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Definition of the Center-Line Helicity
In defining the “center-line helicity,” we are forced to adopt a
convention for the implied contribution of the twist component
of the total helicity. Physically, this corresponds to making a
choice for how the vortex bundle should be wrapped around the
center-line when twist cannot be directly resolved (Fig. S1). Our
definition corresponds to the total helicity of a bundle with
particularly simple internal structure, so that the total twist
component is zero, Twi = 0, resulting in the following:
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Such a result can be obtained by constructing a bundle using the
“parallel transport” framing, defined as one for which the twist
rate of the normal vector, n̂, is everywhere zero: ðn̂× ∂sn̂Þ · dℓ= 0.
To illustrate the consequences of our convention, consider a

helix defined by the following:

x= a cos kz [S2]

y= a sin kz: [S3]

For a section spanning z= 0 to z=L, the number of helical turns
is N = kL

2π and the writhe is as follows:

Wr=Nð1− cos θÞ; [S4]

where the winding angle is θ= tan−1ka. In the limit of small
winding angle (θ→ 0), the resulting helicity is then given by
the following:

Hc;  p:t: =Γ2Wr [S5]
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This has the important property that helicity goes smoothly to
zero as the helix is flattened into a straight line. One apparent
disadvantage of the parallel transport framing is that, in general,
it does not close, meaning that an individual vortex filament does
not reconnect with itself in a single trip around the bundle. We
note, however, that this is expected for continuum fields; so long
as a local twist rate can be defined, a noninteger total twist can be
computed and corresponds to the mean linking of vortex fila-
ments in the bundle (1).
One way to resolve the nonclosure of the bundle is to use a

Frenet–Serret basis (in other words, n̂ is the Frenet–Serret
normal vector). In this case, the twist and helicity are given by
the following:

Twf:s: =
1
2π

Z
ds  τ=N cos θ [S7]
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�
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Note that this result always gives an integer (nΓ2) helicity, which is
independent of the winding angle. Plotting the bundle resulting

from such a framing reveals the source of this extra helicity: the
vortex filaments become significantly twisted as the winding an-
gle is reduced (Fig. S1, left side). In fact, integer helicity always
result for framings in which all filaments close with themselves,
as they produce a uniform, integer filament linking. Further-
more, it follows that the helicity computed for such a bundle will
change discontinuously under smooth deformations, as it is con-
fined to integer values. This is especially problematic when com-
puting the helicity for experimental data: even infinitesimal spirals
will appear to have high helicity content, and so this convention
produces wildly fluctuating center-line helicity. [In the context
of the Frenet–Serret framing, this can also be viewed as due to
the creation of inflection points, which cause the torsion to be
undefined (2).]
In addition to its ease of computation, the center-line helicity

for a parallel transport bundle has one other important property:
it corresponds to the configuration that naturally results from
viscous dissipation of the vortex core (as derived in the next
section for a straight center-line). Moreover, our experimental
results indicate that it is continuous through a vortex reconnec-
tion, suggesting it is the natural and relevant definition for helicity
conservation.

Helicity Dissipation for a Twisted Core
Consider a straight center-line, uniformly twisted core vortex
with profile:

ω=ΩðrÞ
�
ẑ+ rτϕ̂

�
; [S9]

where ΩðrÞ is the scalar core profile and τ is the twist rate. The
helicity dissipation rate is given by the following (3):

∂tH=−2ν
Z

ω · ð∇×ωÞ  dV =−4ντ
Z

Ω2ðrÞdA dz; [S10]

which can be rewritten as a relative decay rate:

∂tH=−H 8πν
Aeff

; [S11]

where Aeff is an effective core area given by the following:

Aeff =

�R
ΩðrÞdA�2R
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Equivalently, we note that this is equivalent to a dissipation of
the total twist: ∂tTw=−Tw8πν

Aeff
, where the total twist is given by

Tw=
R
τds. For experimental vortices in a viscous fluid, the

core size is expected to grow like r∼
ffiffiffiffiffiffi
4νt

p
, or ∼2 mm for our

experiments (for water, ν= 1:0 mm2·s−1 and the typical exper-
imental timescale is t∼ 1 s, which is roughly the time at which
the reconnection start). The resulting dissipation rate is as fol-
lows: ∂tTw=Tw∼ 5 s−1.

Experimental Vortex Generation
The experiments were carried out using the vortex generation and
imaging techniques described in ref. 4. Vortices are generated
using shaped hydrofoils generated by a 3D printer. These hy-
drofoils are attached to a frame, which is then rapidly accelerated
using a short, open pneumatic cylinder driven by a quick-release
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valve, where typical accelerations are on the order of a= 285 m/s2,
reaching speeds of U ∼ 2 m/s. The hydrofoils used for the data
shown in the main text have a chord of Ch= 22:5 mm, a leading
edge thickness of t1 = 3:75 mm, a trailing edge thickness of
t2 = 0:225 mm, and a bend of θ= 15°. Images of the 3D models
used to print each hydrofoil are reproduced in Fig. S2.
The trailing edge path (which is traced by the resulting vortices)

had an r.m.s. radius of r= 69:3 mm in the case of the trefoil knot
and an r.m.s. radius of r= 75:5 mm in the case of the linked rings.
Hydrofoils (and vortices) have also been generated at smaller
scales and are observed to have qualitatively similar dynamics. A
volumetric image of the vortex core is obtained with a laser-
scanning tomography apparatus (the obtained volumes have a
size of 3843 voxels with an adjustable resolution of 0.6 mm/voxel).
The effects of perspective in the imaging apparatus are corrected
for in the resulting data. The circulation of the vortices is estimated
using the formula for the circulation around a thin flat plate in
inviscid flow (5):

Γ= π U   Ch  sin α; [S13]

where α≈ θ=2 is the effective angle of attack. The speed of the
hydrofoil is directly measured using an encoder attached to the
hydrofoil acceleration frame. The circulation obtained from this
estimate is consistent with the forward speed of simple vortex
rings and the stretching rate observed for knotted vortices.

Experimental Vortex Shape Reconstruction
To reconstruct the shape of the vortices from experimental volu-
metric data, we have adapted methods from biomedical image
analysis. Due to the nature of the raw data, some apparent gaps
along the vortex path may arise from nonuniform bubble density.
Previously, manual identification of vortices was used, along with
automated line tracing (4). As an improvement, we have de-
veloped a two-step process for numerically identifying vortices
before joining them together into a complete path.
Vortices appear as one-dimensional ridge lines in the 3D

image: the locus of points for which image intensity is maximized
relative to motion along the minor and medium eigenvectors of
the image Hessian (6). For the detection and spatial localization
of vortices, we adapt a method of particle-based ridge sampling
(7). Image identification “particles” move within the image do-
main, subject to forces from other particles, while constrained to
stay within ridge lines. These particles are subject to a synthetic
radial potential function that monotonically decreases away from
r= 0 but with a slight attractive potential well at tunable position,
producing approximately equidistant spacing. The point loca-
tions are iteratively updated to minimize the total energy of the
system. Points are periodically added to ensure complete cov-
erage of detected ridge features and deleted where the feature
fades to noise. For each energy-minimizing iteration, the points
are constrained to ridges with Newton optimization using the
gradient and Hessian of the continuous image, as reconstructed
by convolution with the C2 cubic B-spline.
Once particles have converged, the recovered vortex segments

are joined via fast marching (8).

Calculation of Linking and Writhe
Linking and writhe are computed by projecting the 3D paths into
a plane and counting signed crossings between line segments. To
protect against numerical errors, which may be especially prob-
lematic with the noisy experimental data, three random orientations
are checked for consistency, and more orientations are computed
if the results do not agree. To compute the noninteger portion of
the writhe, an additional term is added to account for the twist of
the implied framing (9). A black-board framing (i.e., a framing
chosen to always be exactly perpendicular to the projection di-

rection) is used instead of the traditional Frenet–Serret framing;
this was found to produce more accurate results in the presence
of noise, as confirmed by comparing the results to the average
summed crossing number over random projections.

Theory of Helicity Conservation Through a Reconnection
As described in the main text, the conservation of helicity in
reconnecting vortices is due to the reconnection events happening
across regions where the vortex path is antiparallel. Typically,
linking is described in terms of planar knot diagrams; however,
in this case, it does not produce an intuitive description of
the observed mechanism. For example, vortex reconnections are
conventionally depicted as taking place at crossings in a planar
diagram (Fig. S3A), leading one to the incorrect conclusion that
helicity must change by jΔHcj= 1Γ2. (We note that, in all
cases, the center-line helicity is given by the following: Hc=Γ2 =PLij +

P
Wri =N+ −N−, where N± are the number of signed

crossings, averaged over all projections. For nearly planar shapes,
all projections have the same number of crossings.) We can modify
our diagram to add two-antiparallel extensions and place the re-
connection in this region; in this case, we conclude the helicity is
conserved (Fig. S3B). Although this geometry seems unintuitive in
a plane, it forms naturally for fully 3D paths. This is particularly
true for reconnecting vortices driven by stretching, which are ex-
pected to adopt an antiparallel configuration to conserve energy
(4). In the event that the reconnection is not perfectly antiparallel,
as is apparently the case for small GPE vortices, this conservation
may be imperfect.

Helistogram Analysis
Helistograms for a given curve are constructed by smoothing the
original path with a Blackmann windowed sinc kernel of in-
creasingly larger cutoff wavelengths incremented by a small dλ.
By taking the difference between the helicity HðλÞ calculated for
a path smoothed by λ and the helicity Hðλ+ dλÞ of the slightly
more smoothed path, we can compute the helicity stored on the
scale of λ. This progressive smoothing process can be seen in
Movie S1, which shows the path corresponding to each cutoff
wavelength.
For a helically wound ring, the locations of the peaks on a

helistogram correspond to the helical wavelength L=n of the
path, where L is the total length of the path and n is the winding
number. A collection of helically wound rings with different
values of L=n along with their corresponding helistograms are
shown in Movie S2. Note that, as the helical wavelength of the
structures increases, the helicity should decrease in magnitude
and shift to larger length scales, both of which are captured by
the shrinking and translation of the single peak in the helisto-
gram. Helistograms can also be constructed for GPE data, as
shown in Fig. S4; the results are qualitatively similar to experi-
mental data for the same initial shape, although all three re-
connections happen simultaneously.

Gross–Pitaevskii Equation
Simulations of the Gross–Pitaevskii equation (GPE) were carried
out using the same parameters as in ref. 10, where the GPE is
considered in a dedimensionalized form:

2i∂tΨ+∇2Ψ− jΨj2Ψ= 0; [S14]

where the circulation in these units is Γ= 2π, the healing length is
ξ = 1, and we set a far-field density of ρ∞ = jΨ∞j2 = 1. The sim-
ulations used a grid size of Δx= ξ=2 and time step Δt= 0:02,
using periodic boundary conditions. The initial phase field was
constructed by brute-force integration of the velocity field gen-
erated by the vortices (obtained from the Biot–Savart law), mak-
ing use of the following relation:
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ϕx1 −ϕx0 =
Zx1
x0

v · dℓ; [S15]

where the periodicity is ensured by calculating the flow field for
periodically copied versions of the desired vortex. (In practice, we
use a 5× 5× 5 cube of vortex copies, where the flow field is
calculated in the central volume; this number was chosen empir-
ically to produce smooth boundaries that do not generate sound
waves when the simulation begins.) A similar integration method
has recently been used for GPE simulations in other contexts
(11). To create a phase volume, an arbitrary phase is assigned to
one corner, which is then extended to a plane on one edge of the
volume. Integrating from this plane then produces a phase vol-
ume. To ensure that the phase matches across periodic bound-
aries, a constant gradient is added. (This is equivalent to removing
the uniform background flow produced by a periodic collection of
vortex loops.)
The initial density field was calculated using a Padé approx-

imant (12):

ρðrÞ=
11
32 r

2 + 11
384 r

4

1+ 1
3 r

2 + 11
384 r

4
; [S16]

where r was taken to be the distance to the closest vortex line.
The vortex knot with r.m.s. radius r= 24ξ was simulated in a pe-
riodic cube with edge a= 128ξ (256 grid points), and the simu-
lation volume was scaled in proportion to the knots for other
sizes. Weak density waves are observed to radiate from the vor-
tex at the beginning of the simulation (due to the fact that the
vortex curvature relaxes the core profile to a slightly different
form than that given by the Padé approximant), resulting in a
small reduction of the vortex length and energy from the initial
condition. Vortex paths were obtained by tracing the phase de-
fects in the simulated wave function. Time steps when the vor-
tices begin to overlap, defined as when the vortex separation is
less than rmin < 2ξ, are omitted from Fig. 4.

Biot–Savart Evolution of Thin Core Vortices
The Biot–Savart velocity of the vortex is calculated using an
exact expression for the flow generated by nonadjacent seg-
ments (modeled as a polygonal path), and an explicit expression
for the flow generated by the neighboring segments (treated as
a circular arc going through the 3-point neighborhood). Time
integration is performed using a fifth order Runge–Kutta
scheme [Dormand–Prince (13)] with an adaptive time step so
that the velocity error is kept below δv< ∼ 10−10Γ=r0 (with
segment length Δ‘∼ 0:05).
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Fig. S1. An illustration of the vortex bundles produced for spiral-like center-lines using different framing methods. The left column shows bundles oriented
with the Frenet–Serret normal vector, whereas the right uses a parallel transport (untwisted) framing. The first two rows are helices, whereas the third row
shows an inflection point produced by merging two circular arcs.
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Fig. S2. (A) A 3D rendering of the trefoil knot hydrofoil used in experiment. (B) A 3D rendering of the link rings hydrofoil used in experiment. (C) The
hydrofoil cross-section used in both the trefoil knot and linked rings with the following specifications: a chord of Ch= 22:5 mm, a leading edge thickness of
t1 = 3:75 mm, a trailing edge thickness of t2 =0:225 mm, and a bend of θ= 15°.

Fig. S3. (A) A diagram of a reconnection event occurring at a “crossing” for a nearly planar pair of linked rings. The helicity has an apparent change of 1Γ2

because an in-plane crossing is eliminated. (B) A reconnection event that occurs between antiparallel segments does not change the crossing number and so it
conserves helicity.

Fig. S4. A helistogram for a GPE trefoil knot with r = 36ξ, shown along with renderings of the density iso-surfaces at the same simulation time. Unlike in the
experiments, the perfect symmetry of the simulation causes all three reconnections to happen simultaneously, transferring nearly all of the helicity from
knotting to coiling in a single event.
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Movie S1. The construction of a helistogram for a helical ring with n= 6 windings. The smoothed path corresponding to each cutoff wavelength is shown
(Left) along with the complete helistogram (Right). The cutoff of the current smoothing is indicated with the red dashed line; for cutoff values below the
wavelength L=n (dashed gold line), the path is unaffected by the smoothing; however, once the cutoff value approaches L=n, the helix is rapidly smoothed
down to a ring of zero helicity.

Movie S1

Movie S2. A video showing the helistograms (Right) for a collection of different helically wound rings (Left) with progressively smaller winding numbers, n,
but with constant radii and helical amplitude. As the pitch of the helices increases, the helicity of the path becomes localized at progressively larger scales while
diminishing in overall magnitude.

Movie S2

Movie S3. A volumetric image of a pair of linked vortices (Left), along with the total helicity (Upper Right) and helistogram (Lower Right) as a function of
time. The initially linked vortices go through two reconnections to form a pair of unlinked rings, which results in the formation of large-scale helices with
approximately the same amount of helicity as the initial linking. The volumetric data were recorded at 169.4 volumes per second, and is played back at 15
frames per second, except near the reconnection events where the playback is slowed to 3 frames per second. In frames for which the vortices could be
successfully tracked, they are highlighted in blue and orange (corresponding to the first and second identified vortex loop).

Movie S3
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Movie S4. A volumetric image and helistogram for a vortex that is initially a trefoil knot, displayed as in Movie S3. The trefoil knot goes through three
reconnections to become a pair of unlinked rings, although it is only possible to track it through the first two reconnections.

Movie S4

Movie S5. The density isosurface and helistogram for a Gross–Pitaevskii simulated trefoil vortex knot with mean radius r = 36ξ. The final topology (two
unlinked rings) is the same as the viscous fluid trefoil vortex knot, although all three reconnections happen simultaneously due to the perfect symmetry of the
simulation.

Movie S5
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Movie S6. A Biot–Savart simulation of a helical vortex ring leap-frogging a perfectly circular ring. A rendering of the 3D vortex paths is shown, along with the
helicity and length as a function of time. The stretching and compressing experienced by the helical ring causes its helicity to vary dramatically.

Movie S6
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