Supplementary Information - NCOMMS-14-07141B

Supplementary Figure 1: Isolation of cardiomyocyte nuclei from murine hearts
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Suppl. Fig. 1: Flow cytometric analysis (FACS) of cardiomyocyte nuclei with an antibody
against pericentriolar material 1 (PCM1, a-c, g-k), a cardiac myocyte-specific histone H2B-
mCherry transgene (d-g) or a molecular beacon targeting mRNA of cardiac troponin T type 2
(Tnnt2, h). a, b, FACS histograms of cardiomyocyte nuclei identified by PCM1 (red) and non-
myocyte nuclei (black) from adult murine hearts before (a) and after purification of nuclei with
magnetic-assisted sorting (MACS) with PCM1 antibody (b). c, Purity of PCM1-positive
cardiomyocyte nuclei after FACS- or MACS-based isolation of cardiomyocyte nuclei (n = 4-
10). d-g, Analysis of adult heart nuclei from mice expressing H2B-mCherry under control of
the cardiomyocyte-specific aMHC-promoter (H2B-mCherry). d, mCherry fluorescence in
nuclei of cardiomyocytes from H2B-mCherry mice (overlay of white, o-actinin
immunostaining; red, H2B-mCherry fluorescence; scale bar 20 um). e-g, FACS analysis of
cardiac nuclei isolated from H2B-mCherry mice. Nuclei of wild-type mice were stained with
isotype control IgG as a negative control (e). Cardiac nuclei from H2B-mCherry mice showed
nuclei with high mCherry fluorescence (red) (f). PCM1-positive and mCherry positive nuclei
overlapped (red) (g). h, Overlap of PCML1 staining with a molecular beacon targeting Tnnt2
MRNA which is specifically expressed in cardiomyocytes. The Tnnt2 beacon bound to its
target mRNA was identified by its 6-carboxyfluorescein fluorescence (right symbol).
Fluorescence of unbound beacons was quenched by BHQ (black hole quencher, left
symbol). i-k, Representative FACS histograms and quantification of PCM1-positive
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cardiomyocyte nuclei from newborn (i), adult healthy (j) and failing (k) murine hearts (n = 6
per group). Data are displayed as mean values + s.e.m., n = 6.
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Supplementary Figure 2: Correlation of CpG methylation between experimental
replicates
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Suppl. Fig. 2: Histograms of CpG methylation, scatter plots and Pearson correlation
coefficients for three experimental replicates of newborn myocytes (a), adult healthy (b) and
failing cardiomyocytes (c). Data represent CpGs with a minimal coverage of 10.
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Supplementary Figure 3: MethylC-seq sequencing statistics
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Suppl. Fig. 3: Read coverage of CpG methylation analysis for neonatal, adult healthy and
adult failing cardiomyocytes.
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Supplementary Figure 4: CpG methylation of the Atp2a2 locus in
cardiomyocytes and non-myocytes

a

Atp2a2 5 kbp
m“l ] -1 14 | - | l' ________________________________________
] lT LLLIL LR | T T 1 ] 1
Assay | Assay Il Assay IV
chr5:122912954-122912977 chr5:122940565-122940579 chr5:122993448-122993555
Assay Il
chr5:122047749-122947882
b c d
100 5 g 100 4 40
on-cardio- Flow cytome!
Weeszaenaza: sy ®  myocytes L Yeomety
Cardio- Non-cardio- Adult heart 0 Calculated from
= oy o myocytes myocytes 3 i i
g 75 Failing & ——————3-——____3 £ 75 yocy yocy %A;;o CpG methylation
= fe 4 T iR § Adutheart ¢ Sg
5 ‘ S - <
& 5 23
z 50 2 50 8 S 204
i’a ‘q‘i > C
£ £ §s
] Q T8
S 251 & 251 &7 104
Cardio-
myocytes
0 T T T 0- 0 T T
0 1 2 3 Adult  Failing Adult Failing Adult Failing Adult Failing

Suppl. Fig. 4: a, Schematic representation of the murine Atp2a2 gene and position of the
primers used for pyrosequencing to assess CpG methylation (assays I-1V, for primers see
Supplementary Tab. 6). b, Methylation of three CpGs (assay Il) in Atp2a2 in healthy and
failing adult cardiomyocytes (PCM1-positive nuclei) and non-myocytes (PCM1-negative
nuclei) as compared with heart tissue (n = 3-4 samples per group). ¢, Average methylation of
4 CpGs (assay V) upstream of Atp2a2 in healthy and failing adult cardiomyocytes (PCML1-
positive nuclei) and non-myocytes (PCM1-negative nuclei) as compared with heart tissue (n
= 3-4 samples per group, **P <0.01, ANOVA, Bonferroni post hoc test). d, Fraction of
cardiomyocyte nuclei in adult and failing hearts determined either by flow cytometry using
PCML1 staining or by calculation of CpG methylation levels in cardiomyocytes, non-myocytes

and cardiac tissue (average methylation of 11 CpGs using assays I-1V, n = 3-6). Data are
shown as mean values + s.e.m.
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Supplementary Figure 5: Size distribution of differentially methylated regions
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Suppl. Fig. 5: a-d, Histograms of DMR size distributions between neonatal, adult and failing

cardiomyocytes and ES cells (bin size 250 bp).
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Supplementary Figure 6: DMR annotation
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Suppl. Fig. 6: a-d, Genomic annotation of the average genome (a) and DNA regions with
differential CpG methylation (DMRs) between newborn, adult and failing cardiomyocytes vs.
ES cells (b-d). e-h, CpG island annotation of the average genome (e) and DNA regions with
differential CpG methylation (DMRSs) between newborn, adult and failing cardiomyocytes vs.
ES cells (f-h). Abbreviations: UTR, untranslated region; TTS, transcription termination site
(region -100 bp to + 1 kbp).
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Supplementary Figure 7: DNA methylation at cardiac transcription factor
binding sites in differentially methylated regions (DMRs)
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Suppl. Fig. 7: a, CpG methylation of 5 kbp flanking regions of cardiac transcription factor
(TF) binding motifs identified in DMRs which were hypomethylated in adult cardiomyocytes
vs. ES cells (TF factor motifs highlighted in bold in Fig. 1f). b-c, Transcription factor motif
enrichment in hypomethylated DMRs of cardiomyocytes (b) and hearts (c) as compared with
ES cells. Graphs display the 15 most significantly enriched motifs identified by HOMER
(hypergeometric test). d-e, GO biological analysis of genes with proximal (-5 - +1 kbp) or
distal (up to 50 kbp) DMRs by GREAT. Functional significance of hyper- (d) or
hypomethylated (e) DMRs in adult cardiomyocytes as compared with ES cells. Numbers of
genes per group are indicated next to the columns (binomial test).
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Supplementary Figure 8. Gene ontology analysis of hypermethylated gene
bodies in adult cardiomyocytes vs. ES cells
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Suppl. Fig. 8: Gene ontology analysis of genes which were hypermethylated (from Fig. 2,
group 1) in adult cardiomyocytes vs. ES cells. P value per GO term < 10° for
hypermethylated genes, hypergeometric test, Bonferroni step down correction.
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Supplementary Figure 9: Gene ontology analysis of hypomethylated gene
bodies in adult cardiomyocytes vs. ES cells
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Suppl. Fig. 9: Gene ontology analysis of genes which were hypomethylated (from Fig. 2,
group II) in adult cardiomyocytes vs. ES cells. P value per GO term <10™ for
hypomethylated genes, hypergeometric test, Bonferroni step down correction.
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Supplementary Figure 10: Gene ontology terms of genes with hypomethylated
gene bodies in adult vs. newborn cardiomyocytes
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Suppl. Fig. 10: Gene ontology analysis of hypomethylated genes in adult vs. neonatal
cardiomyocytes (P value per GO term < 0.001, hypergeometric test, Bonferroni step down
correction).
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Supplementary Figure 11: Gene ontology terms of genes with hypermethylated
gene bodies in adult vs. newborn cardiomyocytes
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Suppl. Fig. 11: Gene ontology analysis of hypermethylated genes in adult vs. neonatal
cardiomyocytes (P value per GO term < 0.05, hypergeometric test, Bonferroni step down
correction).
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Supplementary Figure 12: EZH2 binding
genic CpG methylation in cardiomyocytes
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Suppl. Fig. 12: a, Heat maps of EZH2 binding and H3K27me3 marks for different
developmental stages of genes which are demethylated in cardiomyocytes as compared with
ES cells. Shown are results of E12.5 hearts®, newborn and adult cardiomyocytes. Displayed
genes have either very low (<1 FPKM, from Fig. 5, group 1) or high expression (> 250
FPKM, from Fig. 5, group 2) in adult cardiomyocytes. For comparison, adult cardiomyocyte
H3K27me3 data are reproduced from Fig. 5c. b-e, IGV traces of four representative loci.
Displayed are CpG methylation as well as H3K27me3 and EZH2 enrichments. E12.5 data
are reanalyzed from He et al.>. Abbreviations: TES, transcription end site; TSS, transcription

start site; 5m CpG, CpG methylation.
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Supplementary Figure 13: Time course of DNA methylation of two genes which
are hypermethylated in adult vs. newborn cardiomyocytes
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Suppl. Fig. 13: a, b, Upper traces, IGV (Integrative Genomics Viewer) traces of CpG
methylation of tropomyosin 2 (Tpm2, a) and glucose transporter GLUT1 (Slc2al, b) in ES
cells, newborn and adult cardiomyocytes. Lower graphs, the time course of DNA methylation
was analyzed by pyrosequencing during foetal and postnatal development and after deletion
of Dnmt3a/b. Data are mean values + s.e.m., n = 3-4 hearts per group, * P < 0.05, ** P
<0.01, **P < 0.001 vs. adult, ANOVA, Bonferroni post hoc test). E, embryonic day.
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Supplementary Figure 14: Analysis of DNA methylation of cell cycle-associated
genes during postnatal development of cardiomyocytes
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Suppl. Fig. 14: a, Pie chart of postnatal differentially methylated cell cycle genes
(GO:0007049). Genes harboring DMRs covering > 5% of the entire gene body were
regarded as differentially methylated. b, Heatmaps of CpG methylation and gene expression
changes of postnatally differentially methylated cell cycle genes (n = 2 newborn, 3 adult
samples). ¢, d, Upper panels, representative IGV traces of DNA methylation in newborn and
adult cardiomyocytes and ES cells. Lower panels, the time course of CpG methylation and
gene expression was analyzed by pyrosequencing during foetal and postnatal development
and after deletion of Dnmt3a/b (data are mean values * s.e.m., n = 3-4, **P < (0.001 vs.
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adult, ANOVA, Bonferroni post hoc test). Abbreviations: E, embryonic day; TSS, transcription
start site; TES, transcription end site.
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Supplementary Figure 15: Analysis of expression, H3K27me3 marks and DNA
methylation and of cell cycle-associated genes during postnatal development
of cardiomyocytes
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Suppl. Fig. 15: a, Pie chart of postnatal differentially regulated cell cycle genes (P < 0.05,
> 1.5 fold, Student's t-test). b, Heat maps of postnatal gene expression and CpG methylation
changes as well as levels of H3K27me3 binding in newborn and adult cardiomyocyte genes
(n = 2 newborn, 3 adult samples). Abbreviations: TSS, transcription start site; TES,
transcription end site



Cardiomyocyte methylome 18

Supplementary Figure 16: Experimental murine heart failure model
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Suppl. Fig. 16: Chronic cardiac pressure overload in mice after 3 weeks of transverse aortic
constriction was assessed by echocardiography (a, representative M-mode tracings, vertical
bar 2 mm, horizontal bar 200 msec) and led to reduced left ventricular ejection fraction,
increased diastolic wall dimensions and chamber dilatation (b, n = 10-11), cardiac
hypertrophy and pulmonary edema (c, n = 10-11), increased expression of brain natriuretic
peptide (d, Nppb, n = 4-5) and increased cardiac fibrosis (Sirius red staining, bar 50 um) and
connective tissue growth factor (Ctgf) mRNA expression (e, n = 4-5). Data are shown as
mean values *+ s.e.m.; ***P < 0.001, **P < 0.01, Student's t-test.
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Supplementary Tables
Supplementary Table 1: MethylC-seq sequencing statistics.
Biological  Number of Mean
Group Libraries Lanes re Iicgates assessed coverage
P CpGs per CpG
Newborn 3
cardiomyocytes 3 (100 PE) 10 21440383 29
Adult 5
cardiomyocytes 3 (100 PE) 16 21489071 38
Failing 5
cardiomyocytes 3 (100 PE) 18 21494224 38

Experimental details of methylC-seq experiments. PE, paired-end reads.
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Supplementary Table 2:

ChlIP-seq sequencing statistics.
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Histone modification Replicate 1 Replicate 2 Peaks
(No. of reads) (No. of reads) (No.)

H3K4mel (Adult) 34136245 27433336 197175

H3K4me3 (Adult) 7112750 888472 29745

H3K27me3 (Adult) 17186311 8801007 14539

H3K27ac (Adult) 37254499 10367429 100133

Input (Adult) 76866427 66920579

H3K27me3 (Newborn) 13492727 17480255 22352

Input (Newborn) 62552105

Number of uniquely mapped reads for ChlP-seq experiments and MACS2 peaks.

Pearson correlation coefficient between replicates was > 0.9 for all assessed

modifications and input.
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Supplementary Table 3: Expression of genes with low genic CpG methylation

after cardiac ablation of EZH2.

E12.5 heart? Adult right ventricle?
Gene RNA expression RNA expression
(Ezh2 mutant/control) (Ezh2 mutant/control)
Cdkn2a 108.6 27.6
Six1 33.6 17.1
Isl1 12.3 n.d.
Pax6 115 n.d.
Clec4n n.d. 3.2
Shox2 3.0 n.d.
Hoxb3 2.9 n.d.
Pitx2 2.2 n.d.
Ezh2 mutant Ezh2"" x Nkx2-5°"** Ezh2"" x Mef2cAHF*"
Control Ezh2" x Nkx2-5¢"* Ezh2™

Cardiomyocyte-specific deletion of the Ezh2 gene led to increased gene expression
in E12.5 heart or adult right heart (regulated genes FPKM > 1; > 1.5 fold; P < 0.05;

n.d. not detectable, i.e. FPKM < 1 in all samples). Data are derived from published

RNA-seq data sets*?.
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