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1. Standard Errors for Risk Estimates

Tables A.1 and A.2 contain the Monte Carlo standard errors (MCSE) of the risk estimates obtained

in the simulation study of Section 5. The estimated risks are available in Tables 1 and 3 of the

article.

2. Approximating the DIC

We describe in this appendix the details involved in approximating the DIC term used for model

comparison of the CTQ I data, and in particular, the estimation of the integral in (10). First, we

introduce notation. Let θ = (β,R) be the set of parameters, θ̂ = (β̂, R̂) the set of the posterior

estimates, and θg the value of θ at the g-th iteration of the Markov chain (g = 1, . . . , G). The

function Ii(Y) = I{QitYt ≥ 0 ∀t} indicates whether Y is a set of latent variables whose signs
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R N
MCSE of Risk Estimates by Prior

Loss
Shrinkage

Selection Selection
flat-R flat-Π Triangular

Naive
Fcn (2,1) (1,1) Shrink

A 20 1 0.024 0.022 0.027 0.032 0.028 0.026 0.032
A 50 1 0.011 0.0088 0.0093 0.015 0.013 0.013 0.014
A 200 1 0.0020 0.0013 0.0013 0.0026 0.0024 0.0024 0.0025
B 20 1 0.0090 0.0085 0.0086 0.020 0.023 0.022 0.011
B 50 1 0.0043 0.0041 0.0041 0.0091 0.0099 0.0098 0.0040
B 200 1 0.0009 0.0008 0.0009 0.0025 0.0026 0.0026 0.0010
C 20 1 0.033 0.032 0.040 0.041 0.038 0.030 0.028
C 50 1 0.011 0.014 0.015 0.015 0.013 0.012 0.014
C 200 1 0.0025 0.0026 0.0027 0.0028 0.0026 0.0026 0.0025
D 20 1 0.026 0.028 0.031 0.039 0.033 0.029 0.035
D 50 1 0.011 0.012 0.013 0.015 0.013 0.013 0.013
D 200 1 0.0022 0.0028 0.0029 0.0026 0.0024 0.0024 0.0026
A 20 2 0.011 0.010 0.011 0.018 0.016 0.016 0.016
A 50 2 0.0057 0.0033 0.0036 0.0089 0.0083 0.0083 0.0080
A 200 2 0.0016 0.0004 0.0004 0.0020 0.0020 0.0020 0.0020
B 20 2 0.0066 0.0047 0.0051 0.016 0.018 0.017 0.0079
B 50 2 0.0039 0.0033 0.0033 0.0081 0.0088 0.0087 0.0035
B 200 2 0.0008 0.0008 0.0008 0.0024 0.0025 0.0025 0.0010
C 20 2 0.017 0.015 0.019 0.025 0.023 0.018 0.016
C 50 2 0.0062 0.0077 0.0081 0.0086 0.0079 0.0074 0.0080
C 200 2 0.0017 0.0019 0.0019 0.0019 0.0019 0.0018 0.0018
D 20 2 0.013 0.013 0.014 0.020 0.019 0.017 0.019
D 50 2 0.0071 0.0076 0.0076 0.0096 0.0092 0.0087 0.0090
D 200 2 0.0015 0.0020 0.0021 0.0018 0.0017 0.0017 0.0020

Table A.1: Monte Carlo standard errors (MCSE) of risk estimates for simulation study with di-
mension J = 6. The estimated risks are contained in Table 1 of the article. Correlation matrices:
A autoregressive structure; B independence; C non-zero decaying; D sparse. Loss functions:
L1(R̂,R) = tr(R̂ R−1)− log |R̂ R−1| − p; L2(Π̂,Π) =

∑
i<j(π̂ij − πij)2.
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R N
MCSE of Risk Estimates by Prior

Loss
Shrinkage

Selection Selection
flat-R flat-Π Triangular

Naive
Fcn (2,1) (1,1) Shrink

C 50 1 0.018 0.021 0.025 0.034 0.025 0.023 0.029
C 200 1 0.0037 0.0043 0.0044 0.0056 0.0050 0.0050 0.0054
D′ 50 1 0.014 0.015 0.016 0.031 0.023 0.021 0.025
D′ 200 1 0.0036 0.0043 0.0045 0.0057 0.0051 0.0051 0.0053
C 50 2 0.011 0.012 0.014 0.020 0.017 0.016 0.018
C 200 2 0.0028 0.0033 0.0034 0.0044 0.0042 0.0042 0.0043
D′ 50 2 0.009 0.010 0.010 0.018 0.017 0.016 0.016
D′ 200 2 0.0026 0.0032 0.0034 0.0042 0.0040 0.0040 0.0041

Table A.2: Monte Carlo standard errors (MCSE) of risk estimates for simulation study with di-
mension J = 10. The estimated risks are contained in Table 3 of the article. Correlation matri-
ces: C non-zero decaying; D′ sparse. Loss functions: L1(R̂,R) = tr(R̂ R−1) − log |R̂ R−1| − p;
L2(Π̂,Π) =

∑
i<j(π̂ij − πij)2.

agree with the data Qi. Define pi(θ) to be the probability of observing Qi under the parameters θ.

As in (10), this is

pi(θ) = pi(β,R) =

∫
(−∞,∞)J

Ii(y)φ(y|θ) dy,

where φ(·|θ) is the multivariate normal density with mean Xiβ and covariance matrix R when

θ = (β,R). Hence, loglik(θ|Qi) = log pi(θ). As previously noted, this integral in intractable.

Using the definitions of the deviance and complexity parameter (equations (8) and (9)) and the

new notation, we can write the DIC as the sum of the contributions DICi for each patient,

DIC =
∑
i

DICi =
∑
i

[
2 log pi(θ̂)− 4E{log pi(θ)}

]
.

As observations Qi are independent, it suffices to consider the per patient contribution DICi. Note

that the expectation in the final term is with respect to the posterior distribution of the parame-

ters θ and will be estimated by its average over the values from the posterior sample θ1, . . . ,θG.

Additionally, we will have to approximate the intractable pi(θ) with some estimate p̂i(θ). So,

D̂ICi = 2 log p̂i(θ̂)− 4G−1
G∑

g=1

log p̂i(θg).

Note that calculation of the DIC will require (G + 1) estimates of the integral pi(·) for each i =

1, . . . , N .
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To evaluate this integral we use importance sampling (Robert and Casella, 2004, Section 3.3).

We take as our sampling density t(·|ξ), the multivariate t-distribution with 5 degrees of freedom,

location parameter Xiβ̂, and scale matrix kR̂ for some constant k > 1. We define ξ = (β̂, kR̂) to

be the set of parameters for the sampling distribution. We choose the t-distribution so that t(·|ξ)
will have heavier tails than φ(·|θg) for g = 1, . . . , G and θ̂. This also motivates the choice to use a

scale matrix that is an inflated version of R̂. Note that we can write pi(θ) as

pi(θ) =

∫
(−∞,∞)J

Ii(y)φ(y|θ) dy =

∫
(−∞,∞)J

Ii(z)
φ(z|θ)
t(z|ξ)

t(z|ξ) dz.

To estimate this, independently draw Z1, . . . ,ZHi
from t(·|ξ), and

p̂i(θ) = H−1i

Hi∑
h=1

Ii(Zh)
φ(Zh|θ)
t(Zh|ξ)

is an unbiased and consistent estimator of pi(θ).

Evaluation of D̂ICi involves, for each g = 1, . . . , G, simulating a dataset Z = {Zh}Hi
h=1 and

calculating p̂i(θg), followed by drawing a final Z to estimate p̂i(θ̂). Drawing G + 1 independent

datasets turns out to be computationally slow. Instead, we will draw a single sample Z to use to

calculate all p̂i(θ1), . . . , p̂i(θG), p̂i(θ̂). It is clear that these estimates remain unbiased and con-

sistent. What remains is to consider what effect this will have on the variability of the individual

contributions to the DIC, D̂ICi.

First we derive the variance of D̂ICi in the situation where we draw a new dataset Z for each

p̂i(θg). In this case,

Var{D̂ICi} = 4Var{log p̂i(θ̂)}+ 16G−2
∑
g

Var{log p̂i(θg)}, (A.1)

where the expectation (in the variance) is with respect to the sampling distribution of Z . For any

θg or θ̂, this variance is

Var{log p̂i(θ)} ≈ pi(θ)
−2Var{p̂i(θ)} = pi(θ)

−2H−1i Var
{
Ii(Z1)

φ(Z1|θ)
t(Z1|ξ)

}
= pi(θ)

−2H−1i

[
E
{
Ii(Z1)

φ(Z1|θ)2

t(Z1|ξ)2

}
− pi(θ)2

]
,
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where the approximation in the first line is due to the delta method. This quantity can be consis-

tently estimated by

V̂ar{log p̂i(θ)} = p̂i(θ)
−2H−1i

[
H−1i

Hi∑
h=1

Ii(Zh)
φ(Zh|θ)2

t(Zh|ξ)2
− p̂i(θ)2

]
. (A.2)

To calculate the variance of D̂ICi under our sampling scheme with a single sample Z , note

Var{D̂ICi} = 4Var{log p̂i(θ̂)}+ 16G−2
∑
g

Var{log p̂i(θg)}

+16G−2
∑
g

∑
g′ 6=g

Cov{log p̂i(θg), log p̂i(θg′)} (A.3)

−16G−1
∑
g

Cov{log p̂i(θg), log p̂i(θ̂)}.

The quantities on the second and third lines of (A.3) represent the additional terms due to sharing

the dataset Z across calculations of p̂i(·). Define COVi to be the sum of these covariance terms.

We may write COVi as

COVi = 16G−2
∑
g

∑
g′ 6=g

[
Cov{log p̂i(θg), log p̂i(θg′)} −

G

G− 1
Cov{log p̂i(θg), log p̂i(θ̂)}

]
.

From the delta method, we have Cov{log p̂i(θg), log p̂i(θ)} ≈ Cov{pi(θg)
−1p̂i(θg), pi(θ)

−1p̂i(θ)},
and so

COVi ≈ 16G−2
∑
g

∑
g′ 6=g

[
Cov

{
p̂i(θg)

pi(θg)
,
p̂i(θg′)

pi(θg′)

}
− G

G− 1
Cov

{
p̂i(θg)

pi(θg)
,
p̂i(θ̂)

pi(θ̂)

}]

= 16G−2
∑
g

∑
g′ 6=g

Cov

{
p̂i(θg)

pi(θg)
,
p̂i(θg′)

pi(θg′)
− G

G− 1

p̂i(θ̂)

pi(θ̂)

}

= 16G−2H−1i

∑
g

∑
g′ 6=g

Cov
{
Ii(Z1)

φ(Z1|θg)

pi(θg)t(Z1|ξ)
,

Ii(Z1)

(
φ(Z1|θg′)

pi(θg′)t(Z1|ξ)
− G

G− 1

φ(Z1|θ̂)
pi(θ̂)t(Z1|ξ)

)}

= 16G−2H−1i

∑
g

∑
g′ 6=g

[
G

G− 1
(A.4)

+ E

{
Ii(Z1)

φ(Z1|θg)

pi(θg)t(Z1|ξ)

(
φ(Z1|θg′)

pi(θg′)t(Z1|ξ)
− G

G− 1

φ(Z1|θ̂)
pi(θ̂)t(Z1|ξ)

)}]
.
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As long as this quantity (A.4) is small (relative to the independence variance estimator (A.1)), we

may save computational time by only sampling one dataset Z without sacrificing precision.

In the situation of the analysis of the CTQ data, estimation of COVi with a representative

sample of observations showed COVi to be small relative to the independence variance estimator

(A.1). In fact, this term is often negative, indicating that using the common dataset Z may improve

estimation for some observations i. In the representative sample we considered, the addition of the

COVi term tended to lead to changes in the standard error of D̂ICi ranging from a decrease of 5%

to an increase of 25%. As it is computationally infeasible to compute COVi for all observations (a

nested loop over g′ inside a loop over g), we estimate the standard error of the DIC estimate using

the independence estimator obtained from (A.1) and (A.2).

The Dev, pD, and DIC estimates in Table 4 are computed in this way. The importance sampling

size Hi is chosen by first drawing 200,000 values of Zh ∼ t(·|ξ), where variance scaling factor k

is 1.52. This choice of k is made with consideration to the dimension J of Z (increasing J should

correspond to increasing k), how far from the origin µ tends to be, how likely Ii(Z) is to be one,

among other considerations; ultimately, trial-and-error with small choices of Hi led us conclude

that k = 1.52 works reasonably well. Having drawn 200,000 values of Zh, if
∑

h Ii(Zh) ≥ 2000

(i.e., at least 2000 of the Zh’s have signs appropriate for a latent variable of Qi), then Hi =200,000

and this set {Zh}200,000h=1 is the importance sample Z . If not, we continue to draw additional sets of

200,000 Zh’s to append to the dataset until
∑

h Ii(Zh) ≥ 2000. This implies that we have larger

samples for those patients i with small values of pi(θ). This helps to control the variance of DICi

since the term is preceded by pi(θ)−2 (see equation (A.2)). With this scheme, we estimate the

standard errors for our DIC estimates in Table 4 to be around 0.5.
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