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A. Supporting Data 

 

 

Figure S1. Trans MAM-6 inhibits a mutant GABAAR after conjugation. An oocyte expressing 

α1(T125C)β2 was tested with 3 µM and 300 µM GABA (black traces on the left). The oocyte was then 

treated with 50 µM MAM-6 for 10 minutes. After MAM-6 treatment, the current at 3 µM GABA was 

reduced in 500-nm (green trace) but not in 380-nm light (middle purple trace). The responses evoked by 

300 μM GABA before and after MAM-6 attachment indicated that the change in receptor activity was 

negligible over the course of the experiment. Neither 380-nm nor 500-nm light triggered receptor 

activation in the absence of externally applied GABA. 
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Figure S2. PTL treatment does not confer light sensitivity onto endogenous channels in 

hippocampal neurons. 

(A) MAB-0 treatment does not photosensitize endogenous GABAARs in cultured hippocampal neurons. 

Average mIPSC traces from a representative neuron are shown. I500/I380 = 1.00 ± 0.02 (Vhold = –60 mV; n 

= 3, P = 0.87). 

(B) MAB-0 treatment does not photosensitize endogenous glutamate receptors in cultured hippocampal 

neurons.  Average mEPSC traces from a representative neuron are shown.  I500/I380 = 0.97 ± 0.10 (Vhold 

= –70 mV; n = 4, P = 0.64). 

(C) MAB-0 treatment does not photosensitize endogenous AMPARs in a hippocampal slice. Evoked 

EPSC traces from a CA1 pyramidal neuron are shown. I500/I380 = 1.02 ± 0.01 (Vhold = –70 mV; n = 4, P = 

0.2). 

(D) MAB-0 treatment does not photosensitize endogenous NMDARs in a hippocampal slice. Evoked 

EPSC traces from a CA1 pyramidal neuron are shown. Currents were measured 100 ms after the stimulus. 

I500/I380 = 0.95 ± 0.04 (Vhold = +40 mV; n = 3, P = 0.3). 

(E) MAB-0 treatment does not photosensitize endogenous voltage-gated Na
+
 channels.  Inward currents 

(elicited by a 200-ms depolarization to –10 mV) from a representative neuron are shown. I500/I380 = 0.99 ± 

0.05 (Vhold = –70 mV; n = 4, P = 0.87). 

(F) MAB-0 treatment does not photosensitize native voltage-gated K
+
 channels. Voltage-gated K

+
 

currents (elicited by a 200-ms depolarization to +40 mV) from a representative neuron are shown. I500/I380 

= 0.98 ± 0.05 (Vhold = –70 mV; n = 4, P = 0.43). 

All traces in 380 nm and 500 nm are shown in violet and green colors, respectively. 
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Table S1. The GABA Sensitivity of Untreated and MAM-6 treated α1-Mutants. 

mutation 

site 

MAM-6 conjugated receptor untreated receptor comments 

I500/I380 
(mean ± SEM)a 

trials 
I3µM/I3mM (380 nm) 

(mean ± SEM)b 
trials 

I3µM/I3mM 

(mean ± SEM)b 
trials 

 

wild-

type 

1.08 ± 0.02 

(untreated) 
9 -- -- 0.46 ± 0.03 9  

41 0.62 ± 0.03 10 0.41 ± 0.03 9 0.33 ± 0.03 3 c 

68 0.47 ± 0.05 8 0.17 ± 0.03 4 0.34 ± 0.03 3 c,d 

121 0.52 ± 0.03 14 0.34 ± 0.03 14 0.49 ± 0.02 4 d 

125 0.60 ± 0.03 10 0.44 ± 0.07 7 0.45 ± 0.05 4 e 

171 0.63 ± 0.03 4 0.20 ± 0.01 4 0.20 ± 0.01 3 c,d 

 
 
a. Current ratio was measured at 3 µM GABA (500 nm vs. 380 nm). 

b. The effect of MAM-6 attachment or cysteine substitution on receptor function was evaluated by the change of 

current ratio at 3 µM vs. 3 mM GABA. As a reference, EC50 of the wild-type α1β2 is ~3 µM (first row). 

c. The untreated receptor’s sensitivity to GABA is lower than that of the wild-type (indicated by I3µM/I3mM). 

d. The receptor’s sensitivity to GABA is reduced in both 500-nm and 380-nm lights after MAM-6 attachment. 

e. The untreated receptor’s sensitivity to GABA is the same as that of the wild-type. The receptor’s sensitivity to 

GABA is unaltered in 380-nm light after MAM-6 attachment.  These features make α1(T125C) the best mutant 

for neurophysiological applications. 

 

 

B. Synthesis of MAM-6, MAB-6, MAM-0, and MAB-0 

 

Scheme S1. 

 

 

 



S5 

 

Scheme S2. 

 

 

 General Methods 

All reagents and solvents were purchased through Fisher Scientific. All reactions involving air- and 

moisture-sensitive reagents were performed under an argon atmosphere using syringe-septum cap 

techniques.  DMF and CH2Cl2 were dried by storing over molecular sieves (4 Å ). THF was distilled from 

sodium/benzophenone.  Analytical thin-layer chromatography (TLC) was carried out using Merck Silica 

gel 60 F254 aluminum sheets. Compounds were detected as single spots on TLC plates and visualized 
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using UV light (254 or 366 nm) and KMnO4 or ninhydrin. Merck silica gel (35–70 mesh) was used for 

flash chromatography. 
1
H NMR spectra were recorded on a 400 MHz Bruker NMR spectrometer using 

the residual proton resonance of the solvent as the standard.  Chemical shifts are reported in parts per 

million (ppm). When peak multiplicities are given, the following abbreviations are used: s, singlet; bs, 

broad singlet; d, doublet; t, triplet; q, quartet; m, multiplet. 
13

C NMR spectra were proton decoupled and 

recorded on a 100 MHz spectrometer using carbon signal of the deuterated solvent as the internal standard. 

Mass spectra were measured either on a Waters ZQ device for LRMS or at the Notre Dame Mass 

Spectrometry facility microTOF for HRMS. 

 

 

tert-butyl-4-(2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetamido)phenylcarbamate (2):  Maleimide 1 

(2.0 g, 13 mmol) was dissolved in anhydrous CH2Cl2 (30 mL), treated with oxalyl chloride (4.8 g, 39 

mmol), and DMF (1 drop) at ambient temperature under nitrogen.  After 4 h of stirring at room 

temperature, the solvent was evaporated under reduced pressure, the residue dissolved in anhydrous THF, 

and added drop wise over a period of 30 min to a stirred suspension of tert-butyl-4-

aminophenylcarbamate (2.48 g, 12 mmol) and triethylamine (1.2 g, 12 mmol) at 0 
o
C.  After completion 

of addition, the reaction mixture was brought to ambient temperature and stirred for an additional 4 h.  

The solvent was evaporated under reduced pressure and dissolved in EtOAc (50 mL), washed with aq. 

NaHCO3, and brine.  The extract was dried with anhydrous Na2SO4, evaporated, and recrystallized from 

ethanol to obtain compound 2 (3.4 g, 81%). 

mp: 185-187 
o
C. 

IR (film) vmax 3327.68, 2983.05, 1706.99, 1684.45, 1549.21, 1512.59, 1428.06, 1301.28, 1225.21, 

1157.60, 1058.99, 830.96, 695.3. 
1
H NMR (400 MHz, DMSO-d6) δ 9.63 (s, 1H), 7.92 (s, 1H), 7.37 (d, 2H, J = 9.11 Hz), 7.28 (d, 2H, J = 

7.33 Hz), 6.72 (s, 2H), 4.24 (s, 2H), 1.42 (s, 9H). 

LRMS (ESI) m/z calcd for C17H20N3O5 [M+H]
+
: 346.4, found 346.8. 

HRMS (ESI) m/z calcd for C17H19N3NaO5 [M+Na]
+
: 368.1217, found 368.1208. 

 

 

 

N-(4-aminophenyl)-2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetamide (3): tert-Butyl-4-(2-(2,5-

dioxo-2H-pyrrol-1(5H)-yl)acetamido)phenylcarbamate 2 (3.0 g, 8.6 mmol) was dissolved in 5% TFA in 

CH2Cl2 (50 mL) and stirred at room temperature for 2 h.  The reaction mixture was evaporated and dried 

under reduced pressure to obtain compound 3 (2.0 g, 98%).  

IR (film) vmax 3192.09, 3062.14, 2994.35, 1593.22, 1721.07, 1692.90, 1667.54, 1554.85, 1506.95, 

1422.43, 1312.55, 1180.13, 1118.15, 825.14, 692.73. 
1
H NMR (400 MHz, DMSO-d6) δ 9.98 (s, 1H), 8.92 (bs, 2H), 7.5 (d, 2H, J = 8.5 Hz), 7.15 (d, 2H, J = 

8.48 Hz), 6.92 (s, 2H), 4.24 (s, 2H). 

LRMS (ESI) m/z calcd for C12H12N3O3 [M+H]
+
: 246.2, found 246.1. 

HRMS (FAB+) m/z calcd for C12H12N3O3 [M+H]
+
: 246.0873, found 246.0879. 
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tert-butyl-3-(4-nitrophenyl)propanoate (5): 3-(4-Nitrophenyl)propanoic acid 4 (5.0 g, 25.6 mmol), tert-

butanol (1.88 g, 25.6 mmol), and tributylamine (14.8 mL, 62.2 mmol) were dissolved in toluene (100 mL) 

and added to a suspension of 2-chloro-1-methylpyridinium iodide (7.84 g, 30.6 mmol) in toluene (50 mL).  

The reaction mixture was refluxed overnight.  After removal of the solvent, the dark residue was purified 

by flash column chromatography (EtOAc/hexane 1:3) to obtain tert-butyl-3-(4-nitrophenyl)propanoate 5 

(4.20 g, 84 %) as light yellow solid.  

mp: 50 
o
C (consistent with the previously reported value; ref. 8) 

IR (film) vmax 2926.55, 2971.75, 1712.62, 1605.56, 1591.47, 1512.59, 1543.58, 1368.90, 1343.54, 

1290.01, 1146.33, 844.86, 689.9. 
1
H NMR (400 MHz, CDCl3) δ 8.14 (d, 2H, J = 8.75 Hz), 7.36 ( d, 2H, J = 8.80 Hz), 3.00 (t, 2H, J = 7.53 

Hz), 2.58 (t, 2H, J = 7.57 Hz), 1.40 (s, 9H). 

LRMS (ESI) m/z calcd for C13H18NO4 [M+H]
+
: 252.3, found 252.4. 

 

 

tert-butyl-3-(4-nitrosophenyl)propanoate (6): Tert-butyl-3-(4-nitrophenyl)propanoate  (4.18 g, 17.2 

mmol) was dissolved in 2-methoxyethanol (200 mL) and to this mixture was added a solution of NH4Cl 

(1.36 g, 25.42 mmol) in H2O (60 mL).  The reaction mixture was thoroughly degassed by bubbling a 

stream of argon through the reaction mixture for approximately 30 min.  Zn dust (3.7 g, 56.6 mmol) was 

added to the solution very slowly.  The reaction mixture was stirred for 6 h at room temperature, filtered, 

and slowly added to a solution of FeCl3:6H2O (9.28 g, 36.3 mmol) in a 2:1 mixture of H2O and EtOH at -

10 °C.  After 1 h the mixture was allowed to warm to room temperature and stirred for another hour.  The 

mixture was extracted with EtOAc (3 x 100 mL) and dried with anhydrous Na2SO4.  The solvent was 

evaporated to obtain an oil that was purified by flash chromatography (EtOAc /hexane 1:3) to afford 

compound 6 (3.34 g) as a dark green oil that was used without further purification.  

 

 

tert-butyl-3-{4-[(E)-2-{4-[2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetamido]phenyl}diazen-1-

yl]phenyl}propanoate (7): A solution of compound 6 (3.0 g, 13.2 mmol) in glacial acetic acid (125 mL) 

was added to a solution of compound  3 (3.36 g, 13.2 mmol) in glacial acetic acid (125 mL) and stirred 

for 48 h at room temperature.  The solvent was removed under reduced pressure and the crude product 

was purified by flash chromatography (EtOAc/hexane 1:1) to obtain compound 7 (3.14 g, 51%) as an 

orange solid.  
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mp: 197-199 
o
C. 

IR (film) vmax 3327.68, 3084.74, 2920.9, 1701.35, 1676.0, 1594.29, 1543.58, 1425.25, 1140.69, 827.96, 

695.54. 
1
H NMR (400 MHz, CDCl3) δ 7.95 (br, 1H), 7.88 (d, 2H, J = 8.75 Hz), 7.83 (d, 2H, J = 8.25 Hz), 7.64 (d, 

2H, J = 8.69 Hz), 7.35 (d, 2H, J = 8.26 Hz),  6.83 (s, 2H), 4.39 (s, 2H), 3.00 (t, 2H, J = 7.51 Hz), 2.61 (t, 

2H, J = 7.57 Hz), 1.44 (s, 9H). 

LRMS (ESI) m/z calcd for C25H27N4O5 [M+H]
+
: 463.5, found 463.9. 

HRMS (ESI) m/z calcd for C215H26N4NaO5 [M+Na]
+
: 485.1795, found 485.1780. 

 

 

3-(4-{4-[2-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-acetylamino]-phenylazo}-phenyl)-propionic acid (8):  

To a solution of compound 7 (2.74 g, 5.93 mmol) in CH2Cl2 (300 mL) was added TFA (30 mL).  After 

stirring for 24 h at room temperature, water (30 mL) was added and the organic layer was separated and 

washed with water and brine.  After drying with MgSO4, the solvent was removed under reduced pressure 

to obtain compound 8 (2.35 g, 97%) as an orange-brown solid.  

mp: 240-242 
o
C. 

IR (film) vmax  3333. 33, 3084.74, 2932.20, 1706.99, 1681.63, 1597.11, 1543.58, 1433.70, 1306.92, 

1244.93, 1205.49, 1154.96, 844.86, 695.54. 
1
H NMR (400 MHz, DMSO-d6) δ 12.25 (s, 1H), 11.22 (s, 1H), 7.88-7.83 (m, 6H), 7.44 (d, 2H, J = 8.33 

Hz), 7.16 (s, 2H), 4.37 (s, 2H), 2.91 (t, 2H, J = 7.46 Hz), 2.60 (t, 2H, J = 7.58 Hz). 

LRMS (ESI) m/z calcd for C21H19N4O5 [M+H]
+
: 407.4, found 407.5. 

HRMS (FAB+) m/z calcd for C21H19N4O5 [M+H]
+
: 407.1350, found 407.1355. 

 

 

3-(4-{4-[2-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-acetylamino]-phenylazo}-phenyl)-propionic acid 2,5-

dioxo-pyrrolidin-1-yl ester (9):  To a mixture of compound 8 (0.540 g, 1.33 mmol) and N-

hydroxysuccinimide (0.148 g, 1.33 mmol) in dry CH3CN:DMF (3:1, 20 mL), EDC-HCl (0.318 g, 1.66 

mmol) was added.  The reaction mixture was stirred under a nitrogen atmosphere at room temperature 

overnight.  The organic solvents were removed under reduced pressure and the remaining residue washed 

with water to obtain an orange solid.  The crude solid was recrystallized from acetone to afford compound 

9 as an orange solid (610 mg, 91%).   

mp: 248-250 
o
C. 

IR (film) vmax 3327.68, 3090.39, 2926.55, 2841.80, 1774.60, 1698.53, 1676.0, 1594.29, 1540.78, 

1540.76, 1422.43, 1301.28, 1205.49, 1149.14, 2, 1064.68, 833.59, 642.01. 
1
H NMR (400 MHz, DMSO-d6) δ 9.86 (s, 1H), 7.90 (d, 2H, J = 8.93), 7.86-7.83 (m, 4H), 7.54 (d, 2H, J = 

8.28 Hz), 7.00 (s, 2H), 4.42 (s, 2H), 3.15 (t, 2H, J = 7.12), 3.05 (t, 2H, J = 6.96 Hz), 2.88 (s, 4H). 
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13
C NMR (100 MHz, DMSO-d6,) δ 170.3, 169.5, 168.1, 165.1, 151.4, 148.6, 143.1, 141.4, 134.7, 129.3, 

123.6, 122.7, 119.6, 40.4, 31.8, 25.4. 

LRMS (ESI) m/z calcd for C25H22N5O7 [M+H]
+
: 504.5, found 504.2. 

 

 

MAM-6 (14):  Compound 9 (39.9 mg, 73 µmol) and DIPEA (12 µL, 73 µmol) were added to a solution 

of tethered muscimol 10 (16 mg, 73 µmol) that was prepared as described (ref. 1), in N-

methylpyrrolidinone (2 mL).  The reaction mixture was stirred at room temperature overnight and 

quenched with TFA (6 µL, 73 µmol).  The crude product was purified by silica gel chromatography 

(CH2Cl2:MeOH 98:2 to CH2Cl2:MeOH:AcOH:H2O - 94:6:0.1:0.1) to afford an orange solid (12.8 mg, 

27%).  

mp: 235-237 
o
C. 

IR (film) vmax 3305.08, 2847.45, 2920.9, 1709.8, 1673.18, 1628.1, 1535.13, 1428.05, 1250.57, 1151.96, 

847.0 695.54. 

UV (CH3CN) λmax, nm: 357. 
1
H-NMR (400 MHz, CDCl3+DMSO-d6) δ 7.88 (d, 2H, J = 8 Hz), 7.81 (d, 2H, J = 8 Hz), 7.73 (d, 2H, J = 

8 Hz), 7.36 (d, 2H, J = 8 Hz), 6.87 (s, 2H), 5.76 (s, 1H), 4.40 (s, 2H), 4.32 (s, 2H), 3.14 (t, 2H, J = 7 Hz), 

3.02 (t, 2H, J = 7 Hz), 2.88 (s, 1H), 2.52 (t, 2H, J = 7 Hz), 2.17 (t, 2H, J = 7.01 Hz), 1.58 (m, 2H), 1.42 

(m, 2H), 1.24 (m, 2H). 
13

C-NMR (100 MHz, CDCl3+DMSO-d6) δ 173.1, 171.7, 170.7,170.5, 170.4, 165.2, 150.9, 148.3,144.9, 

141.3, 134.8, 129.2, 123.7, 122.7, 119.7, 93.6, 39.0, 37.4, 35.7, 35.4, 31.6, 29.5, 29.2, 26.5, 25.3. 

HRMS (ESI) m/z calcd for C31H34N7O7 [M+H]
+
: 616.2514, found 616.2441. 

 

 

MAM-0 (15): Compound 9 (34 mg, 67 µmol) and DIPEA (11 µL, 67 µmol) were added to a solution of 

muscimol (7.7 mg, 67 µmol) in N-methylpyrrolidinone (1.9 mL).  The reaction mixture was stirred at 

room temperature overnight and quenched with TFA (5.1 µL, 67 µmol).  The crude product was purified 

by silica gel chromatography (CH2Cl2: MeOH 98:2 to CH2Cl2: MeOH:AcOH:H2O - 94:6:0.1:0.1) to 

afford an orange solid (13 mg, 39%).  

mp: 248-250 
o
C. 

IR (film) vmax 3271.18, 2920.9, 2847.45, 1712.6, 1678.8, 1622.4, 1532.31, 1312.55, 1151.9. 

UV (CH3CN) λmax, nm: 354. 
1
H NMR (400 MHz, CDCl3+DMSO-d6) δ 10.20 (s, 1H), 8.25 (t, 1H, J = 5.53 Hz), 7.76 (d, 2H, J = 8.86 

Hz), 7.71-7.65 (q, 4H), 7.25 (d, 2H, J = 8.36 Hz), 6.78 (s, 2H), 5.61 (s, 1H), 4.30 (s, 2H), 4.24 (d, 2H, J = 

5.59 Hz), 2.93 (t, 2H, J = 7.90 Hz), 2.47 (t, 2H, J = 7.70 Hz). 
13

C NMR (100 MHz, CDCl3+DMSO-d6) δ 171.5, 171.0, 169.6, 170.2, 165.3, 151.2, 148.8, 144.6, 141.4, 

134.0, 128.5, 123.9, 123.0, 119.9, 94.0, 36.6, 34.8, 30.8, 24.8. 

HRMS (ESI) m/z calcd for C25H23N6O6 [M+H]
+
: 503.1674, found 503.1670. 
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MAB-6 (16): Compound 9 (0.075 g, 0.14 mmol) and DIPEA (24 µL, 0.14 mmol) were added to a 

solution of tethered 4-hydroxybenzylamine 12 (35 mg, 0.14 mmol) in N-methylpyrrolidinone (3.0 mL).  

The reaction mixture was stirred at room temperature overnight and quenched with TFA (11 µL) and 

diluted with EtOAc (50 mL).  To the mixture was added water (40 mL) and extracted with EtOAc (3 x 50 

mL), dried (Na2SO4), and evaporated.  The crude residue was purified by silica gel chromatography 

(CH2Cl2:MeOH 98:2 to CH2Cl2:MeOH:AcOH:H2O 90:10:0.1:0.1) to afford an orange solid (37.6 mg, 

43%). 

IR (film) vmax 3305.08, 2932.20, 2847.45, 2451.97, 2401.12, 1706.99, 1670.58, 1622.46, 1543.58, 

1509.77, 1428.06, 1247.75, 833.59, 695.54. 

UV (CH3CN) λmax, nm: 355. 
1
H NMR (400 MHz, CD3OD) δ 7.82 (d, 2H, J = 8.89 Hz), 7.75 (d, 2H, J = 8.35 Hz), 7.67 (d, 2H, J = 8.87 

Hz), 7.37 (t, 1H, J = 5.65 Hz), 7.30 (d, 2H, J = 8.37 Hz), 7.04 (d, 2H, J = 8.49 Hz), 6.83 (s, 2H), 6.72 (d, 

2H, J = 8.51 Hz), 4.32 (s, 2H), 4.21 (s, 2H), 3.09 (t, 2H, J = 6.87 Hz), 2.96 (t, 2H, J = 7.31 Hz), 2.47 (t, 

2H, J = 7.82 Hz), 2.10 (t, 2H, J = 7.35 Hz), 1.50-1.58 (m, 2H), 1.36-1.43 (m, 2H), 1.15-1.21 (m, 2H). 
13

C NMR (100 MHz, CHCl3+CD3OD) δ 172.3, 172.0, 170.5, 167.9, 155.9, 150.4, 143.5, 137.3, 133.9, 

128.9, 128.6, 124.0, 123.2, 123.0, 122.5, 120.0, 114.7, 42.6, 40.1, 39.3, 36.6, 35.7, 31.2, 29.1, 25.3, 25.1. 

LRMS (ESI) m/z calcd for C34H37N6O6 [M+H]
+
: 625.7, found 625.3. 

HRMS (ESI) m/z calcd for C34H36N6O6 [M‒H]
‒
: 623.2624, found 623.2618. 

 

 

MAB-0 (17): Compound 9 (0.05 g, 0.1 mmol) and 4-hydroxybenzylamine (12.2 mg, 0.1 mmol) were 

dissolved in anhydrous DMF (1 mL) and treated with triethylamine (42 µL, 0.3 mmol).  The reaction 

mixture was stirred overnight at room temperature.  The organic solvent was evaporated and the crude 

residue was purified by silica gel chromatography (CH2Cl2:MeOH 98:2 to CH2Cl2:MeOH:AcOH:H2O 

90:10:0.1:0.1) to afford an orange solid (7.6 mg, 60%). 

IR (film) vmax 3305.08, 3033.89, 2920.9, 1704.17, 1630.92, 1597.11, 1540.76, 1419.61, 1160.41, 844.86, 

689.91. 

UV (CH3CN) λmax, nm: 357. 
1
H NMR (400 MHz, CD3OD) δ 7.84 (d, 2H, J = 9.09 Hz), 7.75 (d, 2H, J = 8.34 Hz), 7.68 (d, 2H, J = 8.34 

Hz), 7.30 (d, 2H, J = 8.34 Hz), 6.97 (d, 2H, J = 8.59 Hz), 6.69 (d, 2H, J = 8.34 Hz), 4.36 (s, 2H), 4.22 (d, 

2H, J = 4.04 Hz), 2.99 (d, 2H, J = 7.33 Hz), 2.51 (d, 2H, J = 7.58 Hz). 
13

C NMR (100 MHz, CHCl3+CD3OD) δ 172.51, 170.28, 167.94, 155.80, 150.92, 143.79, 137.08, 134.23, 

128.79, 128.71, 124.28, 123.37, 123.26, 122.50, 119.98, 114.94, 42.6, 40.03, 37.39, 31.29. 

HRMS (ESI) m/z calcd for C26H26N5O5 [M+H]
+
: 512.1928, found 512.1856. 
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C. Supporting Materials and Methods 

C.1. Plasmid and virus preparation 

 Wild-type and mutant cDNAs 

The cDNAs of wild-type rat GABAAR α1 (in pGH19), β2 (in pGH19), and γ2S (in pUNIV) were 

obtained from Professor Cynthia Czajkowski (University of Wisconsin). The genes of α and β subunits 

were sub-cloned into vector pCDNA3.1 for expression in HEK293T cells. Mutants α1(K70C) and 

α1(D123C) (in pGH19) were obtained from Professor Cynthia Czajkowski. Other cysteine mutants were 

prepared by site-directed mutagenesis in the wild-type α1 clones (in pGH19 and pCDNA3.1 for 

expression in oocytes and HEK293T cells, respectively). Mutations were confirmed by sequencing. 

 Construction of pAAV-hSyn-eGFP-2A-myc-α1(T125C) 

This bi-cistronic construct was designed to express eGFP and GABAAR α1(T125C) in a 1:1 ratio 

using the 2A protein sequence (GSGATNFSLLKQAGDVEENPGP)
2
 and to restrict gene expression in 

neurons using a human synapsin promoter.
3
 The vector also contains terminal repeats (TR) and 

woodchuck hepatitis post-transcriptional regulatory element (WPRE) for packaging into the adeno-

associated virus (AAV). A myc epitope tag (EQKLISEEDL) was inserted into the N-terminus of 

α1(T125C) as previously described.
4
 The 2A-myc-α1(T125C) fragment was made with primers 5’-

TCGATCGGGCCCATGAAGAAAAGTCGGGG-3’ and 5’-

TCGATCAAGCTTCTATTGATGGGGTGTGGG-3’.  The PCR product was digested with ApaI and 

HindIII to obtain the insert fragment. The eGFP-2A fragment was made via PCR with primers 5’-

TCGATCGCTAGCGCTACCGGTCGCCACCATGGTGAGCAAGGGCGAGG-3’ and 5’-

TCGATCGGGCCCTGGGTTCTCCTCCACGTCTCCAGCCTGCTTGAGCAGGGAGAAGTTTGTAG

CGCCAGATCCCTTGTACAGCTCGTCCATGC-3’ followed by digestion with ApaI and NheI. The 

pAAV vector backbone was digested with NheI and HindIII and then ligated with the 2A-myc-α1(T125C) 

and eGFP-2A fragments. The final construct was confirmed by sequencing. 

 Preparation of Adeno Associated Virus (AAV) 

AAV9 encoding GFP-2A-myc-α1(T125C) was produced from transfected HEK293T cells as 

described previously.
5
 After ultracentrifugation, the interphase between the 54% and 40% iodixanol 

fraction, and the lower three-quarters of the 40% iodixanol fraction were extracted and diluted with an 

equal volume of phosphate-buffered saline (PBS) plus 0.001% Tween 20. This fraction was then buffer 

exchanged and concentrated with Amicon Ultra-15 Centrifugal Filter Units to a final volume of ~100 µL. 

Virus was then titered for DNase-resistant vector genomes by Real-Time qPCR relative to WPRE 

standards. The resulting titer was 7.5 × 10
12

 vg∙mL
-1

. 
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C.2. Electrophysiology 

 Two-electrode voltage-clamp 

Each oocyte was placed in a 0.2-mL perfusion chamber, impaled with two glass microelectrodes (1–

2.5 MΩ resistance) filled with 3 M KCl, and voltage clamped (at –80 mV) with an OC-725C amplifier 

(Warner Instruments) in OR1 solution containing (in mM): 96 NaCl, 2 KCl, 1.8 CaCl2, 1 MgCl2, and 5 

HEPES; pH 7.4. Drug perfusion, data acquisition, and analysis were carried out with Clampex software 

through a Digidata 1200 interface (Molecular Devices). Light switching was carried out by a Lambda 

DG-4 (Sutter Instruments) using 383 nm and 497 nm filters. 

 Whole-cell voltage-clamp (HEK293T cells) 

Recordings were carried out at room temperature using pipettes with 2.5–4 MΩ resistance. Cells were 

held at –70 mV. Pipettes were pulled from filamented borosilicate pipettes (G150TF-3, Sutter 

Instruments). The extracellular solution contained (in mM): 140 NaCl, 5 KCl, 1 MgCl2, 10 HEPES, 2 

CaCl2, and 10 glucose; pH 7.4. The intracellular solution contained (in mM): 140 CsCl, 4 NaCl, 10 

HEPES, 2 MgCl2, 2 Mg-ATP, and 10 EGTA; pH 7.2. Signals were amplified using a Patch Clamp PC-

501A amplifier (Warner Instruments), low-pass filtered at 2 kHz, digitized at 10 kHz by a Digidata 

1322A converter (Molecular Devices), and acquired with software Clampex 10 (Molecular Devices). 

Illumination for PTL photoisomerization was provided by a Lambda-LS xenon lamp (Sutter Instruments) 

with 379 ± 17 nm and 500 ± 8 nm band pass filters. 

The dose-response curves in Figure 2c were fitted by Hill Equation: I/Imax = 1/(1 +  (EC50/[GABA])
n
), 

where I represents the current amplitude elicited by the given [GABA], Imax represents the saturating 

response, EC50 is the [GABA] producing the half maximal response, and n is the Hill coefficient. MAB-0 

conjugation did not alter the Hill coefficient when the conjugated receptor was in the “uninhibited” state 

(0.94 ± 0.22 in 380 nm; 1.04 ± 0.18 for the wild-type; 4 and 3 cells, respectively). However, we observed 

a reduced Hill coefficient for the conjugated receptor in 500-nm light (0.65 ± 0.07; 4 cells), possibly due 

to the heterogeneity in receptor antagonism caused by incomplete PTL conjugation. 

 Whole-cell voltage-clamp (dissociated hippocampal neurons) 

Recordings were performed at room temperature using the same pipette and instrument settings as 

those for HEK293T recordings. To record miniature IPSCs, cells were held at –60 mV. The extracellular 

solution contained (in mM): 138 NaCl, 1.5 KCl, 1.2 MgCl2, 2.5 CaCl2, 5 HEPES, 10 Glucose, 0.025 

DNQX, 0.05 APV, and 0.0005 TTX; pH 7.4.  The internal solution contained (in mM): 140 CsCl, 4 NaCl, 

2 MgCl2, 10 HEPES, 10 EGTA, and 2 Mg-ATP; pH 7.2.   To record miniature EPSCs, cells were held 

at –70 mV. The extracellular solution contained (in mM): 138 NaCl, 1.5 KCl, 1.2 MgCl2, 2.5 CaCl2, 5 

HEPES, 10 Glucose, 0.001 TTX, and 0.02 bicuculline; pH 7.4. The intracellular solution contained (in 

mM): 8 NaCl, 135 K-gluconate, 4 MgCl2, 10 HEPES, 2 Mg-ATP, and 1 EGTA; pH 7.4. All miniature 

events were analyzed using the MiniAnalysis software (Synaptosoft). The event detection threshold was 

set at 5 fold of the root-mean-square noise level, which typically was 2–5 pA. The detected events were 

further visually verified prior to statistical analysis. For each light condition, a total of 50‒380 events 

were pooled for analysis. 

The extracellular solution for recording voltage-gated currents contained (in mM): 138 NaCl, 1.5 KCl, 

1.2 MgCl2, 2.5 CaCl2, 5 HEPES, 10 Glucose, 0.02 biccuculine, 0.025 DNQX, and 0.05 APV; pH 7.4. The 

intracellular solution contained (in mM): 10 NaCl, 135 K-gluconate, 2 MgCl2, 10 HEPES, 1 EGTA, and 2 

Mg-ATP; pH 7.4. Cells were held at –70 mV and stepped for 200 ms to –10 mV (Na
+
 channels) or +40 

mV (K
+
 channels). 
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 Whole-cell recordings (hippocampal slices) 

Slices were placed in a recording chamber mounted on an Olympus BX51WI microscope and 

perfused with ACSF at RT at 1–2 ml/min.  ACSF contained (in mM): 126 NaCl, 2.5 KCl, 1.25 NaH2PO4, 

10 Glucose, 1.3 MgCl2, 26 NaHCO3 and 2.5 CaCl2 and was equilibrated with 95% O2 + 5% CO2. 500-nm 

(2.8 mW/cm
2
) and 380-nm (2.0 mW/cm

2
) light was delivered through the microscope optical port by a 

Polychrome monochromator (Till Photonics) controlled by software pClamp (Molecular Devices). 

Whole-cell current clamp recordings (for Figure 4d) were made from GFP positive CA1 pyramidal 

cells with glass microelectrodes (pipette resistance = 4–7 MΩ) filled with internal solution containing (in 

mM): 116 K-gluconate, 20 HEPES, 6 KCl, 2 NaCl, 0.5 EGTA, 4 ATP-Mg, 0.3 GTP-Na. Internal 

solutions were adjusted to ~ 7.2 pH, ~290 mOsm. A glass stimulating electrode filled with ACSF was 

placed in stratum radiatum 300–500 µm away from the recorded cell. Synaptic responses were evoked by 

a 0.2 ms, 10–100 µA current pulse delivered via a stimulus isolation unit (AMPI). Signals were amplified 

(Axopatch, Molecular Devices), digitized (Digidata, Molecular Devices) and recorded (pClamp, 

Molecular Devices) to computer. Neuron firing was triggered by depolarizing the postsynaptic cell 

through current injection and delivering 5 presynaptic stimuli at 200 Hz. 

For control experiments verifying a lack of MAB-0 effects on native glutamate receptors, 

postsynaptic responses were recorded in voltage-clamp mode with an internal solution containing (in 

mM): 108 Cs-gluconate, 20 HEPES, 2.8 NaCl, 5 TEA-Cl, 0.4 EGTA, 4 ATP-Mg and 0.3 GTP-Na. 

Picrotoxin (100 µM) was included in the ACSF. AMPAR mediated responses were recorded at ‒70 mV 

holding potential and quantified as the peak negative evoked current. NMDAR responses were recorded 

at +40 mV holding potential and quantified as the positive current amplitude 100 ms post-stimulus. 

 

C.3. Molecular Modeling 

Docking of trans and cis MAB-0 was carried out in GLIDE,
6
 a docking program implemented in 

Maestro (Shrödinger Inc.). A dimer of α1 and β2 was prepared from a previously published homology 

model for the GABAAR.
7
 Thr125 of the α1 subunit was replaced by a cysteine residue, and a receptor grid 

was created based on the mutant dimer. Trans MAB-0 was docked in this grid using the Standard 

Precision algorithm. To mimic MAB-0 tethering, a positional constraint was applied during docking. This 

constraint enforced at least one of the reactive maleimide carbons (of MAB-0) to locate within 4.5 Ǻ from 

the side-chain methylene carbon (of α1C125). A maximum of 100 poses were listed. The docking poses 

were further inspected visually to remove unreasonable results (for instance, poses with maleimide group 

pointing away from the cysteine sulfhydryl group were excluded). 

All of the docking poses for trans MAB-0 insert the azobenzene moiety in the α-β interface. The 

predominant docking mode of trans MAB-0 is shown in Figure 2b, in which the terminal phenol group of 

trans MAB-0 reaches deeply into the GABA-binding pocket (surrounded by the “aromatic box” shown in 

yellow sticks). Docking of cis MAB-0 in the same grid was also performed, but the resulting poses were 

few and diversely oriented, more likely representing non-specific interactions of cis MAB-0 with the 

receptor. The majority of the cis poses place the terminal phenol group outside of the aromatic box, 

consistent with the observed lack of receptor inhibition in 380 nm (Figure 2c). 
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