Supplemental section

Novel 3,5-bis(arylidene)-4-oxo-1-piperidinyl dimers: structure-activity relationships and potent antileukemic and antilymphoma cytotoxicity

Yahaira Santiago-Vazquez^a, Swagatika Das^b, Umashankar Das^{b,*}, Elisa Robles-Escajeda^a, Nora M. Ortega^a, Carolina Lema^a, Armando Varela-Ram rez^a, Renato J. Aguilera,^{a,*} Jan Balzarini^c, Erik De Clercq^c, Stephen G. Dimmock^d, Dennis K.J. Gorecki^a, Jonathan R. Dimmock^a

^a Cytometry, Screening and Imaging Facility, Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-0519, USA

^bDrug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada

^c Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium

^d Department of Finance, Nanyang Technological University, Singapore 639798, Singapore

Characterization of 3,5-bis(arylidene)-4-piperidone dimers (3a-i, 4a-i and 5)

Melting points were determined on a Gallenkamp instrument and are uncorrected. ¹H and ¹³C NMR were recorded using a Bruker Avance 500 MHz spectrometer equipped with a 5mm BBO probe. Chemical shifts (δ) are reported in ppm. Elemental analyses were undertaken using an Elementer CHNS analyzer. The ¹H and ¹³C NMR spectra of three representative compounds (one from each series) namely **3e**, **4e** and **5** are presented.

1,2-bis[3,5-bis(Benzylidene)-4-oxo-piperidin-1-yl]ethane-1,2-dione $(3a)^1$

Yield: 62%; mp (chloroform/methanol) 246 °C; ¹H NMR(500 MHz, DMSO-d₆): δ 7.72(s, 2H, 2×=CH), 7.56 (s, 2H, 2×=CH), 7.53(t, 4H, Ar-H), 7.49(d, J=7.07 Hz, 2H, Ar-H), 7.45(m, 6H, Ar-H), 7.39(m, 8H, Ar-H), 4.48(d, J=23.28Hz, 8H, 4×NCH₂; ¹³C NMR (125MHz, DMSO-d₆):184.7, 162.6, 137.9, 137.5, 134.4, 134.1, 131.4, 131.0, 130.9, 130.7, 130.2, 130.1, 129.3, 129.2, 46.4, 41.6,; MS (ESI) m/z: 627 (M+Na)⁺. Anal.calcd for C₄₀H₃₂N₂O₄.H₂O: C 77.17; H 5.14; N 4.50, found: C 77.05; H 4.87; N 4.42.

1,2-bis[3,5-bis(4-Fluorobenzylidene)-4-oxo-piperidin-1-yl]ethane-1,2-dione $(\mathbf{3b})^2$

Yield: 67%; mp (chloroform/methanol) 253 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.73(s, 2H, 2×=CH), 7.57 (s, 2H, 2×=CH), 7.37(q, 4H, Ar-H), 7.25 (q, 4H, Ar-H), 7.18 (t, 4H, Ar-H), 7.098(t, 4H, Ar-H), 4.63 (s, 4H, 2×NCH₂), 4.51 (s, 4H, 2×NCH₂). Anal.calcd for C₄₁H₂₆Cl₈N₂O₄.H₂O: C 53.93; H 3.09; N 3.07 %, found: C 53.84; H 2.98; N 2.74%.

1,2-bis[3,5-bis(4-Chlorobenzylidene)-4-oxo-piperidin-1-yl]ethane-1,2-dione $(3c)^2$

Yield: 61%; mp (methanol) 289 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.72(s, 2H, 2×=CH), 7.54 (s, 2H, 2×=CH), 7.46 (d, J=8.40 Hz, 2H, Ar-H), 7.37(d, J=8.37 Hz, 2H, Ar-H), 7.31(d, J=8.42 Hz, 4H, Ar-H), 7.20(d, J=8.38 Hz, 4H, Ar-H), 4.62 (s, 4H, 2×NCH₂), 4.52 (s, 4H, 2×NCH₂). Anal.calcd for C₄₀H₂₈Cl₄N₂O₄.3 H₂O: C 60.26; H 3.54; N 3.51 %, found: C 60.35; H 3.70; N 3.15%.

1,2-bis[3,5-bis(3,4-Dichlorobenzylidene)-4-oxo-piperidin-1-yl]ethane-1,2-dione $(3d)^2$

Yield: 64%; mp (chloroform/methanol) 271 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.68 (s, 2H, 2×=CH), 7.55 (s, 1H, =CH), 7.53 (s, 1H, =CH), 7.46 (d, J=8.15 Hz, 6H, Ar-H), 7.41(d, J=1.71

Hz, 2H, Ar-H), 7.20 (dd, J=1.67Hz, J=1.71Hz, 2H, Ar-H), 7.05 (dd, J=1.71 Hz, J=1.77 Hz, 2H, Ar-H), 4.67 (s, 4H, 2×NCH₂), 4.56 (s, 4H, 2×NCH₂). Anal.calcd for C₄₀H₂₄Cl₈N₂O₄: C 54.58; H 2.75; N 3.18 %, found: C 54.52; H 2.90; N 2.95 %.

1,2-bis[3,5-bis(4-Methylbenzylidene)-4-oxo-piperidin-1-yl]ethane-1,2-dione (3e)²

Yield: 53%; mp (chloroform/methanol) 275 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.79(s, 2H, 2x=CH), 7.65 (s, 2H, 2x=CH), 7.29 (d, J=7.70 Hz, 8H, Ar-H), 7.18(q, 8H, Ar-H), 4.53 (d, J=15.61 Hz, 8H, 4×NCH₂), 2.44 (s, 6H, 2×CH₃), 2.28 (s, 6H, 2×CH₃). ¹³C NMR (125 MHz, CDCl₃): δ 185.04(<u>CO</u>), 162.73(<u>CON</u>), 140.31(C=<u>C</u>-Ph), 140.22(C=<u>C</u>-Ph), 139.15(<u>C</u>=C-Ph), 138.29(<u>C</u>=C-Ph), 131.57(Ar-C),131.07(Ar-C), 130.67(Ar-C), 130.33(Ar-C), 129.72(Ar-C), 129.62(Ar-C), 129.46(Ar-C), 129.00(Ar-C), 46.07(<u>C</u>H₂NCO), 42.05(<u>C</u>H₂NCO), 21.53(<u>C</u>H₃), 21.43(<u>C</u>H₃). Anal.calcd for C₄₄H₄₀N₂O₄.1.5 H₂O: C 76.76; H 6.30; N 4.07 %, found: C 76.46; H 6.39; N 3.93%.

1,2-bis[3,5-bis(3,4-Dimethoxybenzylidene)-4-oxo-piperidin-1-yl]ethane-1,2-dione $(3f)^2$

Yield: 60%; mp (chloroform/methanol) 282 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.71(s, 2H, 2×=CH), 7.42 (s, 2H, 2×=CH), 6.99 (d, J=8.47 Hz, 4H, Ar-H), 6.94(d, J=8.08 Hz, 2H, Ar-H), 6.80(m, 6H, Ar-H), 4.70 (s, 4H, 2×NCH₂), 4.64 (s, 4H, 2×NCH₂), 4.00 (s, 6H, 2×OCH₃), 3.96 (d, 12H, 4×OCH₃), 3.74 (s, 6H, 2×OCH₃). Anal.calcd for C₄₈H₄₈N₂O₁₂.H₂O: C 66.75; H 5.84; N 3.24 %, found: C 66.31; H 5.62; N 3.06%.

1,2-bis[3,5-bis(3,4,5-Trimethoxybenzylidene)-4-oxo-piperidin-1-yl]ethane-1,2-dione $(3g)^2$

Yield: 57%; mp (ethanol) 273 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.63(s, 2H, 2×=CH), 7.44 (s, 2H, 2×=CH), 6.66 (s, 4H, Ar-H), 6.49 (s, 4H, Ar-H), 4.75 (s, 4H, 4×NCH₂), 4.68 (s, 4H, 4×NCH₂), 3.96 (s, 12H, 4×OCH₃), 3.94 (s, 9H, 3×OCH₃), 3.88 (s, 9H, 3×OCH₃), 3.84 (s, 6H, 2×OCH₃). Anal.calcd for C₅₂H₅₆N₂O₁₆ : C 64.72; H 5.85; N 2.90 %, found: C 64.95; H 6.16; N 2.78%.

1,2-bis[3,5-bis(4-Methoxybenzylidene)-4-oxo-piperidin-1-yl]ethane-1,2-dione ($\mathbf{3h}$)²

Yield: 71%; mp (chloroform/methanol) >300 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.74(s, 2H, 2×=CH), 7.58 (s, 2H, 2×=CH), 7.35 (d, J=8.65 Hz, 4H, Ar-H), 7.22 (d, J=8.63 Hz, 4H, Ar-H),

6.98 (d, J=8.71 Hz, 4H, Ar-H), 6.91 (d, J=8.67 Hz, 4H, Ar-H), 4.60 (s, 4H, 2×NCH₂), 4.53 (s, 4H, 2×NCH₂), 3.90 (s, 6H, 2×OCH₃), 3.76 (s, 6H, 2×OCH₃). Anal.calcd for C₄₄H₄₀N₂O₈ : C 72.91; H 5.56; N 3.86 %, found: C 72.57; H 5.94; N 3.75%.

1,2-bis[3,5-bis $\{4-(N,N-Dimethylamino)$ benzylidene $\}$ -4-oxo-piperidin-1-yl]ethane-1,2-dione $(3i)^2$

Yield: 46%; mp (chloroform/methanol) >300 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.75(s, 2H, 2×=CH), 7.65 (s, 2H, 2×=CH), 7.33 (d, J=8.75 Hz, 4H, Ar-H), 7.21(d, J=8.71 Hz, 4H, Ar-H), 6.73 (d, J=16.93 Hz, 8H, Ar-H), 4.58 (s, 4H, 2×NCH₂), 4.54 (s, 4H, 2×NCH₂), 3.08 (s, 12H, 4×NCH₃), 2.95 (s, 12H, 4×NCH₃). Anal.calcd for C₄₄H₄₀N₂O₄.1.5 H₂O: C 76.76; H 6.30; N 4.07 %, found: C 76.46; H 6.39; N 3.93%.

1,3-bis-[3,5-bis(Benzylidene)-4-oxo-piperidin-1yl]propane-1,3-dione (4a)¹

Yield: 65%; mp (acetone) 201 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 7.72(s, 2H, 2×=CH), 7.57(s, 2H, 2×=CH), 7.53(d, J=4.18Hz, 8H, Ar-H), 7.47 (m, 12H, Ar-H), 4.62(d, J=21.13Hz, 8H, 4×NCH₂), 3.46(s, 2H, CH₂); ¹³C NMR (125MHz, DMSO-d₆):186.3, 165.9,136.6, 136.5, 134.7, 134.5, 132.6, 132.5, 131.0, 130.9, 130.1, 130.0, 129.3, 129.2, 47.0, 42.4; MS (ESI) m/z: 641 (M+Na)⁺ Anal.calcd for C₄₁H₃₄N₂O₄.H₂O: C 77.27; H 5.65; N 4.39, found: C 77.31; H 5.50; N 4.47.

1,3-bis-[3,5-bis(4-Fluorobenzylidene)-4-oxo-piperidin-1yl]propane-1,3-dione (**4b**)²

Yield: 56%; mp (chloroform/methanol) >300 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.81 (s, 2H, 2×=CH), 7.75 (s, 2H, 2×=CH), 7.49(q, 4H, Ar-H), 7.33 (q, 4H, Ar-H), 7.18 (t, 4H, Ar-H), 7.12 (t, 4H, Ar-H), 4.84 (s, 4H, 2×NCH₂), 4.79 (s, 4H, 2×NCH₂), 3.22 (s, 2H, CH₂). Anal.calcd for C₄₁H₃₀F₄N₂O₄.H₂O: C 69.42; H 4.27; N 3.95 %, found: C 69.58; H 4.30; N 3.71%.

1,3-bis-[3,5-bis(4-Chlorobenzylidene)-4-oxo-piperidin-1yl]propane-1,3-dione $(4c)^2$

Yield: 58%; mp (chloroform/methanol) 260 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 7.64 (s, 2H, 2×=CH), 7.60 (s, 2H, 2×=CH), 7.57 (d, J=11.46 Hz, 4H, Ar-H), 7.54 (d, J=7.60 Hz, 4H, Ar-H), 7.49 (q, 8H, Ar-H), 4.62 (d, 8H, J=10.15 Hz, 4×NCH₂), 3.51 (s, 2H, CH₂). Anal.calcd for C₄₁H₃₀Cl₄N₂O₄.2.5 H₂O: C 61.38; H 3.77; N 3.49 %, found: C 61.10; H 3.69; N 3.30%.

1,3-bis-[3,5-bis(3,4-Dichlorobenzylidene)-4-oxo-piperidin-1yl]propane-1,3-dione $(4d)^2$

Yield: 65%; mp (chloroform/methanol) 236 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.71 (s, 2H, 2×=CH), 7.63 (s, 2H, 2×=CH), 7.56 (q, 8H, Ar-H), 7.51 (d, J=8.29 Hz, 2H, Ar-H), 7.30 (d, J=1.45 Hz, 2H, Ar-H), 7.31 (dd, J=1.45 Hz, J=1.53 Hz, Ar-H), 7.15 (dd, J=1.48 Hz, 2H, Ar-H), 4.78 (d, 8H, J=6.72 Hz, 4×NCH₂), 3.30 (s, 2H, CH₂). Anal.calcd for C₄₁H₂₆Cl₈N₂O₄. H₂O: C 53.93; H 3.09; N 3.07 %, found: C 53.84; H 2.98; N 2.74%.

1,3-bis-[3,5-bis(4-Methylbenzylidene)-4-oxo-piperidin-1yl]propane-1,3-dione (4e)²

Yield: 43%; mp (chloroform/methanol) 251 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.81 (s, 2H, 2×=CH), 7.74 (s, 2H, 2×=CH), 7.40 (d, J=7.90 Hz, 4H, Ar-H), 7.27 (d, J=7.60 Hz, 4H, Ar-H), 7.21(q, 8H, Ar-H), 4.89 (s, 4H, 2×NCH₂), 4.65 (s, 4H, 2×NCH₂), 3.15 (s, 2H, CH₂), 2.43 (s, 6H, 2×CH₃), 2.41(s, 6H, 2×CH₃). ¹³C NMR (125MHz, CDCl₃): δ 186.39(<u>C</u>O), 165.30(<u>C</u>ON), 140.31(C=<u>C</u>-Ph), 140.17(C=<u>C</u>-Ph), 138.62(<u>C</u>=C-Ph), 137.34(<u>C</u>=C-Ph), 131.86(Ar-C), 131.39(Ar-C), 130.88(Ar-C), 130.53(Ar-C), 130.45(Ar-C), 130.39(Ar-C), 130.33(Ar-C), 129.68(Ar-C), 129.61(Ar-C), 128.77(Ar-C), 46.79(<u>C</u>H₂NCO), 43.85(<u>C</u>H₂NCO), 40.54 (COCH₂CO), 21.53(<u>C</u>H₃). Anal.calcd for C₄₅H₄₂N₂O₄.H₂O: C 77.94; H 6.40; N 4.04 %, found: C 77.94; H 6.63; N 3.98%.

1,3-bis-[3,5-bis(3,4-Dimethoxybenzylidene)-4-oxo-piperidin-1yl]propane-1,3-dione $(4f)^2$

Yield: 65 %; mp (chloroform/methanol) >300 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 7.86 (s, 4H, 4×=CH), 7.17 (s, 4H, Ar-H), 7.13 (s, 8H, Ar-H), 4.54 (s, 8H, 4×NCH₂), 3.84 (d, J=7.27 Hz, 24H, 8×OCH₃), 3.48 (s, 2H, CH₂). Anal.calcd for C₄₉H₅₀N₂O₁₂.7 H₂O: C 59.69; H 6.54; N 2.84 %, found: C 59.82; H 6.18; N 2.71%.

1,3-bis-[3,5-bis(3,4,5-Trimethoxybenzylidene)-4-oxo-piperidin-1yl]propane-1,3-dione $(4g)^2$

Yield: 53%; mp (chloroform/methanol) 115 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.78 (s, 2H, 2×=CH), 7.74 (s, 2H, 2×=CH), 6.72 (s, 4H, Ar-H), 6.58 (s, 4H, Ar-H), 4.96 (s, 4H, 2×NCH₂), 4.90 (s, 4H, 2×NCH₂), 3.92 (d, J=15.37 Hz, 30H, 10×OCH₃), 3.86 (s, 6H, 2×OCH₃), 3.37 (s, 2H, CH₂). Anal.calcd for C₅₃H₅₈N₂O₁₆.H₂O: C 63.83; H 6.07; N 2.81 %, found: C 63.84; H 6.27; N 2.51%.

1,3-bis-[3,5-bis(4-Methoxybenzylidene)-4-oxo-piperidin-1yl]propane-1,3-dione (**4h**)²

Yield: 61%; mp (chloroform/methanol) 245 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.80 (s, 2H, 2×=CH), 7.73 (s, 2H, 2×=CH), 7.48 (d, J=8.6 Hz, 4H, Ar-H), 7.29 (d, J=10.17 Hz, 2H, Ar-H), 6.98 (d, J=8.49 Hz, 4H, Ar-H), 4.85(s, 4H, 2×NCH₂), 4.72 (s, 4H, 2×NCH₂), 3.88 (d, J=7.72 Hz, 12H, 4×OCH₃), 3.22 (s, 2H, CH₂). Anal.calcd for C₄₅H₄₂N₂O₈.4 H₂O: C 66.59; H 5.22; N 3.45 %, found: C 66.68; H 5.38; N 3.27%.

1,3-bis-[3,5-bis(4-Hydroxybenzylidene)-4-oxo-piperidin-1yl]propane-1,3-dione (**4i**)²

Yield: 56%; mp (chloroform/ethanol) >300 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 7.64 (s, 2H, 2×=CH), 7.60 (s, 2H, 2×=CH), 7.57 (d, J=11.46 Hz, 4H, Ar-H), 7.54 (d, J=7.60 Hz, 4H, Ar-H), 7.49 (q, 8H, Ar-H), 4.62 (d, 8H, J=10.15 Hz, 4×NCH₂), 3.51 (s, 2H, CH₂). Anal.calcd for C₄₁H₃₄N₂O₈.4.5 H₂O: C 64.46; H 5.68; N 3.67 %, found: C 64.59; H 5.31; N 3.59%.

1,3-bis-[3,5-bis(benzylidene)-4-oxo-piperidin-1yl]propane (**5**)²

Yield: 63 %; mp (acetone) 135 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.81(s, 4H, 4×=CH), 7.39 (m, 20H, Ar-H), 3.78 (s, 8H, 4×NCH₂), 2.54 (t, 4H, 2×CH₂), 1.60 (p, 2H, CH₂). ¹³C NMR (125 MHz, CDCl₃): δ 187.34 (<u>CO</u>), 136.57 (C=<u>C</u>-Ph), 135.20 (C=<u>C</u>-Ph), 133.11 (<u>C</u>=C-Ph), 130.40 (Ar-C), 129.05 (Ar-C), 128.60(Ar-C), 55.38 (N<u>C</u>H₂CH₂), 54.97 (N<u>C</u>H₂-piperidone), 25.91 (<u>C</u>H₂). Anal.calcd for C₄₁H₃₈N₂O₂: C 83.36; H 6.48; N 4.74 %, found: C 83.74; H 6.79; N 5.05%.

¹H and ¹³C NMR spectra for representative compounds from the series 3-5

¹³C NMR

¹³C NMR

Kendall's coefficient of concordance

The equation used to obtain the coefficient of concordance is derived as follows. In this case the cytotoxin *i* is given the rank r_{ij} where *j* is the cell line, and there are *N* cytotoxins and *M* cell lines. Thus the total rank *R* given to cytotoxin *i* is $R_i = \sum_{j=1}^{M} r_{i,j}$, and the mean value of these ranks is $\overline{R} = \frac{1}{2}m(n+1)$.

The sum of the squared deviations, (S), is defined as: $\sum_{i}^{N} (R_i - \overline{R})^2$.

Kendall's coefficient of concordance (W) is: $W = \frac{12S}{M^2(N^3 - N)}$...(1) If all the cell lines produce identical rankings, then W is 1. If there is no agreement, then W is 0.

When two or more compounds have the potencies (i.e., there are ties in the rankings), then equation 1 will understate the degree of concordance and must be adjusted. The correction factor (T_j) is defined as $T_j = \sum_{t=1}^{g_j} (t_t^3 - t_i)$, in which ti is the number of tied ranks in the ith group of tied ranks (the number of cases of equal potency at a specific IC₅₀ value) and g_j is the number of tie values. If there are no tied ranks for cell line *j* then this will be 0. Using this correction for ties, Kendall's coefficient of concordance as: $W = \frac{12 \sum_{i=1}^{N} (R_i^2) - 3M^2 N (N+1)^2}{M^2 N (N^2-1) - M \sum_{i=1}^{M} (T_j)} \dots (2)$

	% dead cells											
Compound	Jurkat	CEM	SUP-T	HUT-102	Molt-3	EL-4	Nalm-6	Raji	Ramos	BJAB	YT	Average
3b	87.8	85.3	35.6	64.4	3.1	34.7	61.6	33.5	53.3	61.8	17.1	48.9
3c	78.5	59.9	18.1	31.4	0.4	52.5	59.0	35.7	82.9	43.1	21.5	43.9
3e	80.7	68.4	18.8	13.9	0.8	43.5	59.5	41.5	84.4	41.5	20.1	43.0
3f	84.8	88.1	33.0	50.9	31.8	46.5	60.7	56.3	87.4	62.8	39.2	58.3
3g	78.7	84.1	38.2	50.5	30.3	33.8	67.6	55.7	65.1	60.9	13.0	52.5
3h	72.0	71.9	15.2	6.7	49.6	71.7	62.6	69.1	53.7	45.8	5.8	47.7
4b	87.1	92.4	24.9	58.5	2.6	47.7	51.9	35.3	78.6	61.2	19.2	50.9
4c	85.3	83.0	21.1	20.4	20.6	55.4	68.6	32.7	86.3	49.9	16.8	49.1
4e	85.5	85.7	23.6	50.9	21.3	66.9	67.6	46.5	83.0	60.2	29.1	56.4
4f	83.9	77.6	31.0	51.6	2.6	43.7	63.9	50.8	88.6	61.0	32.3	53.4
5	76.3	64.5	21.2	10.0	27.4	65.3	49.2	31.9	82.1	39.4	6.6	43.1
Average	81.9	78.3	25.5	37.2	17.3	51.1	61.1	44.5	76.9	53.4	20.1	49.8

Table 1. Evaluation of 3b,c,e-h, 4b,c,e,f and 5 against various lymphoma and leukemic cell lines^a

^aA concentration of 1 μ M of each compound was incubated with different cell lines for 24 h at 37° C. The figures of the percentage of dead cells are the average of three independent experiments.

	% dead cells										
Compound	MCF-7	MDA231	HCC70	Average	MCF10A	DU145	22rv1	LAPC4	Average	Hs-27	
3b	16.2	5.5	6.6	9.43	7.7	15.2	30.1	11.3	18.9	0.6	
3c	17.8	10.0	8.4	12.1	2.2	33.1	13.6	27.0	24.6	0.0	
3e	0.0	9.3	11.9	7.07	9.3	26.0	16.2	2.4	14.9	12.0	
3f	17.7	4.6	3.9	8.73	5.8	45.7	38.2	35.4	39.8	10.2	
3g	43.2	4.7	7.3	18.4	7.6	41.3	3.4	9.7	18.1	15.4	
3h	16.2	0.6	14.7	10.5	9.9	11.4	0.0	1.9	4.43	0.6	
4b	0.2	0.4	3.1	1.23	7.0	38.4	18.8	11.1	22.8	0.3	
4c	19.5	32.7	7.8	20.0	3.1	40.3	1.7	1.0	14.3	5.7	
4e	19.1	8.6	10.1	12.6	15.4	21.9	6.3	7.0	11.7	26.5	
4f	23.0	1.8	2.1	8.97	6.1	67.4	2.0	20.6	30.0	6.4	
5	43.5	20.1	4.3	22.6	19.4	19.4	1.7	5.7	8.93	2.9	
Average	19.7	8.94	7.29	11.9	8.50	32.7	12.0	12.1	19.7	7.33	

Table 2. Evaluation of 3b,c,e-h, 4b,c,e,f and 5 against some breast and prostate cancer cells and nonmalignant cells^a

^a A concentration of 1 μ M of each compound was incubated with different cell lines for 24 h at 37° C. The figures of the percentage of dead cells are the average of three independent experiments.

References

- 1. S. Das, U. Das, A. Varela-Ramírez, C. Lema, R. J. Aguilera, J. Balzarini, E. De Clercq, S. G. Dimmock, D. K. J. Gorecki, J. R. Dimmock, ChemMedChem 6 (2011) 1892-1899.
- 2. S. Das, U. Das, D. Michel, D. K. J. Goreki, J. R. Dimmock, Eur. J. Med. Chem. 64 (2013) 321-328.