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1. Binary Exposures and Binary Outcomes

1.1. Standard Error for the Proportion of a Total E¤ect Attributable to Interaction

As noted in the text, for a binary outcome and two binary exposures G and E, the proportion of the excess
relative risk for E that is attributable to interaction is given by:

pAIG=0(E) =
(RERI)P (G = 1)

(RR01 � 1) + (RERI)P (G = 1)
:

where RERI = RR11 �RR10 �RR01 + 1. Under the logistic regression model with a rare outcome

logitfP (Y = 1jG = g;E = e; C = c)g = 0 + 1g + 2e+ 3eg + 04c; (A1)

the (marginal) proportion attributable to interaction averaged over covariates can be shown to be:

pAIG=0(E) �
(e1+2+3 � e1 � e2 + 1)P (G = 1)

(e2 � 1) + (e1+2+3 � e1 � e2 + 1)P (G = 1) :

The conditional proportion attributable to interaction in stratum C = c would replace P (G = 1) in both the
numerator and the denominator by P (G = 1jC = c).
For the standard error for the proportion due to interaction we will assume that the proportion P (G = 1) is

known. Alternatively, the standard errors derived can be interpretted as standard errors for the estimate of the
proportion attributable to interaction in a population which had the same underlying risk ratios as the sample in
question, but had a prevalence of G equal to the prevalence of G in the sample.
Let
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be the covariance matrix for the estimators (b0; b1; b2; b3)0 of (0; 1; 2; 3)0. By the delta method the variance
of our estimator bQ of Q = (e1+2+3�e1�e2+1)P (G=1)

(e2�1)+(e1+2+3�e1�e2+1)P (G=1) replacing (0; 1; 2; 3) in this expression with
(b0; b1; b2; b3)0 is given by:
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Let K1, K2 and K3 denote the �rst, second, and third non-zero expressions in this vector. We then have
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1.2 Standard Error for the Proportion of a Joint E¤ect Attributable to Either Exposure Alone and to Interaction

For the three-way decomposition of the joint excess relative risk of both exposures, RR11 � 1, we have a
decomposition into an excess risk relative risk for G alone, an excess relative risk for E alone, and the excess
relative risk due to interaction i.e. we have the decomposition: RR11� 1 = (RR10� 1)+ (RR01� 1)+RERI. And
we can compute the proportion of the joint e¤ect due to G alone RR10�1

RR11�1 , and due to E alone RR01�1
RR11�1 , and due to

their interaction RERI
RR11�1 . Under the logistic regression model with a rare outcome

logitfP (Y = 1jG = g;E = e; C = c)g = 0 + 1g + 2e+ 3eg + 04c;

the proportion can be estimated approximately by:

RR10 � 1
RR11 � 1

� e1 � 1
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RR11 � 1

� e2 � 1
e1+2+3 � 1

RERI

RR11 � 1
� (e1+2+3 � e1 � e2 + 1)

e1+2+3 � 1 :

We will now compute the standard errors for these expressions.
For the proportion of the joint e¤ect due to a single exposure alone, we have, by the delta method, that the

variance of our estimator bQ of Q = e1�1
e1+2+3�1 replacing (0; 1; 2; 3) in this expression with (b0; b1; b2; b3)0 is

given by:
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Let K1, K2 and K3 denote the �rst, second, and third non-zero expressions in this vector. We then once again
have V ar( bQ) = v11K2
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For the standard error for the proportion of a joint e¤ect attributable to interaction we have, by the delta method,
that the variance of the estimator bQ of Q = (e1+2+3�e1�e2+1)

e1+2+3�1 replacing (0; 1; 2; 3) in this expression with
(b0; b1; b2; b3)0 is given by:
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Let K1, K2 and K3 denote the �rst, second, and third non-zero expressions in this vector. We then have V ar( bQ) =
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1.3. SAS and Stata Code to Implement Proportion of a Total E¤ect Attributable to Interaction

Suppose we have a SAS dataset named �mydata�with outcome variable �y�, exposure variables �e�and �g�and
three covariates �c1�, �c2�and �c3�. To use the code below, the user must input in the third and fourth line of the
data step the prevalence of the exposure G (�pg=�) and the prevalence of the exposure E (�pg=�). In a case-control
study, these prevalences should be computed only among the controls. The output will include the proportion
of the total e¤ect of G that is attributable to interaction, along with a 95% con�dence interval; the remaining
proportion is that attributable to G when E is set to 0. The code will also report the proportion of the total e¤ect
of E that is attributed to interaction, along with a 95% con�dence interval; once again, the remaining proportion
is that attributable to E when G is set to 0.
These measures assume that G and E are independent, and that control has been made for confounding. In this

case, the proportion attributable to interaction for G can also be interpretted as the proportion of the total e¤ect
of G that would be eliminated if E were set to 0. Likewise, the proportion attributable to interaction for E can
also be interpretted as the proportion of the total e¤ect of E that would be eliminated if G were set to 0. When G
and E are not independent (e.g. G a¤ects E), the measure for the second exposure still carries this interpretation
provided control has been made for confounding. However, for the �rst exposure G the proportion attributable to
interaction given in the output corresponds to the proportion of an integrated joint e¤ect due to interaction, as
discussed in the Appendix to the paper.

proc logistic descending data=mydata outest=myoutput covout;
model y=g e g*e c1 c2 c3;
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run;

data PAIoutput;
set myoutput;
array mm {*} _numeric_;
pg=0.5;
pe=0.5;
b0=lag4(mm[1]);
b1=lag4(mm[2]);
b2=lag4(mm[3]);
b3=lag4(mm[4]);
v11=lag2(mm[2]);
v12=lag(mm[2]);
v13=mm[2];
v22=lag(mm[3]);
v23=mm[3];
v33=mm[4];
k1=((exp(b2)-1)*(exp(b1+b2+b3)-exp(b1))*pg)

/((exp(b2)-1+(exp(b1+b2+b3)-exp(b1)-exp(b2)+1)*pg)*(exp(b2)-1+(exp(b1+b2+b3)-exp(b1)-exp(b2)+1)*pg));
k2=(-(exp(b1+b2+b3)-exp(b2))*pg)

/((exp(b2)-1+(exp(b1+b2+b3)-exp(b1)-exp(b2)+1)*pg)*(exp(b2)-1+(exp(b1+b2+b3)-exp(b1)-exp(b2)+1)*pg));
k3=((exp(b2)-1)*exp(b1+b2+b3))

/((exp(b2)-1+(exp(b1+b2+b3)-exp(b1)-exp(b2)+1)*pg)*(exp(b2)-1+(exp(b1+b2+b3)-exp(b1)-exp(b2)+1)*pg));
vPAIE=v11*k1*k1 + v22*k2*k2 + v33*k3*k3 + 2*v12*k1*k2 + 2*v13*k1*k3 + 2*v23*k2*k3;
PAI_E=(exp(b1+b2+b3)-exp(b1)-exp(b2)+1)*pg/(exp(b2)-1+(exp(b1+b2+b3)-exp(b1)-exp(b2)+1)*pg);
se_PAIE=sqrt(vPAIE);
ci95_lE=PAI_E-1.96*se_PAIE;
ci95_uE=PAI_E+1.96*se_PAIE;
h1=((exp(b1)-1)*(exp(b2+b1+b3)-exp(b2))*pe)

/((exp(b1)-1+(exp(b2+b1+b3)-exp(b2)-exp(b1)+1)*pe)*(exp(b1)-1+(exp(b2+b1+b3)-exp(b2)-exp(b1)+1)*pe));
h2=(-(exp(b2+b1+b3)-exp(b1))*pe)

/((exp(b1)-1+(exp(b2+b1+b3)-exp(b2)-exp(b1)+1)*pe)*(exp(b1)-1+(exp(b2+b1+b3)-exp(b2)-exp(b1)+1)*pe));
h3=((exp(b1)-1)*exp(b2+b1+b3))

/((exp(b1)-1+(exp(b2+b1+b3)-exp(b2)-exp(b1)+1)*pe)*(exp(b1)-1+(exp(b2+b1+b3)-exp(b2)-exp(b1)+1)*pe));
vPAIG=v11*h1*h1 + v22*h2*h2 + v33*h3*h3 + 2*v12*h1*h2 + 2*v13*h1*h3 + 2*v23*h2*h3;
PAI_G=(exp(b2+b1+b3)-exp(b2)-exp(b1)+1)*pe/(exp(b1)-1+(exp(b2+b1+b3)-exp(b2)-exp(b1)+1)*pe);
se_PAIG=sqrt(vPAIG);
ci95_lG=PAI_G-1.96*se_PAIG;
ci95_uG=PAI_G+1.96*se_PAIG;
keep PAI_E ci95_lE ci95_uE PAI_G ci95_lG ci95_uG;
if _n_=5;

run;

proc print data=PAIoutput;
var PAI_E ci95_lE ci95_uE PAI_G ci95_lG ci95_uG;

run;

The equivalent Stata code would be:

generate pg=0.5
generate pe=0.5

generate Ige = g*e
logit y g e Ige c1 c2 c3

nlcom (exp(_b[e]+_b[g]+_b[Ige])-exp(_b[e])-exp(_b[g])+1)*pe/(exp(_b[g])-1
+(exp(_b[e]+_b[g]+_b[Ige])-exp(_b[e])-exp(_b[g])+1)*pe)

1.4. SAS and Stata Code to Implement Proportion of a Joint E¤ect Attributable to Either Exposure Alone and to
Interaction

4



As discussed in the text it is possible to decompose the joint excess relative risk for both exposures together
into three components: (i) a component due to the �rst exposure G alone, (ii) a component due to E alone, and
(iii) a component due to the interaction between the e¤ect of G and E. The output gives the proportions due to G
alone, the proportion due to E alone, and the proportion due to the interaction; 95% con�dence intervals are also
given for these three proportions. The three proportions will sum to 100%. The decomposition applies even if one
of the exposures a¤ects the other. The code in SAS is:

proc logistic descending data=mydata outest=myoutput covout;
model y=g e g*e c1 c2 c3;

run;

data JOINToutput;
set myoutput;
array mm {*} _numeric_;
b0=lag4(mm[1]);
b1=lag4(mm[2]);
b2=lag4(mm[3]);
b3=lag4(mm[4]);
v11=lag2(mm[2]);
v12=lag(mm[2]);
v13=mm[2];
v22=lag(mm[3]);
v23=mm[3];
v33=mm[4];
k1=(exp(b1+b2+b3)-exp(b1))/((exp(b1+b2+b3)-1)*(exp(b1+b2+b3)-1));
k2=(-(exp(b1)-1)*exp(b1+b2+b3))/((exp(b1+b2+b3)-1)*(exp(b1+b2+b3)-1));
k3=(-(exp(b1)-1)*exp(b1+b2+b3))/((exp(b1+b2+b3)-1)*(exp(b1+b2+b3)-1));
vG=v11*k1*k1 + v22*k2*k2 + v33*k3*k3 + 2*v12*k1*k2 + 2*v13*k1*k3 + 2*v23*k2*k3;
PAG=(exp(b1)-1)/(exp(b1+b2+b3)-1);
se_PAG=sqrt(vG);
ci95_lG=PAG-1.96*se_PAG;
ci95_uG=PAG+1.96*se_PAG;
h1=(exp(b2+b1+b3)-exp(b2))/((exp(b2+b1+b3)-1)*(exp(b2+b1+b3)-1));
h2=(-(exp(b2)-1)*exp(b2+b1+b3))/((exp(b2+b1+b3)-1)*(exp(b2+b1+b3)-1));
h3=(-(exp(b2)-1)*exp(b2+b1+b3))/((exp(b2+b1+b3)-1)*(exp(b2+b1+b3)-1));
vE=v11*h1*h1 + v22*h2*h2 + v33*h3*h3 + 2*v12*h1*h2 + 2*v13*h1*h3 + 2*v23*h2*h3;
PAE=(exp(b2)-1)/(exp(b2+b1+b3)-1);
se_PAE=sqrt(vE);
ci95_lE=PAE-1.96*se_PAE;
ci95_uE=PAE+1.96*se_PAE;
f1=(exp(b1)+(exp(b2)-2)*exp(b1+b2+b3))/((exp(b1+b2+b3)-1)*(exp(b1+b2+b3)-1));
f2=(exp(b2)+(exp(b1)-2)*exp(b1+b2+b3))/((exp(b1+b2+b3)-1)*(exp(b1+b2+b3)-1));
f3=((exp(b1)+exp(b2)-2)*exp(b1+b2+b3))/((exp(b1+b2+b3)-1)*(exp(b1+b2+b3)-1));
vINT=v11*f1*f1 + v22*f2*f2 + v33*f3*f3 + 2*v12*f1*f2 + 2*v13*f1*f3 + 2*v23*f2*f3;
PaINT=(exp(b2+b1+b3)-exp(b1)-exp(b2)+1)/(exp(b1+b2+b3)-1);
se_PaINT=sqrt(vINT);
ci95_lINT=PaINT-1.96*se_PaINT;
ci95_uINT=PaINT+1.96*se_PaINT;
keep PAG ci95_lG ci95_uG PAE ci95_lE ci95_uE PaINT ci95_lINT ci95_uINT;
if _n_=5;

run;

proc print data=JOINToutput;
var PAG ci95_lG ci95_uG PAE ci95_lE ci95_uE PaINT ci95_lINT ci95_uINT;

run;

The equivalent Stata code would be as follows (with the output �rst giving the proportion of joint e¤ect due to
G alone, then due to E alone, and then that due to their interaction):

generate Ige = g*e
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logit y g e Ige c1 c2 c3

nlcom (exp(_b[g])-1)/(exp(_b[g]+_b[e]+_b[Ige])-1)
nlcom (exp(_b[e])-1)/(exp(_b[e]+_b[g]+_b[Ige])-1)
nlcom (exp(_b[e]+_b[g]+_b[Ige])-exp(_b[g])-exp(_b[e])+1)/(exp(_b[g]+_b[e]+_b[Ige])-1)

2. Binary Outcome and Continuous Exposures

2.1. Proportion of a Total E¤ect Attributable to Interaction

As discussed in the Appendix to the text, for continuous exposures, when the e¤ect of E on Y is unconfounded
conditional on (C;G) then the total e¤ect of E on Y , E[Ye1 jc]�E[Ye0 jc], could be decomposed into two components
as: E[Ye1 jc]� E[Ye0 jc]

= E[Y jg0; e1; c]� E[Y jg0; e0; c] +
Z
fE[Y jg; e1; c]� E[Y jg; e0; c]� E[Y jg0; e1; c] + E[Y jg0; e0; c]gdP (gjc)

which on the ratio scale can be rewritten as E[Ye1 jc]
E[Ye0 jc]

� 1

= �fE[Y jg0; e1; c]
E[Y jg0; e0; c]

� 1g+ �
Z
f E[Y jg; e1; c]
E[Y jg0; e0; c]

� E[Y jg; e0; c]
E[Y jg0; e0; c]

� E[Y jg0; e1; c]
E[Y jg0; e0; c]

+ 1gdP (gjc)

where � = E[Y jg0;e0;c]
E[Ye0 jc]

. The proportion of the e¤ect of E attributable to interaction is given by:

pAIG=g0(E) =

Z
f E[Y jg;e1;c]E[Y jg0;e0;c] �

E[Y jg;e0;c]
E[Y jg0;e0;c] �

E[Y jg0;e1;c]
E[Y jg0;e0;c] + 1gdP (gjc)

fE[Y jg0;e1;c]E[Y jg0;e0;c] � 1g+
Z
f E[Y jg;e1;c]E[Y jg0;e0;c] �

E[Y jg;e0;c]
E[Y jg0;e0;c] �

E[Y jg0;e1;c]
E[Y jg0;e0;c] + 1gdP (gjc)

:

Suppose �rst that E is continuous and G is binary, then this expression reduces to

pAIG=g0(E) =
fE[Y jg1;e1;c]E[Y jg0;e0;c] �

E[Y jg1;e0;c]
E[Y jg0;e0;c] �

E[Y jg0;e1;c]
E[Y jg0;e0;c] + 1gP (G = g1jc)

fE[Y jg0;e1;c]E[Y jg0;e0;c] � 1g+ f
E[Y jg1;e1;c]
E[Y jg0;e0;c] �

E[Y jg1;e0;c]
E[Y jg0;e0;c] �

E[Y jg0;e1;c]
E[Y jg0;e0;c] + 1gP (G = g1jc)

:

Under the logistic regression model with a rare outcome

logitfP (Y = 1jG = g;E = e; C = c)g = 0 + 1g + 2e+ 3eg + 04c; (A1)

the proportion attributable to interaction is given by approximately by: pAIG=g0(E) �
fe(g1�g0)1+(e1�e0)2+(g1e1�g0e0)3 � e(g1�g0)1+(g1�g0)e03 � e(e1�e0)2+(e1�e0)g03 + 1gP (G = g1jc)

fe(e1�e0)2+(e1�e0)g03 � 1g+ fe(g1�g0)1+(e1�e0)2+(g1e1�g0e0)3 � e(g1�g0)1+(g1�g0)e03 � e(e1�e0)2+(e1�e0)g03 + 1gP (G = g1jc)
:

Suppose now that G is continuous and normally distributed with mean

E[Gjc] = �0 + �01c (A2)
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and variance �2. Assuming a rare outcome, under logistic regression (A1) we have:Z
E[Y jg; e; c]
E[Y jg0; e0; c]

dP (gjc)

�
Z
expf(g � g0)1 + (e� e0)2 + (ge� g0e0)3gdP (gjc)

= expf�g01 + (e� e0)2 � g0e03g
Z
expfg(1 + e3)gdP (gjc)

= expf�g01 + (e� e0)2 � g0e03 + (1 + e3)(�0 + �01c) +
1

2
(1 + e3)

2�2g

and thus the proportion attributable to interaction is: pAIG=g0(E) =Z
f E[Y jg;e1;c]
E[Y jg0;e0;c]

� E[Y jg;e0;c]
E[Y jg0;e0;c]

� E[Y jg0;e1;c]
E[Y jg0;e0;c]

+ 1gdP (gjc)

fE[Y jg0;e1;c]
E[Y jg0;e0;c]

� 1g+
Z
f E[Y jg;e1;c]
E[Y jg0;e0;c]

� E[Y jg;e0;c]
E[Y jg0;e0;c]

� E[Y jg0;e1;c]
E[Y jg0;e0;c]

+ 1gdP (gjc)
�

e�g01+(e1�e0)2�g0e03+(1+e13)(�0+�
0
1c)+

1
2
(1+e13)

2�2 � e�g01�g0e03+(1+e03)(�0+�
0
1c)+

1
2
(1+e03)

2�2 � e(e1�e0)2+(e1�e0)g03 + 1g
e�g01+(e1�e0)2�g0e03+(1+e13)(�0+�

0
1c)+

1
2
(1+e13)

2�2 � e�g01�g0e03+(1+e03)(�0+�01c)+
1
2
(1+e03)

2�2
:

2.2. Proportion of a Joint E¤ect Attributable to Either Exposure Alone and to Interaction

Let RRg1e1 =
E[Y jg1;e1;c]
E[Y jg0;e0;c] . For the three-way decomposition of the joint excess relative risk of both exposures,

RRg1e1 � 1, we have the decomposition:

(RRg1e1 � 1) = (RRg1e0 � 1) + (RRg0e1 � 1) + (RRg1e1 �RRg1e0 �RRg0e1 + 1) :

Under the logistic regression model with a rare outcome

logitfP (Y = 1jG = g;E = e; C = c)g = 0 + 1g + 2e+ 3eg + 04c;

the proportions of the joint excess relative risk of both exposures due to each of the exposures considered alone
and due to interaction can be estimated approximately by:

RRg1e0 � 1
RRg1e1 � 1

� e(g1�g0)1+(g1�g0)e03 � 1
e(g1�g0)1+(e1�e0)2+(g1e1�g0e0)3 � 1

RRg0e1 � 1
RRg1e1 � 1

� e(e1�e0)2+(e1�e0)g03 � 1
e(g1�g0)1+(e1�e0)2+(g1e1�g0e0)3 � 1

(RRg1e1 �RRg1e0 �RRg0e1 + 1)
RRg1e1 � 1

�

fe(g1�g0)1+(e1�e0)2+(g1e1�g0e0)3 � e(g1�g0)1+(g1�g0)e03 � e(e1�e0)2+(e1�e0)g03 + 1g
e(g1�g0)1+(e1�e0)2+(g1e1�g0e0)3 � 1

:

2.3. SAS and Stata Code to Implement Proportion of a Total E¤ect Attributable to Interaction

Although we could obtain analytic standard errors for the expressions in Section 2.1 using the delta, the formulae
would be very involved. The SAS procedure proc nlmixed, can however, carry out standard error computations for
these expressions.
To estimate the proportion of the total e¤ect of E on binary outcome Y due to E when G is �xed to g0 and the

proportion due to interaction when G is binary, and logistic regression model (A1) is used, one can use the code
below. Suppose we have a dataset named �mydata�with outcome variable �y�, exposure variables �e�and �g�and
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three covariates �c1�, �c2�and �c3�. If there were more or fewer covariates the user would have to modify the second
and fourth lines of the code below to include these covariates.
The user must input in the third line of code the two levels of G (�g1=�and �g0=�) and the two levels of E

(�e1=�and �e0=�) that are being compared. The user must also input in the third line of the code the prevalence
of the exposure G (�pg=�) conditional on C = c (or use the marginal prevalence of G as a summary). In a case-
control study, these prevalences should be computed only among the controls. For the standard error to be valid
it is assumed that the prevalence of G is known; alternatively, standard errors and con�dence interval can be
interpretted as that for the proportion attributable to interaction in a population which had the same underlying
risk ratios as the sample in question, but had a prevalence of G equal to the prevalence of G in the sample.
The output will include the proportion of the total e¤ect of E that is attributable to interaction, along with a

95% con�dence interval; the remaining proportion is that attributable to E when G is set to g0.

proc nlmixed data=mydata;
parms b0=1 b1=0 b2=0 b3=0 bc1=0 bc2=0 bc3=0;
g1=1; g0=0; e1=1; e0=0; pg=0.5;
p_y=(1+exp(-(b0 + b1*G + b2*E + b3*G*E + bc1*C1 + bc2*C2 + bc3*C3)))**-1;
ll_y= y*log (p_y)+(1-y)*log(1-p_y);
model Y ~general(ll_y);
estimate �PAI_E� (exp((g1-g0)*b1+(e1-e0)*b2+(g1*e1-g0*e0)*b3)-exp((g1-g0)*b1+(g1-g0)*e0*b3)-exp((e1-e0)*b2+(e1-e0)*g0*b3)+1)*pg
/ ( ( exp((e1-e0)*b2+(e1-e0)*g0*b3) - 1) + (exp((g1-g0)*b1+(e1-e0)*b2+(g1*e1-g0*e0)*b3)
-exp((g1-g0)*b1+(g1-g0)*e0*b3)-exp((e1-e0)*b2+(e1-e0)*g0*b3)+1) *pg);
run;

The equivalent Stata code would be:

generate g1=1
generate g0=0
generate e1=1
generate e0=0
generate pg=0.5

generate Ige = g*e
logit y g e Ige c1 c2 c3

nlcom (exp((g1-g0)*_b[g]+(e1-e0)*_b[e]+(g1*e1-g0*e0)*_b[Ige])-exp((g1-g0)*_b[g]+(g1-g0)*e0*_b[Ige])-exp((e1-e0)*_b[e]+(e1-e0)
*g0*_b[Ige])+1)*pg/ ( ( exp((e1-e0)*_b[e]+(e1-e0)*g0*_b[Ige]) - 1) + (exp((g1-g0)*_b[g]+(e1-e0)*_b[e]+(g1*e1-g0*e0)*_b[Ige])
-exp((g1-g0)*_b[g]+(g1-g0)*e0*_b[Ige])-exp((e1-e0)*_b[e]+(e1-e0)*g0*_b[Ige])+1) *pg);

To estimate the proportion of the total e¤ect of E on binary outcome Y due to E when G is �xed to g0 and
the proportion due to interaction when G is continuous, and logistic regressions models (A1) and (A2) are used,
one can use the code below. Suppose we have a SAS dataset named �mydata�with outcome variable �d�, exposure
variables �e�and �g�and three covariates �c1�, �c2�and �c3�. If there were more or fewer covariates the user would
have to modify the second, third, fourth and �fth lines of the code below to include these covariates.
The user must input in the third line of code the two levels of G (�g1=�and �g0=�) and the two levels of E

(�e1=�and �e0=�) that are being compared. The user must also input in the third line of the code the value of
the covariates C at which the proportion attributable to interaction is to be calculated (�cc1=�, �cc2�and �cc3=�).
Alternatively the mean value of these covariates in the sample could be inputted on this line as a summary measure
(in a case-control study, these means should be computed only among the controls).
The output will include the proportion of the total e¤ect of E that is attributable to interaction, along with a

95% con�dence interval; the remaining proportion is that attributable to E when G is set to g0.
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proc nlmixed data=mydata;
parms b0=1 b1=0 b2=0 b3=0 bc1=0 bc2=0 bc3=0 a0=0 ac1=0 ac2=0 ac3=0 ss_g=1;
g1=1; g0=0; e1=1; e0=0; cc1=10; cc2=10; cc3=20;
p_y=(1+exp(-(b0 + b1*G + b2*E + b3*G*E + bc1*C1 + bc2*C2 + bc3*C3)))**-1;
mu_g =a0 + ac1*C1 + ac2*C2 + ac3*C3;
ll_g=-((g-mu_g)**2)/(2*ss_g)-0.5*log(ss_g);
ll_y= y*log (p_y)+(1-y)*log(1-p_y);
ll_o= ll_g + ll_y;
model Y ~general(ll_o);
estimate �PAI_E� (exp(-g0*b1+(e1-e0)*b2-g0*e0*b3+(b1+e1*b3)*(mu_g)+0.5*ss_g*(b1+e1*b3)**2)
- exp(-g0*b1-g0*e0*b3+(b1+e0*b3)*(mu_g)+0.5*ss_g*(b1+e0*b3)**2)-exp((e1-e0)*b2+(e1-e0)*g0*b3)+1)
/ ( exp(-g0*b1+(e1-e0)*b2-g0*e0*b3+(b1+e1*b3)*(mu_g)+0.5*ss_g*(b1+e1*b3)**2)
- exp(-g0*b1-g0*e0*b3+(b1+e0*b3)*(mu_g)+0.5*ss_g*(b1+e0*b3)**2) );
run;

2.4. SAS and Stata Code to Implement Proportion of a Joint E¤ect Attributable to Either Exposure Alone and to
Interaction

To estimate the proportion of the joint e¤ect of both exposures on binary outcome Y due to each exposure
alone and due to interaction, when logistic regression model (A1) is used, one can use the code below. We again
suppose we have a SAS dataset named �mydata�with outcome variable �y�, exposure variables �e�and �g�and three
covariates �c1�, �c2�and �c3�. If there were more or fewer covariates the user would have to modify the second and
fourth lines of the code below to include these covariates.
The user must input in the third line of code the two levels of G (�g1=�and �g0=�) and the two levels of E (�e1=�

and �e0=�) that are being compared. The output gives the proportions due to G alone, the proportion due to E
alone, and the proportion due to the interaction; 95% con�dence intervals are also given for these three proportions.
The three proportions will sum to 100%. The decomposition applies even if one of the exposures a¤ects the other.

proc nlmixed data=mydata;
parms b0=1 b1=0 b2=0 b3=0 bc1=0 bc2=0 bc3=0;
g1=1; g0=0; e1=1; e0=0;
p_y=(1+exp(-(b0 + b1*G + b2*E + b3*G*E + bc1*C1 + bc2*C2 + bc3*C3)))**-1;
ll_y= y*log (p_y)+(1-y)*log(1-p_y);
model Y ~general(ll_y);
estimate �PaG� (exp((g1-g0)*b1+(g1-g0)*e0*b3) - 1) / (exp((g1-g0)*b1+(e1-e0)*b2+(g1*e1-g0*e0)*b3) - 1);
estimate �PaE� (exp((e1-e0)*b2+(e1-e0)*g0*b3) - 1) / (exp((g1-g0)*b1+(e1-e0)*b2+(g1*e1-g0*e0)*b3) - 1);
estimate �Pa_INT� (exp((g1-g0)*b1+(e1-e0)*b2+(g1*e1-g0*e0)*b3)-exp((g1-g0)*b1+(g1-g0)*e0*b3)-exp((e1-e0)*b2+(e1-e0)*g0*b3)+1)
/(exp((g1-g0)*b1+(e1-e0)*b2+(g1*e1-g0*e0)*b3) - 1);
run;

The equivalent Stata code would be as follows (with the output �rst giving the proportion of joint e¤ect due to
G alone, then due to E alone, and then that due to their interaction):

generate g1=1
generate g0=0
generate e1=1
generate e0=0

generate Ige = g*e
logit y g e Ige c1 c2 c3

nlcom (exp((g1-g0)*_b[g]+(g1-g0)*e0*_b[Ige]) - 1) / (exp((g1-g0)*_b[g]+(e1-e0)*_b[e]+(g1*e1-g0*e0)*_b[Ige]) - 1)
nlcom (exp((e1-e0)*_b[e]+(e1-e0)*g0*_b[Ige]) - 1) / (exp((g1-g0)*_b[g]+(e1-e0)*_b[e]+(g1*e1-g0*e0)*_b[Ige]) - 1)
nlcom (exp((g1-g0)*_b[g]+(e1-e0)*_b[e]+(g1*e1-g0*e0)*_b[Ige])-exp((g1-g0)*_b[g]+(g1-g0)*e0*_b[Ige])-exp((e1-e0)*_b[e]

+(e1-e0)*g0*_b[Ige])+1)/(exp((g1-g0)*_b[g]+(e1-e0)*_b[e]+(g1*e1-g0*e0)*_b[Ige]) - 1)
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3. Continous Outcomes and Binary or Continuous Exposures

3.1. Proportion of a Total E¤ect Attributable to Interaction

As discussed in the Appendix to the text, for continuous exposures, when the e¤ect of E on Y is unconfounded
conditional on (C;G) then the total e¤ect of E on Y , E[Ye1 jc]�E[Ye0 jc], could be decomposed into two components
as: E[Ye1 jc]� E[Ye0 jc]

= E[Y jg0; e1; c]� E[Y jg0; e0; c] +
Z
fE[Y jg; e1; c]� E[Y jg; e0; c]� E[Y jg0; e1; c] + E[Y jg0; e0; c]gdP (gjc):

Under the linear model

E[Y jG = g;E = e; C = c] = �0 + �1g + �2e+ �3eg + �04c; (A3)

these two components are:

E[Y jg; e1; c]� E[Y jg; e0; c] = (�2 + g�3)(e1 � e0)Z
fE[Y jg; e1; c]� E[Y jg; e0; c]� E[Y jg0; e1; c] + E[Y jg0; e0; c]gdP (gjc) = �3fE[Gjc]� g0g(e1 � e0)

and the proportion due to interaction is then �3fE[Gjc]�g0g
(�2+�3E[Gjc]) .

This decomposition above marginalized over the distribution P (c) gives: E[Ye1 ]� E[Ye0 ]

=

Z
fE[Y jg0; e1; c]�E[Y jg0; e0; c]gdP (c) +

Z
fE[Y jg; e1; c]�E[Y jg; e0; c]�E[Y jg0; e1; c] +E[Y jg0; e0; c]gdP (g; c)

and under model (A3) the components are:

E[Y jg; e1; c]� E[Y jg; e0; c] = (�2 + g�3)(e1 � e0)Z
fE[Y jg; e1; c]� E[Y jg; e0; c]� E[Y jg0; e1; c] + E[Y jg0; e0; c]gdP (gjc) = �3fE[G]� g0g(e1 � e0)

and the proportion due to interaction is then �3fE[G]�g0g
(�2+�3E[G])

. In section 3.3 SAS code is given for this latter decom-
position.

3.2. Proportion of a Joint E¤ect Attributable to Either Exposure Alone and to Interaction

As also discussed in the Appendix to the text, if the joint e¤ects of G and E are unconfounded conditional on
C we can empirically decompose the joint e¤ects of both exposures combined as follows:

E[Y jg1; e1; c]� E[Y jg0; e0; c] = fE[Y jg1; e0; c]� E[Y jg0; e0; c]g+ fE[Y jg0; e1; c]� E[Y jg0; e0; c]g
+fE[Y jg1; e1; c]� E[Y jg1; e0; c]� E[Y jg0; e1; c] + E[Y jg0; e0; c]g:

We can then also compute the proportion of the joint e¤ect due G alone as E[Y jg1;e0;c]�E[Y jg0;e0;c]
E[Y jg1;e1;c]�E[Y jg0;e0;c] , due to E alone

as E[Y jg0;e1;c]�E[Y jg0;e0;c]
E[Y jg1;e1;c]�E[Y jg0;e0;c] , and due to their interaction as

E[Y jg1;e1;c]�E[Y jg1;e0;c]�E[Y jg0;e1;c]+E[Y jg0;e0;c]
E[Y jg1;e1;c]�E[Y jg0;e0;c] .

On a di¤erence scale, under the linear model

E[Y jG = g;E = e; C = c] = �0 + �1g + �2e+ �3eg + �04c;
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these three proportions are given by:

E[Y jg1; e0; c]� E[Y jg0; e0; c]
E[Y jg1; e1; c]� E[Y jg0; e0; c]

=
(�1 + �3e0)(g1 � g0)

�1(g1 � g0) + �2(e1 � e0) + �3(g1e1 � g0e0)
E[Y jg0; e1; c]� E[Y jg0; e0; c]
E[Y jg1; e1; c]� E[Y jg0; e0; c]

=
(�2 + �3g0)(e1 � e0)

�1(g1 � g0) + �2(e1 � e0) + �3(g1e1 � g0e0)
E[Y jg1; e1; c]� E[Y jg1; e0; c]� E[Y jg0; e1; c] + E[Y jg0; e0; c]

E[Y jg1; e1; c]� E[Y jg0; e0; c]
=

�3(g1e1 � g1e0 � g0e1 + g0e0)
�1(g1 � g0) + �2(e1 � e0) + �3(g1e1 � g0e0)

:

3.3. SAS and Stata Code to Implement Proportion of a Total E¤ect Attributable to Interaction

To estimate the proportion of the total e¤ect of E on continuous outcome Y due to E when G is �xed to g0 and
the proportion due to interaction, and logistic regression model (A3) is used, one can use the code below. Suppose
we have a dataset named �mydata�with outcome variable �y�, exposure variables �e�and �g�and three covariates
�c1�, �c2�and �c3�. If there were more or fewer covariates the user would have to modify the second and fourth lines
of the code below to include these covariates.
The user must input in the third line of code the level g0 to which G will be �xed (�g0=�) when carrying out

the decomposition of the total e¤ect of E into the proportion due to E when G is �xed to g0 and the proportion
due to interaction when G. The user must also input in the third line of the code the mean value of G in the
population (�exg=�). For the standard error to be valid it is assumed that the mean of G is known; alternatively,
standard errors and con�dence interval can be interpretted as that for the proportion attributable to interaction in
a population which had the same underlying e¤ects as the sample in question, but had a mean of G equal to the
mean of G in the sample.
The output will include the proportion of the total e¤ect of E that is attributable to interaction, along with a

95% con�dence interval; the remaining proportion is that attributable to E when G is set to g0.

proc nlmixed data=mydata;
parms b0=0 b1=0 b2=0 b3=0 bc1=0 bc2=0 bc3=0 ss_y=1;
g0=0; exg=0.5;
mu_y = b0 + b1*G + b2*E + b3*G*E + bc1*C1 + bc2*C2 + bc3*C3;
ll_y=-((y-mu_y)**2)/(2*ss_y)-0.5*log(ss_y);
model Y ~general(ll_y);
estimate �PAI_E� (b3*exg-g0)/(b2+b3*exg);
run;

The equivalent Stata code would be:

generate g0=0
generate exg=0.5

generate Ige = g*e
reg y g e Ige c1 c2 c3

nlcom (_b[Ige]*exg-g0)/(_b[e]+_b[Ige]*exg)

3.4. SAS and Stata Code to Implement Proportion of a Joint E¤ect Attributable to Either Exposure Alone and to
Interaction

To estimate the proportion of the joint e¤ect of both exposures on continuous outcome Y due to each exposure
alone and due to interaction, when logistic regression model (A3) is used, one can use the code below. We again
suppose we have a dataset named �mydata�with outcome variable �y�, exposure variables �e� and �g� and three
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covariates �c1�, �c2�and �c3�. If there were more or fewer covariates the user would have to modify the second and
fourth lines of the code below to include these covariates.
The user must input in the third line of code the two levels of G (�g1=�and �g0=�) and the two levels of E (�e1=�

and �e0=�) that are being compared. The output gives the proportions due to G alone, the proportion due to E
alone, and the proportion due to the interaction; 95% con�dence intervals are also given for these three proportions.
The three proportions will sum to 100%. The decomposition applies even if one of the exposures a¤ects the other.

proc nlmixed data=mydata;
parms b0=0 b1=0 b2=0 b3=0 bc1=0 bc2=0 bc3=0 ss_y=1;
g1=1; g0=0; e1=1; e0=0;
mu_y = b0 + b1*G + b2*E + b3*G*E + bc1*C1 + bc2*C2 + bc3*C3;
ll_y=-((y-mu_y)**2)/(2*ss_y)-0.5*log(ss_y);
model Y ~general(ll_y);
estimate �PaG� (b1+b3*e0)*(g1-g0)/( b1*(g1-g0) + b2*(e1-e0) + b3*(g1*e1-g0*e0) );
estimate �PaE� (b2+b3*g0)*(e1-e0)/( b1*(g1-g0) + b2*(e1-e0) + b3*(g1*e1-g0*e0) );
estimate �Pa_INT� b3*(g1*e1-g1*e0-g0*e1+g0*e0)/( b1*(g1-g0) + b2*(e1-e0) + b3*(g1*e1-g0*e0) );
run;

The equivalent Stata code would be as follows (with the output �rst giving the proportion of joint e¤ect due to
G alone, then due to E alone, and then that due to their interaction):

generate g1=1
generate g0=0
generate e1=1
generate e0=0

generate Ige = g*e
reg y g e Ige c1 c2 c3

nlcom (_b[g]+_b[Ige]*e0)*(g1-g0)/( _b[g]*(g1-g0) + _b[e]*(e1-e0) + _b[Ige]*(g1*e1-g0*e0) )
nlcom (_b[e]+_b[Ige]*g0)*(e1-e0)/( _b[g]*(g1-g0) + _b[e]*(e1-e0) + _b[Ige]*(g1*e1-g0*e0) )
nlcom _b[Ige]*(g1*e1-g1*e0-g0*e1+g0*e0)/( _b[g]*(g1-g0) + _b[e]*(e1-e0) + _b[Ige]*(g1*e1-g0*e0) )
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