35,792,882	а	g	0.445	-0.051	0.010	5.81E-08	0.444	-0.062	0.011	3.83E-09

Supplementary Table 7.(a) Summary of published data on gene expression at loci containing significant SNP associations or significant results from genebased test, from eQTL.chicago.edu/cgi-bin/gbrowse/eqtl/,accessed 2014-02-18; (b) significant expression results from meta-analysis of data for peripheral blood cells, <u>http://genenetwork.nl/bloodeqtlbrowser/</u>, accessed 2014-02-18; (c) significant results for gene expression in macrophages or monocytes.

(a)

Chr (Mbp)	Candidate Gene	Summary of published eQTL data ¹
2 (190)	SLC40A1	No reported eQTLs
3 (133)	TF	Multiple eQTLs for SRPRB in LCLs or monocytes, but not for TF
3 (195)	TFRC	rs9990333 is an eQTL for LOC440993
6 (26)	HFE	rs198853 is an eQTL for HFE in liver
7 (100)	TFR2	Region contains eQTLs for TFR2 (rs10247962, rs1052897, rs4729598, rs4729600, rs7457868)
8 (18)	NAT2	No reported eQTLs
9 (136)	ABO	No reported eQTLs
11 (13)	ARNTL	Multiple eQTLs for ARNTL in LCLs or monocytes
11 (61)	FADS2	rs174577 is an eQTL for FADS2, CPSF7, NXF1
15	C15orf43	Region contains multiple eQTLsf or SORD in LCLs or monocytes
17 (56)	TEX14	Region contains multiple eQTLs for RAD51C and TRIM37 in LCLs or monocytes
22 (37)	TMPRSS6	Region contains eQTL for TMPRSS6 in liver

SNP	Candidate gene	Probe Probe Chr. Probe Chr.		Probe Chr. position	Gene name	Expression P-value	False discovery rate
CIS EFFECTS							
rs744653	SLC40A1	730164	2	190,133,988	SLC40A1	1.31E-10	0
rs8177240	TF	4480224	3	135,022,061	SRPRB	1.36E-91	0
rs8177179	TF	4480224	3	135,022,061	SRPRB	3.01E-34	0
rs1799852	TF	4480224	3	135,022,061	SRPRB	5.08E-05	0.02
rs9990333	TFRC	2940435	3	197,260,777	TFRC	8.84E-06	0
rs1800562	HFE(C282Y)	3930377	6	26,093,147	TRIM38	6.09E-06	0
rs1800562	HFE(C282Y)	6200669	6	26,266,387	HIST1H2AC,HIST1H2BD,HIST1H4A	1.24E-05	0.01
rs1800562	HFE(C282Y)	290730	6	26,279,307	HIST1H2AC,HIST1H2BD,HIST1H4A	9.88E-07	0
rs1800562	HFE(C282Y)	2970019	6	26,393,396	HIST1H4H	1.41E-08	0
rs1799945	HFE(H63D)	3930377	6	26,093,147	TRIM38	4.18E-17	0
rs1799945	HFE(H63D)	7210333	6	26,335,240	-	1.00E-22	0
rs7385804	TER2	580133	7	100 050 486	MOSPD3	2 29F-14	0
rs7385804	TFR2	3850703	, 7	100,050,557	MOSPD3	5.70F-09	0
rs7385804	TFR2	1260730	, 7	100.238.327	FPHB4	2.72F-34	0
rs7385804	TFR2	110450	7	100,302,456	SLC12A9	1.29E-05	0.01
rs4921915	NAT2				No reported cis-eQTL effect	-	-
rs651007	ABO	4490687	9	135,018,261	GBGT1	6.35E-06	0
rs651007	ABO	2600452	9	135,187,879	SURF6	8.04E-07	0

SNP	Candidate gene	Probe	Probe Chr.	Probe Chr. position	Gene name	Expression P-value	False discovery rate
rs6486121	ARNTL				No reported cis-eQTL effect	-	-
							_
rs174577	FADS2	630445	11	61,313,884	C11orf10	5.51E-54	0
rs174577	FADS2	2360020	11	61,324,012	FADS1	4.45E-33	0
rs174577	FADS2	380224	11	61,390,508	FADS2	8.44E-15	0
rs411988	TFX14	4670458	17	53 952 688	SFPT4	1 36F-07	0
rs411988	TEX14	5910215	17	54 127 426	RAD51C	3 13F-33	0
rs411988	TEX14	7610129	17	54,129,167	RAD51C	4.17E-50	0
rs411988	TFX14	510544	17	54 154 786	RAD51C	4 05F-41	0
13111300		510511	17	5 1,15 1,700	1010010	1.052 11	0
rs228916	TMPRSS6				No reported cis-eQTL effect	-	-
rs855791	TMPRSS6				No reported cis-eQTL effect	-	-
TRANS EFFEC	TS						
rs1800562	HFE(C282Y)	2940446	20	36,199,898	TGM2	4.97E-08	0.01
rs1800562	HFE(C282Y)	4180768	Х	55,052,299	ALAS2	5.53E-10	0
rs1800562	HFE(C282Y)	1230376	Х	55,056,672	ALAS2	1.53E-11	0
rs1799945	HFE(H63D)	4180768	Х	55,052,299	ALAS2	3.24E-09	0
rs1799945	HFE(H63D)	1230376	Х	55,056,672	ALAS2	6.82E-10	0
rs855791	TMPRSS6(V736A)	4180768	Х	55,052,299	ALAS2	1.54E-10	0
rs855791	TMPRSS6(V736A)	1230376	Х	55,056,672	ALAS2	4.23E-10	0

(c) Macrophage and monocyte data, significant associations with gene expression.

Chr (SNP)	Candidate Gene	Other cells (monocytes, macrophages)
9 (rs651007)	ABO	rs651007 affects expression at SNORD36A (in macrophages p=0.0066; in monocytes p=0.030)
11 (rs6486121)	ARNTL	rs6486121 affects expression at ARNT Lin monocytes (p=0.0033) but not in macrophages (p=0.297)
11 (rs174577)	FADS2	rs174577 affects expression at <i>RAB3IL1</i> in macrophages (p=0.049;) but not in monocytes (p=0.550)

Supplementary Table 8. Associations with (a) erythrocyte or (b) lipid phenotypes at loci associated with iron phenotypes in this study; and associations with iron phenotypes at loci previously reported to affect (c) erythrocyte or (d) lipid phenotypes.

p(Fe), p(Tf), p(Sat) and p(Ferri) are p-values for allelic association for serum iron, transferrin, transferrin saturation and (log-transformed) ferritin, respectively. For the erythrocyte and lipid phenotypes: HB = haemoglobin, MCH = mean cell haemoglobin, MCHC = mean cell haemoglobin concentration, MCV = mean cell volume, PCV = packed cell volume, RBC = red blood cell count; TC = total cholesterol, HDL = high-density-lipoprotein cholesterol, LDL = high-density-lipoprotein cholesterol, TG = (log-transformed) triglycerides.

(a) Associations with erythrocyte phenotypes at loci found to be significant in this study for iron phenotypes. Erythrocyte data are from van der Harst et al, Nature 2012;492:369-75; empty cells had no results reported.

Lead SNPs at	Lead SNPs at GW-significant loci for iron phenotypes		ipes Hemoglobin			RBC		МСН			MCV					
SNP	chr:bp(Build37)	LOCUS	A1	A2	Beta	SE	р									
rs744653	chr2:190378750	WDR75-SLC40A1														
rs8177240	chr3:133477701	TF														
rs9990333	chr3:195827205	TFRC	t	С							-0.060	0.010	1.33E-10	-0.138	0.025	1.06E-08
rs1799945	chr6:26091179	HFE (H63D)	с	g	-0.094	0.009	3.60E-26				-0.217	0.015	4.01E-47	-0.463	0.040	2.35E-33
rs1800562	chr6:26093141	HFE (C282Y)	а	g	0.110	0.016	5.57E-13				0.425	0.028	6.50E-56	0.943	0.072	1.25E-42
rs7385804	chr7:100235970	TFR2	а	С				-0.020	0.002	1.58E-17	0.084	0.011	3.12E-16	0.216	0.029	1.79E-15
rs4921915	chr8:18272466	NAT2														
rs651007	chr9:136153875	ABO	t	С	-0.053	0.008	3.82E-14	-0.021	0.003	1.61E-14						
rs6486121	chr11:13355770	ARNTL														
rs174577	chr11:61604814	FADS2														
rs411988	chr17:56709034	TEX14														
rs855791	chr22:37462936	TMPRSS6 (V736A)	а	g	-0.079	0.006	4.65E-40				-0.193	0.011	1.01E-69	-0.426	0.029	2.40E-54

(b) Associations with lipid phenotypes at loci found to be significant in this study for iron phenotypes. Lipid data from Willer et al., Nature Genetics 2013;45:1274-83, at http://www.sph.umich.edu/csg/abecasis/public/lipids2013/, accessed 2013-12-05.

			Total cholesterol LDL-C		HDL-C				Triglycerides					
SNP	Build37	LOCUS	Beta	SE	р	Beta	SE	р	Beta	SE	р	Beta	SE	р
rs744653	chr2:190378750	WDR75-SLC40A1	0.0086	0.0072	0.085	0.0127	0.0074	0.027	0.0127	0.0069	0.078	0.0103	0.0067	0.132
rs8177240	chr3:133477701	TF	0.0091	0.0054	0.136	0.0065	0.0055	0.468	0.0010	0.0050	0.632	0.0066	0.0050	0.301
rs9990333	chr3:195827205	TFRC	0.0043	0.0052	0.539	0.0022	0.0053	0.613	0.0022	0.0048	0.941	0.0023	0.0047	0.602
rs1800562	chr6:26093141	HFE(C282Y)	0.0565	0.0077	1.91E-12	0.0615	0.0080	8.25E-14	0.0074	0.0074	0.242	0.0130	0.0072	0.172
rs1799945	chr6:26091179	HFE(H63D)	0.0096	0.0051	0.055	0.0110	0.0053	0.020	0.0024	0.0050	0.460	0.0062	0.0048	0.098
rs7385804	chr7:100235970	TFR2	0.0041	0.0054	0.457	0.0033	0.0055	0.599	0.0053	0.0051	0.319	0.0054	0.0049	0.175
rs4921915	chr8:18272466	NAT2	0.0315	0.0044	6.71E-13	0.0222	0.0046	1.35E-06	0.0002	0.0042	0.680	0.0350	0.0041	1.33E-15
rs651007	chr9:136153875	ABO	0.0647	0.0065	5.23E-21	0.0663	0.0066	4.52E-21	0.0119	0.0061	0.087	0.0119	0.0061	0.065
rs6486121	chr11:13355770	ARNTL	0.0071	0.0036	0.110	0.0075	0.0037	0.084	0.0186	0.0035	5.52E-07	0.0169	0.0034	1.37E-06
rs174577	chr11:61604814	FADS2	0.0485	0.0037	1.05E-37	0.0523	0.0038	1.04E-40	0.0386	0.0035	9.74E-27	0.0429	0.0034	7.56E-35
rs411988	chr17:56709034	TEX14	0.0055	0.0051	0.481	0.0064	0.0052	0.270	0.0025	0.0048	0.891	0.0047	0.0047	0.359
rs855791	chr22:37462936	TMPRSS6(V736A)	0.0061	0.0037	0.078	0.0104	0.0038	0.0035	0.0029	0.0035	0.467	0.0057	0.0034	0.054

(c) Associations with iron phenotypes, at all loci reported for erythrocyte phenotypes by van der Harst et al, Nature 2012;492:369-75. For overlap with the 75 erythrocyte loci, the critical p-value is (0.05/75)=6.67x10⁻⁴; values below this are shown in bold type.

	Loci reported to affect erythr	enotypes		From	n GISC discov	lysis	Comments		
Candidate genes	Marker name	Chr	Position(B36)	Phenotype	p(Fe)	p(Tf)	p(Sat)	p(Ferri)	
CCDC27,LRRC48	rs1175550	1	3,681,388	MCHC	0.940	0.949	0.790	0.614	
HEYL	rs3916164	1	39,842,526	МСН	0.891	0.774	0.717	0.357	
TAL1	rs741959	1	47,448,820	MCV	0.945	0.528	0.929	0.551	
OR6Y1,OR10Z1,SPTA1	rs857684	1	156,842,353	MCHC	0.999	0.420	0.956	0.599	
MIR181A1	rs7529925	1	197,273,831	RBC	0.722	0.224	0.295	0.679	
ATP2B4	rs7551442	1	201,921,744	MCHC	0.216	0.143	0.055	0.0053	
TMCC2	rs9660992	1	203,516,073	MCH	0.764	0.351	0.964	0.256	
TRIM58	rs3811444	1	246,106,074	RBC	-	-	-	-	No results for this SNP or proxies

Loci report	ted to affect erythr		From GISC discovery meta-analysis						
Candidate genes	Marker name	Chr	Position(B36)	Phenotype	p(Fe)	p(Tf)	p(Sat)	p(Ferri)	
PRKCE	rs4953318	2	46,208,555	PCV	0.582	0.073	0.974	0.260	
BCL11A	rs243070	2	60,473,790	MCV	0.258	0.953	0.467	0.181	
ACOXL	rs10207392	2	111,566,130	MCV	0.221	0.522	0.158	0.236	
THRB	rs9310736	3	24,325,815	MCV	0.060	0.732	0.207	0.034	
RASA2	rs6776003	3	142,749,183	MCV	0.226	0.746	0.383	0.929	
XRN1	rs13061823	3	143,603,476	MCV	0.0065	0.624	0.049	0.607	
TFRC	rs11717368	3	197,318,754	MCH	0.288	2.98E-08	4.68E-04	0.262	
KIT	rs218238	4	55,089,781	RBC	0.304	0.334	0.083	0.642	
BBS7,CCNA2	rs13152701	4	122,970,511	MCV	0.335	0.240	0.468	0.042	
GMPR	rs6914805	6	16,389,166	MCH	0.812	0.956	0.742	0.168	
HFE,SLC17A3	rs1408272	6	25,950,930	MCH	1.63E-64	1.24E-134	6.76E-152	2.22E-24	
HIST1H2AM,HIST1H2BO,HIST1H3J	rs13219787	6	27,969,649	MCH	4.61E-24	1.71E-61	2.50E-60	7.78E-08	
TRIM39-RPP21	rs2097775	6	30,462,282	HB	5.73E-06	2.67E-15	8.12E-15	3.60E-06	
HLA-DQA1,HLA-DQA2	rs9272219	6	32,710,247	RBC	0.235	0.065	0.086	0.055	
CCND3	rs9349204	6	42,022,356	MCV	0.441	0.393	0.195	0.679	
VEGFA	rs9369427	6	43,919,408	HB	0.500	0.614	0.300	0.799	
CCDC162P	rs1008084	6	109,733,658	MCH	0.051	0.246	0.027	0.544	
HBS1L	rs9389269	6	135,468,852	MCV	6.35E-06	0.0053	9.78E-07	0.489	
CITED2	rs590856	6	139,886,122	MCV	0.708	0.693	0.739	0.930	
QKI	rs736661	6	164,402,826	MCH	0.191	0.016	0.046	0.681	
IKZF1	rs12718598	7	50,395,939	MCV	0.955	0.017	0.436	0.095	
ACTL6B,TFR2	rs2075672	7	100,078,232	RBC	5.95E-08	0.391	1.39E-07	0.025	
PRKAG2	rs10480300	7	151,036,938	HB	0.826	0.922	0.805	0.625	
ANK1	rs4737009	8	41,749,562	MCHC	0.029	0.317	0.167	0.458	
C8orf40	rs6987853	8	42,576,607	MCHC	0.142	0.792	0.233	0.866	
RCL1	rs2236496	9	4,834,265	MCV	0.755	0.189	0.401	0.067	
ABO	rs579459	9	135,143,989	RBC	0.476	0.224	0.168	4.52E-07	
MARCH8	rs901683	10	45,286,428	MCV	0.124	0.821	0.467	0.496	
HK1	rs10159477	10	70,769,894	HB	0.236	-	0.032	-	
NKX2-3	rs11190134	10	101,272,190	MCH	0.675	0.423	0.977	0.817	
AKIP1,C11orf16,NRIP3,ST5	rs11042125	11	8,894,625	НВ	0.158	0.830	0.264	0.191	
SBF2	rs7936461	11	9,997,462	PCV	0.632	0.089	0.826	0.141	

Comments

Loci repor	ted to affect erythr		From GISC discovery meta-analysis						
Candidate genes	Marker name	Chr	Position(B36)	Phenotype	p(Fe)	p(Tf)	p(Sat)	p(Ferri)	
CORO1B,PTPRCAP,RPS6KB2	rs2302264	11	66,964,002	MCV	0.251	0.219	0.609	0.260	
ARHGEF17,P2RY6	rs7125949	11	72,686,732	НВ	0.928	0.180	0.894	0.326	
CACNA1C	rs7312105	12	2,393,616	PCV	0.079	0.057	0.312	0.485	
CCND2	rs10849023	12	4,202,739	MCH	0.264	0.114	-	0.940	
KITLG	rs11104870	12	87,353,425	RBC	0.523	0.124	0.141	0.382	
ATXN2,SH2B3	rs3184504	12	110,368,991	HB	0.646	0.051	0.196	0.688	
ACADS,MLEC	rs3829290	12	119,610,821	MCV	0.392	0.0021	0.388	0.783	
FNTB,MAX	rs7155454	14	64,571,992	MCH	0.116	0.837	0.279	0.378	
SMOC1	rs11627546	14	69,435,677	MCV	0.020	0.547	0.038	0.229	
EIF5	rs17616316	14	102,892,515	МСН	0.239	0.512	0.226	0.206	
LIPC	rs1532085	15	56,470,658	HB	0.292	0.348	0.557	0.834	
DENND4A,PTPLAD1	rs2572207	15	63,857,747	MCV	0.623	0.856	0.442	0.551	
PPCDC,SCAMP5	rs8028632	15	73,108,315	MCV	0.979	0.117	0.651	0.019	
NRG4	rs11072566	15	74,081,026	HB	0.469	0.884	0.562	0.505	
DNAJA4,WDR61	rs2867932	15	76,378,092	MCHC	0.167	0.949	0.118	0.800	
NPRL3	rs11248850	16	103,598	МСН	0.200	0.338	0.414	0.821	
CTRL,DUS2L,EDC4,NUTF2,PSMB10	rs2271294	16	66,459,827	RBC	0.088	0.789	0.180	0.226	
PIEZO1	rs10445033	16	87,367,963	MCHC	0.977	0.655	0.543	0.470	
SPECC1	rs888424	17	19,926,019	MCH	0.594	0.295	0.350	0.042	
C17orf63,ERAL1,NEK8,TRAF4	rs2070265	17	24,099,550	MCH	0.293	0.079	0.788	0.811	
CDK12,NEUROD2	rs8182252	17	34,981,476	RBC	0.443	0.356	0.551	0.487	
SLC4A1,UBTF	rs2269906	17	39,649,863	MCHC	0.925	0.532	0.870	0.419	
ARHGAP27,ARL17B,C17orf69, CRHR1,SPPL2C,KANSL1,MAPT,STH	rs12150672	17	41,182,408	RBC	0.361	0.472	0.294	0.0051	
PGS1	rs4969184	17	73,905,008	HB	0.414	0.019	0.051	1.84E-04	
C18orf25	rs4890633	18	42,087,276	MCH	0.029	0.248	0.011	0.109	
AP3D1	rs2159213	19	2,087,102	HB	0.222	0.007	0.955	0.143	
MPND,SH3GL1,UBXN6	rs732716	19	4,317,219	MCV	0.067	0.344	0.078	0.245	
CALR,FARSA,SYCE2	rs741702	19	12,885,250	MCH	0.247	0.276	0.399	0.407	
NUDT19	rs3892630	19	37,873,324	MCV	0.457	0.652	0.553	0.254	
RBM38	rs737092	20	55,423,811	MCV	0.748	0.059	0.685	0.438	
ΑΤΡ5Ο	rs2032314	21	34,276,393	PCV	0.178	0.455	0.262	0.982	

Comments

Lo	ci reported to affect erythre		From GISC discovery meta-analysis					
Candidate genes	Marker name	Chr	Position(B36)	Phenotype	p(Fe)	p(Tf)	p(Sat)	p(Ferri)
UBE2L3,YDJC	rs5754217	22	20,269,675	MCV	0.024	0.292	0.032	0.363
FBXO7	rs5749446	22	31,210,585	MCH	0.039	0.566	0.247	0.826
KCTD17,TMPRSS6	rs855791	22	35,792,882	MCH	4.31E-77	1.29E-04	3.50E-80	5.81E-08
TYMP,NCAPH2,ODF3B,SCO2	rs140522	22	49,318,132	MCV	0.423	0.604	0.951	0.0042

(d) Associations with iron phenotypes, at all loci reported significant for lipid phenotypes by Willer et al., Nature Genetics 2013;45:1274-83. For overlap with the 149 lipid loci the critical p-value is (0.05/149)=3.36x10⁻⁴; values below this are shown in bold type.

Loci reported to affect lipid	phenotypes	From GISC discovery meta-analysis									
Locus	Marker name	Chr.	hg19 position (Mb)	Associated trait(s)	p(Fe)	p(Tf)	p(Sat)	p(Ferri)	Comme		
ASAP3	rs1077514	1	23.77	TC	0.346	0.643	0.308	0.117			
LDLRAP1	rs12027135	1	25.78	TC,LDL	0.010	0.023	0.080	0.757			
PIGV-NR0B2	rs12748152	1	27.14	HDL,LDL,TG	0.076	0.594	0.024	0.288			
PABPC4	rs4660293	1	40.03	HDL	0.540	0.656	0.311	0.727			
PCSK9	rs2479409	1	55.50	LDL,TC	0.326	0.996	0.246	-			
ANGPTL3	rs2131925	1	63.03	TG,LDL,TC	0.176	0.524	0.142	0.836			
EVI5	rs7515577	1	93.01	TC	0.999	0.478	0.686	0.275			
SORT1	rs629301	1	109.82	LDL,TC	0.060	0.936	0.215	0.219			
ANXA9-CERS2	rs267733	1	150.96	LDL	0.789	0.126	0.339	0.832			
HDGF-PMVK	rs12145743	1	156.70	HDL	0.905	0.839	0.897	0.535			
ANGPTL1	rs4650994	1	178.52	HDL	0.479	0.096	0.866	0.242			
ZNF648	rs1689800	1	182.17	HDL	0.978	0.097	0.747	0.184			
MOSC1	rs2642442	1	220.97	TC,LDL	0.383	0.100	0.612	0.036			
GALNT2	rs4846914	1	230.30	HDL,TG	0.0064	0.574	0.016	0.279			
IRF2BP2	rs514230	1	234.86	TC,LDL	0.134	0.639	0.077	0.422			
APOB	rs1367117	2	21.26	LDL,TC	0.729	0.989	0.762	0.942			
GCKR	rs1260326	2	27.73	TG,TC	0.488	2.71E-04	0.026	0.482			
ABCG5/8	rs4299376	2	44.07	LDL,TC	0.038	0.739	0.038	0.378			
EHBP1	rs2710642	2	63.15	LDL	0.647	0.983	0.701	0.902			
INSIG2	rs10490626	2	118.84	LDL,TC	0.878	0.656	0.881	0.184			
LOC84931	rs2030746	2	121.31	LDL,TC	0.173	0.019	0.016	1.96E-04			

Comments

Locus	Marker name	Chr.	hg19 position (Mb)	Associated trait(s)	p(Fe)	p(Tf)	p(Sat)	p(Ferri)	Comments
RAB3GAP1	rs7570971	2	135.84	тс	0.441	0.323	0.778	0.689	
COBLL1	rs12328675	2	165.54	HDL	0.813	0.397	0.857	0.441	
ABCB11	rs2287623	2	169.83	TC	0.157	0.917	0.373	0.877	
FAM117B	rs11694172	2	203.53	TC	0.588	0.162	0.767	0.924	
CPS1	rs1047891	2	211.54	HDL	0.958	1.38E-04	0.174	0.645	Using rs715 as proxy, R ² =0.922
FN1	rs1250229	2	216.30	LDL	0.300	0.770	0.256	0.839	
IRS1	rs2972146	2	227.10	HDL,TG	0.122	0.148	0.341	0.718	
UGT1A1	rs11563251	2	234.68	TC,LDL	0.259	0.026	0.704	0.615	
ATG7	rs2606736	3	11.40	HDL	0.480	0.110	0.849	0.159	
RAF1	rs2290159	3	12.63	TC	0.976	0.136	0.761	0.905	
СМТМ6	rs7640978	3	32.53	LDL,TC	0.062	0.044	0.0052	0.457	
SETD2	rs2290547	3	47.06	HDL	0.0095	0.959	0.032	0.742	
RBM5	rs2013208	3	50.13	HDL	0.295	0.061	0.057	0.044	
STAB1	rs13326165	3	52.53	HDL	0.164	0.747	0.333	0.763	
РХК	rs13315871	3	58.38	тс	0.643	0.716	0.452	0.301	
GSK3B	rs6805251	3	119.56	HDL	0.043	0.180	0.0038	0.235	
ACAD11	rs17404153	3	132.16	LDL,HDL	0.0012	0.974	0.0026	0.338	
MSL2L1	rs645040	3	135.93	TG	0.504	0.013	0.853	0.840	
LRPAP1	rs6831256	4	3.47	TG,TC,LDL	0.045	0.012	0.512	0.738	Using rs2699429 as proxy, R ² =0.966
C4orf52	rs10019888	4	26.06	HDL	0.778	0.108	0.328	0.842	
KLHL8	rs442177	4	88.03	TG	0.714	0.014	0.328	0.940	
FAM13A	rs3822072	4	89.74	HDL	0.806	0.346	0.930	0.132	
ADH5	rs2602836	4	100.01	HDL	0.205	0.025	0.467	0.211	
SLC39A8	rs13107325	4	103.19	HDL	0.396	0.849	0.388	-	
ARL15	rs6450176	5	53.30	HDL	0.888	-	0.754	0.615	
MAP3K1	rs9686661	5	55.86	TG	-	-	-	-	No results for this SNP or proxies
HMGCR	rs12916	5	74.66	TC,LDL	0.671	0.059	0.215	0.117	
CSNK1G3	rs4530754	5	122.86	LDL,TC	0.155	0.917	0.096	0.288	
TIMD4	rs6882076	5	156.39	TC,TG,LDL	0.131	0.776	0.312	0.170	
MYLIP	rs3757354	6	16.13	LDL,TC	0.175	0.060	0.415	-	

Locus	Marker name	Chr.	hg19 position (Mb)	Associated trait(s)	p(Fe)	p(Tf)	p(Sat)	p(Ferri)	Comments
HFE	rs1800562	6	26.09	LDL,TC	3.96E- 77	1.26E-153	1.52E- 178	1.43E-29	
HLA	rs3177928	6	32.41	TC,LDL	0.354	0.701	0.517	0.0041	
C6orf106	rs2814982	6	34.55	тс	0.238	0.900	0.172	0.607	
KCNK17	rs2758886	6	39.25	тс	0.103	0.507	0.272	0.886	
VEGFA	rs998584	6	43.76	TG,HDL	-	-	-	-	No results for this SNP or proxies
FRK	rs9488822	6	116.31	TC,LDL	0.888	0.044	0.422	0.167	
RSPO3	rs1936800	6	127.44	HDL,TG	0.232	0.329	0.140	0.043	
HBS1L	rs9376090	6	135.41	тс	6.59E- 06	0.0075	1.32E-06	0.355	
CITED2	rs605066	6	139.83	HDL	0.718	0.543	0.634	0.595	
LPA	rs1564348	6	160.58	LDL,TC	0.425	0.886	0.347	0.521	
GPR146	rs1997243	7	1.08	тс	0.103	0.188	0.012	0.734	
DAGLB	rs702485	7	6.45	HDL	0.827	0.907	0.941	0.283	
SNX13	rs4142995	7	17.92	HDL	0.977	0.978	0.523	0.598	
DNAH11	rs12670798	7	21.61	TC,LDL	0.904	1.000	0.675	0.099	
MIR148A	rs4722551	7	25.99	LDL,TG,TC	0.898	0.0041	0.204	0.071	
NPC1L1	rs2072183	7	44.58	TC,LDL	-	-	-	-	No results for this SNP or proxies
IKZF1	rs4917014	7	50.31	HDL	0.203	0.178	0.145	0.273	
TYW1B	rs13238203	7	72.13	TG	0.541	0.881	0.539	0.819	
MLXIPL	rs17145738	7	72.98	TG,HDL	0.260	0.077	0.096	0.666	
MET	rs38855	7	116.36	TG	0.840	0.525	0.857	0.233	
KLF14	rs4731702	7	130.43	HDL	0.656	0.504	0.880	0.948	
TMEM176A	rs17173637	7	150.53	HDL	0.013	0.514	0.055	0.491	
PPP1R3B	rs9987289	8	9.18	HDL,TC,LDL	0.566	0.0013	0.311	-	
PINX1	rs11776767	8	10.68	TG	0.503	0.253	0.688	0.244	
NAT2	rs1495741	8	18.27	TG,TC	0.468	1.57E-11	0.0038	0.599	
LPL	rs12678919	8	19.84	TG,HDL	0.541	0.905	0.300	0.818	
SOX17	rs10102164	8	55.42	LDL,TC	0.036	0.852	0.107	0.651	
CYP7A1	rs2081687	8	59.39	TC,LDL	0.376	0.114	0.610	0.472	
TRPS1	rs2293889	8	116.60	HDL	0.848	0.021	0.237	0.860	
TRIB1	rs2954029	8	126.49	TG,TC,LDL,HDL	0.842	1.12E-04	0.143	4.03E-05	

Locus	Marker name	Chr.	hg19 position (Mb)	Associated trait(s)	p(Fe)	p(Tf)	p(Sat)	p(Ferri)	Comments
PLEC1	rs11136341	8	145.04	LDL,TC	0.867	0.798	0.409	0.756	
VLDLR	rs3780181	9	2.64	TC,LDL	0.843	0.917	0.723	0.777	
ТТС39В	rs581080	9	15.31	HDL,TC	0.054	0.832	0.161	0.365	
ABCA1	rs1883025	9	107.66	HDL,TC	0.989	0.495	0.812	0.264	
ABO	rs9411489	9	136.16	LDL,TC	0.358	0.188	0.110	2.54E-07	Using rs651007 as proxy, R ² =1.000
AKR1C4	rs1832007	10	5.25	TG	0.023	0.093	0.229	0.758	
VIM-CUBN	rs10904908	10	17.26	тс	-	-	0.093	-	
MARCH8-ALOX5	rs970548	10	46.01	HDL,TC	0.848	0.060	0.412	0.427	
JMJD1C	rs10761731	10	65.03	TG	0.030	0.592	0.116	0.731	
CYP26A1	rs2068888	10	94.84	TG	0.133	0.049	0.005	0.495	
GPAM	rs2255141	10	113.93	TC,LDL	0.390	0.852	0.404	0.373	
AMPD3	rs2923084	11	10.39	HDL	0.306	0.159	0.123	0.579	
SPTY2D1	rs10128711	11	18.63	тс	0.680	0.882	0.759	0.237	
LRP4	rs3136441	11	46.74	HDL	0.116	0.678	0.062	0.711	
OR4C46	rs11246602	11	51.51	HDL	0.984	0.566	0.704	0.251	
FADS1-2-3	rs174546	11	61.57	TG,LDL,TC,HDL	0.901	7.43E-10	0.023	0.051	
KAT5	rs12801636	11	65.39	HDL	0.088	0.304	0.043	0.495	
MOGAT2-DGAT2	rs499974	11	75.46	HDL	0.807	0.669	0.884	0.333	
APOA1	rs964184	11	116.65	TG,TC,HDL,LDL	0.706	0.246	0.583	0.956	
PHLDB1	rs11603023	11	118.49	тс	0.182	0.027	0.876	0.691	
UBASH3B	rs7941030	11	122.52	TC,HDL	0.844	0.0056	0.470	0.363	
ST3GAL4	rs11220462	11	126.24	LDL,TC	0.354	0.161	0.683	0.021	
PHC1-A2ML1	rs4883201	12	9.08	тс	0.591	0.049	0.411	0.811	
PDE3A	rs7134375	12	20.47	HDL	0.165	0.521	0.265	0.400	
LRP1	rs11613352	12	57.79	TG,HDL	0.512	0.239	0.262	1.44E-04	
MVK	rs7134594	12	110.00	HDL	0.023	0.149	0.019	0.655	
BRAP	rs11065987	12	112.07	TC,LDL	0.390	0.0052	0.043	0.185	
HNF1A	rs1169288	12	121.42	TC,LDL	0.326	0.488	0.627	0.043	
SBNO1	rs4759375	12	123.80	HDL	0.593	0.630	0.596	0.327	
ZNF664	rs4765127	12	124.46	HDL,TG	0.182	0.223	0.208	0.130	

Locus	hg19 position Marker name Chr. (Mb)		hg19 position (Mb)	Associated trait(s)	p(Fe)	p(Tf)	p(Sat)	p(Ferri)	Comments
SCARB1	rs838880	12	125.26	HDL	0.158	0.948	0.286	0.886	
BRCA2	rs4942486	13	32.95	LDL	0.197	0.296	0.062	0.703	
NYNRIN	rs8017377	14	24.88	LDL	0.636	0.703	0.890	0.051	
ZBTB42-AKT1	rs4983559	14	105.28	HDL	0.335	0.641	0.428	0.042	
CAPN3	rs2412710	15	42.68	TG	-	-	-	-	No results for this SNP or proxies
FRMD5	rs2929282	15	44.25	TG	0.640	0.190	0.140	0.406	
LIPC	rs1532085	15	58.68	HDL,TC,TG	0.292	0.348	0.557	0.834	
LACTB	rs2652834	15	63.40	HDL	0.905	0.796	0.992	0.122	
PDXDC1	rs3198697	16	15.13	TG	0.555	0.182	0.443	0.283	
CTF1	rs11649653	16	30.92	TG	0.222	0.832	0.339	0.838	
FTO	rs1121980	16	53.81	HDL,TG	0.700	0.166	0.457	0.710	
CETP	rs3764261	16	56.99	HDL,LDL,TC,TG	0.838	0.432	0.875	0.633	
LCAT	rs16942887	16	67.93	HDL	0.081	0.628	0.285	0.904	
HPR	rs2000999	16	72.11	TC,LDL	0.189	0.011	0.958	0.025	
CMIP	rs2925979	16	81.53	HDL	0.844	0.510	0.572	0.118	
DLG4	rs314253	17	7.09	TC,LDL	0.055	0.154	0.021	0.828	
STARD3	rs11869286	17	37.81	HDL	0.029	0.068	0.210	0.866	
MPP3	rs8077889	17	41.88	TG	0.600	0.624	0.319	0.379	
OSBPL7	rs7206971	17	45.43	LDL,TC	0.240	0.059	0.712	0.362	
APOH-PRXCA	rs1801689	17	64.21	LDL	-	-	-	-	No results for this SNP or proxies
ABCA8	rs4148008	17	66.88	HDL	0.853	0.527	0.458	0.550	Using rs4148005 as proxy, R ² =1.000
PGS1	rs4129767	17	76.40	HDL	0.466	0.033	0.078	3.21E-04	
LIPG	rs7241918	18	47.16	HDL,TC	0.694	0.025	0.734	0.083	
MC4R	rs12967135	18	57.85	HDL	0.218	0.0075	0.012	0.148	
INSR	rs7248104	19	7.22	TG	0.249	9.56E-04	0.019	0.070	
ANGPTL4	rs7255436	19	8.43	HDL	0.771	0.022	0.896	0.029	
LDLR	rs6511720	19	11.20	LDL,TC	0.961	0.391	0.743	0.718	
ANGPTL8	rs737337	19	11.35	HDL	0.233	0.282	0.792	0.800	
CILP2	rs10401969	19	19.41	TC,TG,LDL	0.281	0.023	0.047	0.331	
PEPD	rs731839	19	33.90	TG,HDL	0.842	0.398	0.890	0.252	

Locus	Marker name	Chr.	hg19 position (Mb)	Associated trait(s)	p(Fe)	p(Tf)	p(Sat)	p(Ferri)	Comments
APOE	rs4420638	19	45.42	LDL,TC,HDL	-	-	-	-	No results for this SNP or proxies
FLJ36070	rs492602	19	49.21	тс	0.098	0.833	0.114	0.155	
HAS1	rs17695224	19	52.32	HDL	0.295	0.535	0.029	0.083	
LILRA3	rs386000	19	54.79	HDL	0.035	0.490	0.027	0.395	
SPTLC3	rs364585	20	12.96	LDL	0.500	0.362	0.349	-	
SNX5	rs2328223	20	17.85	LDL	0.383	6.30E-05	0.649	0.444	
ERGIC3	rs2277862	20	34.15	тс	0.199	0.150	0.459	0.557	
MAFB	rs2902940	20	39.09	TC,LDL	0.617	0.460	0.472	0.193	
TOP1	rs6029526	20	39.67	LDL,TC	0.813	0.064	0.188	0.871	
HNF4A	rs1800961	20	43.04	HDL,TC	-	-	-	-	No results for this SNP or proxies
PLTP	rs6065906	20	44.55	HDL,TG	0.697	0.549	0.822	0.262	
UBE2L3	rs181362	22	21.93	HDL	0.020	0.269	0.027	0.380	
MTMR3	rs5763662	22	30.38	LDL	-	0.327	-	-	
TOM1	rs138777	22	35.71	тс	0.602	0.842	0.646	0.431	
PLA2G6	rs5756931	22	38.55	TG	0.962	0.442	0.914	0.289	
PPARA	rs4253772	22	46.63	TC,LDL	0.412	0.101	0.820	0.726	

Supplementary Table 9. SNP associations in *HFE* YY subjects only. Statistical tests were performed and results for the QIMR and HEIRS data were metaanalysed as described in the paper.

Iron						HEIRS					QI	MR adul	ts	Combined		
SNP	СН	IR	BP (B37)	Nearest gene	A1	A2	Freq1	Effect	SE	Р	Effect	SE	Р	Effect	SE	Р
rs74465	53	2	190,378,750	SLC40A1	Т	С	0.854	0.060	0.059	0.312	-0.106	0.119	0.372	0.027	0.053	0.614
rs81772	240	3	133,477,701	TF	Т	G	0.669	-0.115	0.059	0.053	-0.009	0.120	0.940	-0.094	0.053	0.077
rs99903	333	3	195,827,205	TFRC	Т	С	0.460	0.117	0.062	0.057	-0.046	0.120	0.703	0.083	0.055	0.129
rs73858	304	7	100,235,970	TFR2	А	С	0.621	0.182	0.059	0.0020	0.161	0.119	0.174	0.178	0.053	0.00076
rs49219	915	8	18,272,466	NAT2	А	G	0.782	-0.075	0.059	0.209	-0.177	0.118	0.135	-0.095	0.053	0.073
rs65100)7	9	136,153,875	ABO	Т	С	0.202	0.020	0.060	0.735	0.019	0.121	0.877	0.020	0.054	0.710
rs64861	121 1	11	13,355,770	ARNTL	Т	С	0.631	-0.037	0.059	0.534	-0.136	0.119	0.256	-0.057	0.053	0.288
rs17457	77 1	11	61,604,814	FADS2	А	С	0.330	-0.074	0.060	0.219	0.116	0.119	0.330	-0.035	0.054	0.509
rs41198	38 1	17	56,709,034	TEX14	А	G	0.564	0.101	0.060	0.091	0.104	0.120	0.387	0.102	0.054	0.058
rs85579	91 2	22	37,462,936	TMPRSS6	А	G	0.446	-0.022	0.060	0.720	-0.304	0.115	0.008	-0.083	0.053	0.121

Transferrin								HEIRS		Q	IMR adu	lts		Combine	ed
SNP	CHR	BP (B37)	Nearest gene	A1	A2	Freq1	Effect	SE	Р	Effect	SE	Р	Effect	SE	Р
rs744653	2	190,378,750	SLC40A1	Т	С	0.854	0.042	0.060	0.485	0.136	0.117	0.245	0.061	0.053	0.249
rs8177240	3	133,477,701	TF	Т	G	0.669	-0.298	0.058	2.16E-07	-0.338	0.111	0.0023	-0.306	0.051	1.93E-09
rs9990333	3	195,827,205	TFRC	т	С	0.460	0.018	0.063	0.777	0.134	0.117	0.253	0.044	0.055	0.430
rs7385804	7	100,235,970	TFR2	А	С	0.621	0.007	0.061	0.909	0.150	0.116	0.196	0.038	0.054	0.485
rs4921915	8	18,272,466	NAT2	А	G	0.782	0.007	0.060	0.906	-0.106	0.116	0.360	-0.017	0.053	0.751
rs651007	9	136,153,875	ABO	т	С	0.202	-0.012	0.060	0.093	-0.043	0.118	0.719	-0.089	0.054	0.097
rs6486121	11	13,355,770	ARNTL	Т	С	0.631	0.003	0.060	0.958	0.123	0.115	0.285	0.029	0.053	0.588
rs174577	11	61,604,814	FADS2	А	С	0.330	-0.059	0.061	0.332	0.264	0.113	0.020	0.013	0.053	0.806
rs411988	17	56,709,034	TEX14	А	G	0.564	0.023	0.061	0.702	0.009	0.118	0.942	0.020	0.054	0.709
rs855791	22	37,462,936	TMPRSS6	А	G	0.446	0.036	0.061	0.554	0.303	0.112	0.007	0.096	0.053	0.072

Transferrin Saturation							HEIRS			QIMR adults			Combined		
SNP	CHR BP (B37)	Nearest gene	A1	A2	Freq1	Effect	SE	Р	Effect	SE	Р	Effect	SE	Р	

rs744653	2	190,378,750	SLC40A1	т	С	0.854	0.041	0.059	0.488	-0.042	0.130	0.746	0.027	0.054	0.619
rs8177240	3	133,477,701	TF	Т	G	0.669	0.033	0.059	0.581	-0.057	0.129	0.658	0.017	0.054	0.752
rs9990333	3	195,827,205	TFRC	Т	С	0.460	0.111	0.061	0.070	-0.106	0.129	0.413	0.071	0.055	0.198
rs7385804	7	100,235,970	TFR2	А	С	0.621	0.165	0.059	0.005	-0.100	0.128	0.435	0.119	0.054	0.026
rs4921915	8	18,272,466	NAT2	А	G	0.782	-0.073	0.059	0.217	0.008	0.130	0.954	-0.059	0.054	0.272
rs651007	9	136,153,875	ABO	Т	С	0.202	0.073	0.060	0.220	-0.036	0.131	0.784	0.054	0.054	0.317
rs6486121	11	13,355,770	ARNTL	Т	С	0.631	-0.046	0.059	0.437	-0.116	0.129	0.368	-0.058	0.054	0.280
rs174577	11	61,604,814	FADS2	А	С	0.330	-0.048	0.060	0.421	0.035	0.130	0.787	-0.034	0.054	0.536
rs411988	17	56,709,034	TEX14	А	G	0.564	0.089	0.060	0.137	-0.004	0.129	0.977	0.073	0.054	0.181
rs855791	22	37,462,936	TMPRSS6	А	G	0.446	-0.040	0.060	0.505	-0.278	0.125	0.026	-0.084	0.054	0.119

Ferritin								HEIRS		C	QIMR adu	ults	(Combine	d
SNP	CHR	BP (B37)	Nearest gene	A1	A2	Freq1	Effect	SE	Р	Effect	SE	Р	Effect	SE	Р
rs744653	2	190,378,750	SLC40A1	т	С	0.854	0.031	0.057	0.583	-0.086	0.117	0.464	0.009	0.051	0.861
rs8177240	3	133,477,701	TF	т	G	0.669	0.010	0.057	0.864	0.073	0.117	0.534	0.022	0.051	0.670
rs9990333	3	195,827,205	TFRC	т	С	0.460	0.101	0.059	0.085	-0.145	0.116	0.213	0.051	0.052	0.327
rs7385804	7	100,235,970	TFR2	А	С	0.621	-0.030	0.057	0.602	-0.067	0.117	0.566	-0.037	0.052	0.471
rs4921915	8	18,272,466	NAT2	А	G	0.782	-0.053	0.057	0.356	0.004	0.118	0.970	-0.042	0.051	0.415
rs651007	9	136,153,875	ABO	т	С	0.202	0.035	0.057	0.544	0.140	0.118	0.233	0.055	0.052	0.285
rs6486121	11	13,355,770	ARNTL	т	С	0.631	-0.089	0.057	0.116	-0.386	0.108	3.36E-04	-0.153	0.050	0.0022
rs174577	11	61,604,814	FADS2	Α	С	0.330	-0.023	0.057	0.690	-0.077	0.117	0.512	-0.033	0.052	0.518
rs411988	17	56,709,034	TEX14	Α	G	0.564	-0.006	0.058	0.912	0.030	0.118	0.799	0.001	0.052	0.990
rs855791	22	37,462,936	TMPRSS6	А	G	0.446	0.096	0.057	0.092	-0.411	0.107	0.000	-0.016	0.051	0.755

Supplementary Table 10. Associations between genetic prediction scores (from lead SNPs at significant or suggestive loci) from the population-based Discovery + Replication datasets, and the observed phenotypes in the *HFE* C282Y homozygotes from the HEIRS Study. Sex stratified regression analysis, adjusted for age, phlebotomy status and blood donation history. Note that the near-significant correlation for ferritin in men is in the opposite direction to that expected.

Trait:	Sex	Ν	Beta ± SE	R ² (percent of variance)	P-value
Iron	Male	119	0.02 ± 0.09	0%	0.83
	Female	158	0.13 ± 0.08	1.5%	0.12
Transferrin	Male	119	0.35 ± 0.09	12%	0.0001
	Female	158	0.21 ± 0.08	4.5%	0.007
Saturation	Male	119	-0.03 ± 0.09	0%	0.74
	Female	158	0.09 ± 0.08	0.8%	0.27
Log ₁₀ Ferritin	Male	119	-0.17 ± 0.09	3%	0.06
	Female	158	-0.01 ± 0.08	0%	0.94