## **Supporting Information**

## Davies and Bergmann 10.1073/pnas.1411766111



**Fig. S1.** SPCH does not require its potential RBR interaction motifs. (*A*–C) Differential interference contrast images of 6-d postgermination abaxial cotyledons of SPCHp:SPCH YFP *spch* (*A*), SPCHp:SPCH<sup>LGK</sup> YFP *spch* (*B*), and FAMAp:FAMA<sup>LGK</sup> YFP *fama* (*C*). (Scale bars: 50 µm.) *A* and *B* are at the same magnification. The FAMA<sup>LGK</sup> YFP phenotype of a stoma in stoma is highlighted in green. (*D*) ClustalW2 alignment of *Arabidopsis* SPCH, MUTE, and FAMA full-protein sequences. The basic region of the bHLH domain (blue) is underlined, putative DNA-contacting residues are in orange, and the SPCH MPKTD is in pink. Potential RBR interaction motifs are underlined in purple. Asterisks indicate identical residues; colons, conserved substitutions; dots, semiconserved substitutions. Putative phosphorylation sites (1, 2) are in green, with numbers above corresponding to the notation in ref. 1. Bold underlined residues at the C terminus of SPCH are deleted in the spch-1 allele.

1. Lampard GR, Macalister CA, Bergmann DC (2008) Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS. Science 322(5904):1113–1116. 2. Gudesblat GE, et al. (2012) SPEECHLESS integrates brassinosteroid and stomata signalling pathways. Nat Cell Biol 14(5):548–554.

## Table S1. Transgenic constructs examined for stomatal production in bHLH mutants

PNAS PNAS

|                                                              |        |              | T2 individu       | uals       |       |
|--------------------------------------------------------------|--------|--------------|-------------------|------------|-------|
| Construct (T1) (all have a C-terminal YFP tag)               | Line   | Rescues      | Stomata-producing | No stomata | Notes |
| pMDC7 SPCH 1–5A in mute/+; no estradiol                      | А      | No           | 15                | 37         |       |
| pMDC7 SPCH 1–5A in mute/+; 10 μM estradiol                   | А      | Yes          | 117               | 15         |       |
| MUTEp:SPCH 1–5A mute/+                                       | А      | Yes          | 74                | 4          |       |
| MUTEp:SPCH 1–5A mute/+                                       | В      | Yes          | 64                | 0          |       |
| MUTEp:SPCH 1–5A mute <sup>–/–</sup>                          | С      | Yes, T1 homo | NA                | NA         |       |
| MUTEp:SPCH 1–5A mute <sup>-/-</sup>                          | D      | Yes, T1 homo | NA                | NA         |       |
| MUTEp:SPCH 1–4A mute <sup>-/-</sup>                          | А      | Yes, T1 homo | NA                | NA         |       |
| MUTEp:SPCH 1–4A mute <sup>-/-</sup>                          | В      | Yes, T1 homo | NA                | NA         |       |
| MUTEp:SPCH 5A mute <sup>-/+</sup>                            | A      | Yes          | 33                | 0          | 1     |
| MUTEp:SPCH 5A mute <sup>-/+</sup>                            | В      | Yes          | 60                | 0          | 1     |
| MUTEp:SPCH 5A mute <sup>-/+</sup>                            | С      | Yes          | 27                | 2          | 1     |
| MUTEp:SPCH 5A mute <sup>-/-</sup>                            | D      | Yes, T1 homo | NA                | NA         | 2     |
| MUTEp:SPCH (WT SPCH) mute/+                                  | A      | Ambiguous    | 66                | 15         | 3     |
| MUTEP:SPCH (WT SPCH) mute/+                                  | В      | Ambiguous    | 70                | 2          | 4     |
| MUTEp:SPCH $\Delta$ 93 in mute/+                             | A      | Yes          | 62                | 0          |       |
| MUTEp:SPCH $\Delta$ 93 in mute <sup>-/-</sup>                | В      | Yes, T1 homo | NA                | NA         |       |
| MUTEP:SPCH $\Delta N$ and $\Delta 93$ in mute/+              | A      | Yes          | 50                | 2          |       |
| MUTEp:SPCH $\Delta N$ and $\Delta 93$ in mute <sup>-/-</sup> | В      | Yes, T1 homo | NA                | NA         |       |
| SPCHp: 2–4A PGG in spch/+                                    | A      | Yes          | 61                | 2          |       |
| SPCHp: 2–4A PGG in spch/+                                    | В      | Yes          | 54                | 9          |       |
| SPCHp: 2–4A PGG in spch/+                                    | C      | Yes          | 54                | 8          |       |
| SPCHp: 2–4A PGG in spch/+                                    | D      | Yes          | /5                | 3          |       |
| SPCHp: 2–4A PGG in spch/+                                    | E      | Yes          | 64                | 1          |       |
| SPCHp: 2–4A PGG in spch/+                                    | F      | Yes          | 76                | 0          |       |
| SPCHp:SPCHPGG in spch-3/+                                    | A      | Yes          | /1                | 8          |       |
| SPCHp:SPCHPGG in spch-3/+                                    | В      | No           | 3/                | 11         |       |
| SPCHp:SPCHPGG in spcn-3/+                                    | C      | Yes          | 70                | 5          |       |
| SPCHp:SPCHPGG in spch-3/+                                    | D      | Yes          | 65                | 11         |       |
| SPCHp:SPCHPGG in spcn-3/+                                    | E      | Yes          | 75                | 2          |       |
| SPCHp:SPCHPGG in spcn-3/+                                    | F      | NO           | 64                | 14         |       |
| MUTEP: FAMA PGG in mute/+                                    | A      | Yes          | 84                | 5          |       |
| MUTEP:MUTE PGG in mute/+                                     | A      | Yes          | 70                | 0          |       |
| MUTEP:MUTE PGG IN MUTE/+                                     | В      | Yes          | 79                | 10         | F     |
| MUTEP:SPCH I-4A PGG YFP In mute/+                            | A      | Ambiguous    | 113               | 18         | 5     |
| FANAAR COCIL in fama (                                       | A      | res          | 40                | 3          |       |
| FAMAp:SPCH in fama/+                                         | A      | NO           | 52                | 13         |       |
| FAMAp:SPCH in fama/+                                         | Б      | NO           | 40                | 10         |       |
| FAMAp(SPCH 2, 4A in fama/)                                   | ~      | No           | 12                | 12         |       |
| $E \Delta M \Delta p SPCH 2 = 4A \ln fama/+$                 | P      | No           | 43                | 14         |       |
| FAMAp.SPCH 2-4A in fama/+                                    | C      | No           | 28                | 12         |       |
| FAMAp:SPCH 2-4A in fama/+                                    |        | No           | 40                | 12         |       |
| FAMAp:SPCH 1-4A in fama/ $\pm$                               | Δ      | No           | 40                | 19         |       |
| FAMAp:SPCH 1_4A in fama/ $\pm$                               | R      | No           | 39                | 7          |       |
| FAMAp:SPCH 1-4A in fama/+                                    | C<br>C | No           | 41                | 10         |       |
| FAMAp:SPCH 1–4A in fama/+                                    | D      | No           | 40                | 10         |       |
| FAMAp:SPCH 1–5A in fama/+                                    | A      | No           | 36                | 9          |       |
| FAMAp:FAMA PGG in fama/+                                     | A      | No           | 65                | 13         |       |
| SPCHp::SPCH-LGK in spch/+                                    | А      | Yes          | 109               | 8          |       |
| SPCHp::SPCH-LGK in spch/+                                    | В      | Yes          | 107               | 10         |       |
| SPCHp::SPCH-LGK in spch/+                                    | с      | Yes          | 109               | 10         |       |
| SPCHp:SPCH $\Delta$ C7 in spch-3/+                           | A      | No           | 27                | 8          |       |
| SPCHp:SPCH $\Delta$ C7 in spch-3/+                           | В      | No           | 27                | 10         |       |
| SPCHp:SPCH∆C7 in spch-3/+                                    | с      | No           | 30                | 12         |       |
| SPCHp:SPCH $\Delta$ C7 in spch-3/+                           | D      | No           | 28                | 10         |       |
| SPCHp:SPCH $\Delta$ C7 in spch-3/+                           | Е      | No           | 28                | 10         |       |
| SPCHp:SPCH 2–4A $\Delta$ C7 in spch-3/+                      | А      | No           | 28                | 11         |       |
| SPCHp:SPCH 2–4A $\Delta$ C7 in spch-3/+                      | В      | No           | 29                | 9          |       |
| SPCHp:SPCH 2–4A $\Delta$ C7 in spch-3/+                      | с      | No           | 22                | 10         |       |
| SPCHp:SPCH 2–4A $\Delta$ C7 in spch-3/+                      | D      | No           | 42                | 13         |       |
| SPCHp:SPCH 2–4A $\Delta$ C7 in spch-3/+                      | E      | No           | 28                | 10         |       |
| SPCHp:SPCH 2–4A $\Delta$ C7 in spch-3/+                      | F      | No           | 27                | 12         |       |

Notes: (1) Many T2 individuals have >50% arrested lineages. (2) In the T1 plant, >50% lineages were arrested. (3) Three or more individuals had very few stomata (one to four per cotyledon). (4) Seven or more individuals had very few stomata (one to four per cotyledon). (5) Seven individuals had no stomata and resembled mute; 11 individuals had no stomata but additional cell divisions; 11 individuals had additional cell divisions and a few stomata per cotyledon; and 102 individuals produced stomata throughout the epidermis.

## Table S2. Primers used for cloning

NAS PNAS

| Forward (written 5'-3')                                             | Reverse                                                             | Template                                                                      | Construct                                                                                    |
|---------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| CACC ATG CAG GAG ATA<br>ATA CCG GAT TTT CT                          | GGG CCC TTA CTT GTA CAG<br>CTC                                      | pHGY SPCHp:SPCH variants (1)                                                  | pENTR SPCH 1–4A YFP<br>pENTR SPCH 1–5A YFP                                                   |
| CAA AAG ATG TCT CCT GTA<br>ACC GTG GGA CGT AAC CGG<br>GGA AAG CAA   | TTG CTT TCC CCG GTT ACG<br>TCC CAC GGT TAC AGG<br>AGA CAT CTT TTG   | pENTR SPCH, pENTR SPCH 2–4A (1)<br>and pENTR SPCH 1–4A YFP<br>generated above | pENTR SPCH PGG<br>pENTR SPCH 2–4A PGG<br>pENTR SPCH 1–4A PGG YFP                             |
| CACC ATG AAGATGTCTCATG<br>TAACCGTGG                                 | GCA GAA TGT TTG CTG AAT<br>TTG TTG                                  | pENTR SPCH delta 93 (1)                                                       | pENTR SPCH delta N delta 93                                                                  |
| CTC TAC CAA TGG AGG ATC<br>CAA GGG TGG GCG                          | CGC CCA CCC TTG GAT CCT<br>CCA TTG GTA GAG                          | pENTR MUTE with stop (2)                                                      | pENTR MUTE (mutation of<br>stop codon stop to glycine)                                       |
| CACC ATG TCT CCC ATC GCT<br>GTT GGA AGG AAT CGA GGA<br>AGG CAA ATG  | CAT TTG CCT TCC TCG ATT<br>CCT TCC AAC AGC GAT<br>GGG AGA CAT GGTG  | pENTR MUTE (no stop)<br>generated above                                       | pENTR MUTE PGG (no stop)                                                                     |
| G ATG ACT CCT ATC GCG GTC<br>GGA AGA AAC CGT GGG AAG<br>CAA AT      | ATT TGC TTC CCA CGG TTT<br>CTT CCG ACC GCG ATA<br>GGA GTC ATC       | pENTR FAMA (3)                                                                | pENTR FAMA PGG                                                                               |
| GAT CTA TTT GCC ATC TTA GAG<br>GGT CTT AAA GGT GCC GGA<br>GAG ATA   | TAT CTC TCC GGC ACC TTT<br>AAG ACC CTC TAA GAT<br>GGC AAA TAG ATC   | pENTR SPCH                                                                    | pENTR SPCH LGK product 1                                                                     |
| TTA CAA CAA GTT CTC CAA<br>GGT TTG AAA GCC AAG AAA<br>CAA CGT AAA A | TTT TAC GTT GTT TCT TGG<br>CTT TCA AAC CTT GGA<br>GAA CTT GTT GTA A | pENTR SPCH LGK product 1                                                      | pENTR SPCH LGK final                                                                         |
| GGGG ACA ACT TTG TAT AGA<br>AAA GTT G AAG CTT ATC<br>AAA GAA AAA AC | GGGG AC TGC TTT TTT GTA<br>CAA ACT TG TAA CCG GTG<br>GAT TCA GGG    | pAR169<br>ATML1p::mCitrine-RCl2A (4)                                          | pDonr P4 p1R ATML1pro<br>(recombination reaction)                                            |
| CACC TCCGGAGCAGCTGCGGCTG                                            | ATG AAA TGA TAG CGT AAG<br>GTA TAA GG                               | pAR169<br>ATML1p::mCitrine-RCl2A (4)                                          | pENTR RCI2A                                                                                  |
| AT GCG GCC GC ATG GTG AGC<br>AAG GGC GAG GAG                        | AT GCG GCC GC CTT GTA<br>CAG CTC GTC CAT GCC                        | pcr2.1 TOPO mCherry                                                           | pENTR mCherry RCI2A (ligated<br>mCherry into above construct using<br>NOT1 restriction site) |

Lampard GR, Macalister CA, Bergmann DC (2008) Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS. Science 322(5904):1113–1116.
MacAlister CA, Ohashi-Ito K, Bergmann DC (2007) Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature 445(7127):537–540.
Ohashi-Ito K, Bergmann DC (2006) Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development. Plant Cell 18(10):2493–2505.

4. Roeder AH, et al. (2010) Variability in the control of cell division underlies sepal epidermal patterning in Arabidopsis thaliana. PLoS Biol 8(5):e1000367.