
Appendix 4 (as supplied by the authors): Meta-analyses for randomized controlled trials (RCTs) with continuous outcomes, without randomization of potential participants as "insiders" (participating in the RCT) v. "outsiders" (not participating in the RCT); subgroups are based on effectiveness of trial treatment. Negative values indicate that being an "insider" is favoured. CI = confidence interval, SD = standard deviation. For reference details, see the reference list in the main article.

Appendix to: Fernandes N, Bryant D, Griffith L, et al. Outcomes for patients with the same disease treated inside and outside of randomized trials: a systematic review and meta-analysis. *CMAJ* 2014. DOI:10.1503/cmaj.131693. Copyright © 2014 Canadian Medical Association or its licensors

Appendix 4 (continued)

	F	Cohort				Std. Mean Difference		Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
2.2.5 Trial treatment i	neffective								
Andersson 2003	3.6625	4.100775	24	1.6	1.1	8	0.7%	0.55 [-0.26, 1.37]	
Bain 2001	1.251111	1.384769	36	1.030968	1.346802	62	1.8%	0.16 [-0.25, 0.57]	
Bedi 2000	14.98824	10.76794	85	14.26341	9.605447	164	2.5%	0.07 [-0.19, 0.33]	+
Boezaart 1998	0.233333	0.512723	240	0.4	0.84	136	2.8%	-0.26 [-0.47, -0.04]	
Dalal 2007	-5.63	1.114	84	-5.58	1.117	100	2.4%	-0.04 [-0.33, 0.25]	-
Ekstein 2002	-1.25	2.929423	1202	-1.5	0.647	91	2.8%	0.09 [-0.12, 0.30]	+
Emery 2003	34.07976	9.408757	168	36.70408	11.73033	49	2.2%	-0.26 [-0.58, 0.06]	
Euler 2005	8.886207	1.264871	58	8.6	1.65	14	1.2%	0.21 [-0.37, 0.80]	
Heuss 2004	2.389189	2.368924	74	2.9	2.6	40	1.9%	-0.21 [-0.59, 0.18]	
Hoh 1998	1.128974	0.306798	39	0.9	0.25	13	1.1%	0.77 [0.12, 1.41]	
Howard 2009	-51	16.69	28	-50.32	11.23	44	1.6%	-0.05 [-0.52, 0.42]	
Jena 2008	4.88549427	5.6436	2792	4.83	5.83	10410	3.4%	0.01 [-0.03, 0.05]	t
King 2000	11.76315	10.21488	165	13.98491	10.17274	106	2.6%	-0.22 [-0.46, 0.03]	
McKay 1995	4.775	7.538208	40	5.237375	8.085113	80	1.9%	-0.06 [-0.44, 0.32]	
McKay 1998	1.762574	4.08093	101	1.627647	3.577174	51	2.1%	0.03 [-0.30, 0.37]	
Palmon 1996	38	7.889544	50	41	6.3	10	1.0%	-0.39 [-1.07, 0.30]	
Reddihough 1998	-30.51	16.11481	22	-42.38	21	19	1.1%	0.63 [-0.00, 1.26]	
Salisbury 2002	6.147036	0.889639	253	6.2	0.96	129	2.8%	-0.06 [-0.27, 0.15]	-
Smuts 2003	-2.69	1.204161	37	-2.57	1.04	16	1.2%	-0.10 [-0.69, 0.48]	
Stecksen-blicks 2008	5.15913	5.423801	115	4.4	4.6	64	2.3%	0.15 [-0.16, 0.45]	
Stockton 2009	19.33684	7.454532	57	18.4	7.6	21	1.5%	0.12 [-0.38, 0.62]	
Suherman 1999	111.6585542	13.76	83	115.02	16	29	1.7%	-0.23 [-0.66, 0.19]	
Underwood 2008 Subtotal (95% CI)	38.49198	21.99227	187 5940	41	24.18853	271 11927	2.9% 45.4%	-0.11 [-0.29, 0.08] -0.03 [-0.10, 0.04]	4
Heterogeneity: Tau ² = Test for overal effect: 2		, ,	P = 0.10); I² = 29%					
2.2.6 Trial effect, or tr	eatment given i	unknown							
Bakker 2000	2.066903	5.408818	113	0.9	1.4	24	1.7%	0.23 [-0.21, 0.68]	
Giron 2010	0.68	0.99	24	0.18	1	45	1.5%	0.50 [-0.01, 1.00]	
Subtotal (95% CI)			137			69	3.1%	0.35 [0.02, 0.68]	◆
Heterogeneity: Tau ² = Test for overall effect: 2		, ,	0.44);	¹² = 0%					
Total (95% CI)			20537			28584	100.0%	0.04 [-0.04, 0.12]	•
Heterogeneity: Tau ² =	0.05: Chi ² = 402	16. df = 47	(P < 0.0	(001): l ² = 2	88%				
Test for overall effect: 2					/*				-2 -1 0 1 2
	z = 0.96 (P = 0.3 rences: Chi ² = 3	,		(004) 10					Favours insiders Favours outsiders

Appendix to: Fernandes N, Bryant D, Griffith L, et al. Outcomes for patients with the same disease treated inside and outside of randomized trials: a systematic review and meta-analysis. *CMAJ* 2014. DOI:10.1503/cmaj.131693. Copyright © 2014 Canadian Medical Association or its licensors