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1 Materials and methods

1.1 Sociodemographic model

We performed our analysis by using an individual-based stochastic simulation model previously
developed for Europe and employed in [1] to derive synthetic contact matrices for 26 countries,
which is a refined version of a model already used to investigate the spread of the 2009 H1N1
influenza pandemic in Europe [2, 3]. Highly detailed country-specific socio-demographic data
on age structure, household size and composition, employment rates by age, educational sys-
tem were used to generate a synthetic population where each individual is characterized by an
age, a household membership and an occupation between student, worker and inactive (unem-
ployed/retired).

Data on households and employment rates are provided by the Statistical Office of the Euro-
pean Commission (Eurostat, http://epp.eurostat.ec.europa.eu); data on educational orga-
nization are taken from the Education, Audiovisual and Culture Executive Agency of the Euro-
pean Commission (http://eacea.ec.europa.eu) and from the UNESCO Institute for Statistics
(http://www.uis.unesco.org/Pages/default.aspx).

Briefly, households are built by using a heuristic model matching marginal distributions of
household size, age of household members by size (and thus the age structure of the total popu-
lation), composition (single adult or couple, with or without children), as derived from available
census data, and maintaining realistic generational age gaps between household members. Then,
an occupation is assigned to individuals: every member of the population either goes to school
or workplace, or remains at home (for instance as a retired or family worker), following census
data on employment rates by age. Students are assigned to the correct school level of the edu-
cational system according to their age. Real average distributions of school and workplace size
are matched in the model.

Full details on the initialization of the population can be found in [1].

1.2 Human mobility

As mentioned in Section 1.1 in our model each household, school and workplace has a specific
geographic location. In order to assign students and workers to a school or workplace, we use
recent estimates on the commuting pattern of individuals in industrialized countries. Specifically,
as proposed in [4] and used for modeling influenza transmission in [2, 3], daily internal commuting
between home and school/workplace is modeled in such a way that probability density function
of travel distances d complies with a truncated power–law distribution:

f(d) = (d + r0
g)

−βr exp

{

−
d

κ

}

, (1)

where r0
g = 5.8km, βr = 1.65 and κ = 350km [2, 3, 4].

Full details on mobility patterns considered in the model can be found in [2].

1.3 Disease transmission model

Influenza transmission was simulated by a stochastic spatially structured individual–based model.
Each individual, explicitly represented in the model as a simulated agent, is characterized by
household membership, school/workplace membership (if any), age and epidemiological status.
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Each household, school and workplace lies in a specific geographic location. Given the short
time period of interest here -of the order of weeks-, once the population is initialized, it is kept
constant through the course of the simulation.

The adopted epidemic flow follows the classic Susceptible-Latent-Infectious-Removed scheme:
a susceptible individual can become latent after a contact with an infectious individual; after a
given period of time -the latent period- latent individuals (i.e., individuals who got infected but
that are not able to transmit the disease yet) become infectious; after a given period of time
-the infectivity period- infectious individuals recover and they become immune to the disease.

Specifically, as in [2, 3, 5, 6, 7], at any time t of the simulation (time step ∆t = 1 day), any
infectious individual i has a probability

pi,j,ρ(t) = 1 − e−∆t·λi,ρ(t)

of infecting a susceptible individual j between her/his household members (ρ = H), schoolmates
(if any, ρ = S), work colleagues (if any, ρ = W ) and in the general community (ρ = G).

In particular, transmission in household is modeled as:

λi,H(t) =
βhkh,a(t − τi)

hi

where

• hi is the number of individuals living in the same household of individual i;

• βh is the transmission rate in households;

• kh,a(σ) is the infectivity of individual i, aged a years, in household, σ days since infection
(see Section 1.4 for details on function k);

• τi is the time at which individual i was infected.

If individual i is a student, transmission in school is modeled as:

λi,S(t) =
βsks,a(t − τi)

si

where

• si is the number of individuals attending the same school of individual i;

• βs is the transmission rate in schools;

• ks,a(σ) is the infectivity of individual i, aged a years, in school, σ days since infection;

• τi is the time at which individual i was infected.

If individual i is a worker, transmission in workplace is modeled as:

λi,W (t) =
βskw,a(t − τi)

wi

where
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• wi is the number of individuals working in the same workplace of individual i;

• βw is the transmission rate in workplaces;

• ks,a(σ) is the infectivity of individual i, aged a years, in workplace, σ days since infection;

• τi is the time at which individual i was infected.

Transmission in the general community is modeled as:

λi,G(t) =
βgkg,a(t − τi)f(di,j)

∑N

j=1 f(di,j)

where

• N is the total number of individuals in the population;

• βg is the transmission rate in the general community;

• kg,a(σ) is the infectivity of individual i, aged a years, in the general community, σ days
since infection;

• τi is the time at which individual i was infected.

• di,j is the geographical distance between individual i and j;

• f is the kernel function reported in Equation (1), which modules the transmission in the
general community on the basis of the commuting pattern of individuals of the population
as detailed in [2, 3, 4].

1.4 Natural history of influenza and model calibration

Model calibration was made on the basis of empirical data on both past influenza epidemics
and the 2009 H1N1pdm pandemic. Following the state-of-the-art estimates on the generation
time distributions and infectiousness profiles for the 2009 H1N1 influenza pandemic given in [8],
we consider infectiousness over time to depend on the context where interaction occurs and on
the age of the case - the population is categorized as “children”, i.e., individuals aged less than
10 years, and “adults”, i.e., all other individuals in the population. Specifically, infectiousness
profiles kρ,a(t−τi) (where i, ρ, a, t and τi are defined as in Section 1.3) are derived from discretized
Weibull distributions with an offset of 1 (which is equivalent to having a latency period of 1
day). This leads to setting-specific values of the generation time which are: 3.7 days (standard
deviation: 3.1 days) for children in household; 1.1 days (standard deviation: 0.4 days) for
children at school and in the community; 2.3 days (standard deviation: 2.9 days) for adults.
The distributions of the generation times are reported in Figure S1A.

The model has only four free parameters, namely the transmission rates in the different social
contexts. Setting-specific transmission rates were estimated in such a way that the proportions
of cases in the different settings are consistent with empirical estimates [6, 9, 10, 11], namely 30%
of cases in households, 18% in schools, 19% in workplaces and 33% in the general community.
As in [3, 5], different transmissibility scenarios can be obtained by multiplying all transmission
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Figure S1: A Probability distribution of context and age specific generation time. B Epidemic
doubling time as a function of Rrand and R0, as resulting from Equation (2). The dashed line
represents the plot of Equation (3), where Tg = Teff = 3.2 days.

rates for suitable constant values. Choosing generation time distributions and transmission rates
determines the value of the epidemic doubling time -i.e., the time required for the number of
infectious individuals to double-, which is a key quantity for the assessment of the effectiveness
of containment strategies.

The basic reproduction number R0 is defined as the average number of secondary infections
caused by a typical primary infection in a fully susceptible population [12]. However, in complex
models with highly heterogeneous mixing, as the one used in this work, the definition of a
“typical” infectious individual is unclear. Therefore, in the parametrization procedure we used
Rrand, in place of R0, which is defined as the average number of secondary infections generated
by a randomly selected individual in a fully susceptible population [6]. Ferguson et al. [6] found
that for US and UK populations, the following relation holds:

R0 = Rrand + 0.2 (2)

In [6] it has been found that this relation depends on the demography of the considered country;
in fact the adjustment term 0.2 (which was necessary for US and UK but not for Thailand [5, 6])
was motivated by a different level of household transmission in the US and UK models, due to
smaller household sizes and higher transmission levels in schools/workplaces, with respect to the
Thai model. As the demography of the Netherlands (and of France) is closely related to that of
the UK [1], we use the same adjustment term 0.2.

In our simulations having transmission parameters leading to Rrand = 1.5 we estimate an
epidemic doubling time of 3.13 days, which is in excellent agreement with the estimates given
in [6] (namely 3.16 days) for the simulation having Rrand = 1.5 and R0 = 1.7. This reinforces
the choice of using Equation (2) for defining R0 (see Figure S1B). In addition, this allows a
simpler comparison between our results and the ones reported in the literature: thus all results
are presented in terms of R0 (instead of Rrand).
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For classic homogeneous mixing SIR models, it is well known [6, 13] that R0 = 1 + rTg,
where Tg is the average generation time and r is the exponential growth rate of the epidemic.
Moreover, the doubling time Td can be written in terms of r as Td = ln(2)/r and thus, for a
classic SIR model, we obtain

Td =
ln(2)Tg

R0 − 1
(3)

As we are considering setting and age specific generation time distributions, we do not know the
value of Tg to be used in Equation (3). However, we want to test whether this approximation
still holds for our highly heterogeneous model and, if so, for which value of the generation time
(that we call Teff). By minimizing the quantity

∑

j=R0∈{1.1,...,2.3}

[

Yj − yj(Teff)

Yj

]2

where yj = ln(2)Teff/(j − 1) and Yj is the doubling time of the simulations, we find Teff = 3.2
days. This result is in perfect agreement with the findings reported in [6] and, moreover, this
relation represents a good approximation in the explored range R0 = 1.1− 2.3 (see Figure S1B).
This justifies the choice (already used for instance in [3, 5]) of multiplying the transmission rate
for suitable scaling factors in order to obtain different transmissibility scenarios.

1.5 Seeding of the accidental escape

We initialize the epidemic with one single case in a laboratory located in Rotterdam, the Nether-
lands. For scenarios with a different number of initial infectives and other seeding areas (namely,
urban and rural France) see Sections 2.3 and 2.4, respectively. In every simulation the specific
position of the laboratory is assigned by randomly choosing a cell of Rotterdam; the facility
comprises 50-150 workers. Since the first case is a laboratory worker, the uncertainty on the
initial evolution of the epidemic is greatly reduced for instance with respect to the case of a
natural emergence of a new pandemic strain (see for instance [5, 14]): in fact, in the case of
an accidental escape from a BSL facility, the index case is likely to be an adult worker whose
workplace has well determined features (size and geographic location).

1.6 Control measures and self reporting

We consider various measures for controlling the epidemic spread after the escape from the
laboratory:

• Laboratory isolation: as a first intervention implemented Ti days after the ascertainment
of the pathogen escape event (occurring at time Tw), the BSL facility is closed for 20 days
(which is the maximum allowed time for the duration of viral shedding of an infectious
individual, see Figure S1).

• Quarantine of laboratory workers’ households: in addition to BSL facility closure, Tt days
after case detection, laboratory workers and members of their households are quarantined
for 20 days.

6



• Contact tracing: contacts of a case are identified and traced in the population; among
these, detection of secondary cases occurs with a certain probability (Pc if they are close
contacts of the primary infector, Pg if they have been infected through random contacts in
the general community), and ensuing isolation and household quarantine are put in place,
Tt days after, for 20 days.

• School/workplace closure: a given percentage of schools Fs and workplaces Fw is closed
for a period Tp either preventively (as soon as the escape event is identified and within
a certain distance Dp from the laboratory) or reactively (after the detection of a case
involved in contact tracing or the self-reporting of health status by an undetected case in
the school/workplace).

In addition, the effect of self-reporting of undetected cases, occurring with probability Pr, has
been evaluated.

Description, reference values and explored ranges for the parameters regulating control mea-
sures (and self-reporting) are listed in the following (see also Figure 1 in the Main Text).

• Pc is the probability of detecting an infected close contact (i.e., a household or
school/workplace contact) of a case. This probability accounts for the combination of
two factors: the probability of developing symptoms (which is clearly a characteristic of
the pathogen) and the probability of detecting a case, given that she/he is symptomatic.
The probability of being symptomatic for past influenza viruses has been estimated to be
in the range 50%–75% [5, 14, 15], but it may be even higher for a new, more aggressive,
strain. In addition, it is expected that, in case of an emerging pandemic, healthcare sys-
tems would be able to identify around 90% of symptomatic cases [5, 6, 7]. Therefore, the
combined close contact detection probability is assumed to be in the range 40%–100%. As
a reference value we assume Pc = 0.6.

• Pg is the probability of detecting an infected “random” contact of a case, where random
contact means a contact occurred in the general community (and thus excluding household
and school/workplace contacts). Given the greater difficulty in identifying such contacts,
we assume Pg to be a fraction ranging from 10% to 100% of Pc; the reference value we
used is Pg = 0.5Pc (and thus Pg = 0.3).

• Pr is the self-reporting probability of undetected infected individuals. This probability is
assumed to be 50%, 80% (reference value) or 100% of Pg; thus the reference value results
to be Pr = 0.24.

• Ti is the delay from the initial warning to the start of control strategies. In the case of
an accidental virus escape from a BSL facility, public health systems would be able to
readily react to the emergency after the first case infected by the new virus strain has been
detected. However, it is hard to estimate a reliable range for this delay; therefore we decide
to explore a wide range of possible values, namely 0–30 days (with a reference value of 3
days).

• Tt is the time necessary to put in place household quarantine after case detection. Since,
differently from measures such as antiviral prophylaxis, household quarantine does not
involve any pharmaceutical treatment, it can be put in place readily after case detection.
The explored range considered is 0–4 days (reference value: 1 day) [5].
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• Tp is the duration of school/workplace closure in case of adoption of this measure; this
may last up to several weeks, although even a closure period of 3 weeks for schools has
been shown to have an impact in controlling the epidemic [6]. We thus consider a reference
value of 21 days and explore also the cases of 0, 7, 14 and 28 days.

• Dp is the distance from the laboratory within which preventive measures of
school/workplace closure are implemented. Given the average commuting distance trav-
eled by workers in the Netherlands (as predicted by our model [2] and also confirmed by
other studies [16]) to be 8.9 Km (95%CI: 1.6-19.2 Km), we assume a reference value for
Dp of 30Km. We further explore other values, namely 0, 5, 10, 20, 50Km and the whole
country.

• Fs is the fraction of schools closed for the period Tp. As reference value we assume Fs = 0.9.
In addition, we explore strategies not involving school closure and thus Fs = 0.

• Fw is the fraction of workplaces closed for the period Tp. As, even for a relatively short
period of time, workplace closure requires a bigger social effort than school closure, as
reference value we assume that workplaces are not involved in the closure policy (and thus
Fw = 0). However, we further investigate the case where 50% of workplaces get closed for
a period Tp.

2 Additional results

2.1 Full sensitivity analysis on contact tracing

Main parameters regulating contact tracing strategy are Pc, Pg, Ti, Tt and Tp. In this analysis,
we keep Pr = 0 and Fw = 0 fixed, we consider school closure to be only reactive (with Fs = 0.9),
and let the other parameters vary. The effect of the different parameters in shaping outbreak
probability can be explained by a linear model having Pc, Pg, log(Ti), Tt and Tp as independent
variables. The goodness of fit is highlighted by the high values of the coefficient of determination
R2, which is estimated to be in the range 0.88–0.95 (see Table S1 and Figre S2A). For each
choice of R0, all these variables are strongly significant, except for Tp which is significant only
for R0 < 1.5 (see Table S1 and Figure S2B) and thus we conclude that reactive school closure
is important for containment only for mild epidemics. In addition, this analysis highlights that
the two most relevant parameters are Pc and Ti, i.e., the larger the fraction of detected cases
and the lower the delay in starting interventions, the lower the probability that a virus escape
leads to an epidemic outbreak.

2.2 Sensitivity analysis on parameters regulating intervention mea-

sures

We aim at estimating the impact of different assumptions on the value of the parameters regu-
lating intervention on outbreak probabilities. This analysis is performed by changing one-by-one
parameter values and results are shown in Figure S3.

One of the most important parameters is Pc. Figure S3A shows that for Pc ≥ 0.8 outbreak
probability for R0 ≤ 1.5 is always below 5%: this is due to the fact that only a negligible fraction
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R0 Intercept Ti Pc Tt Pg Tp(p-value) R2

1.1 0.1341 0.0651 -0.14 0.0033 -0.0263 -5e-04 (0.000713) 0.939
1.2 0.1883 0.0959 -0.1947 0.005 -0.0353 -6e-04 (0.001597) 0.948
1.3 0.23 0.1226 -0.2327 0.0066 -0.038 -4e-04 (0.045802) 0.951
1.4 0.2697 0.1449 -0.2625 0.0078 -0.044 -6e-04 (0.033768) 0.947
1.5 0.3037 0.1636 -0.2886 0.0086 -0.0437 -5e-04 (0.144265) 0.944
1.6 0.341 0.1782 -0.3131 0.0094 -0.046 -7e-04 (0.032911) 0.943
1.7 0.3613 0.1926 -0.3217 0.0101 -0.0468 -4e-04 (0.286948) 0.937
1.8 0.3856 0.2033 -0.3338 0.0107 -0.0467 -4e-04 (0.341388) 0.932
1.9 0.4072 0.2118 -0.3374 0.0107 -0.046 -6e-04 (0.225857) 0.925
2 0.4262 0.2183 -0.3406 0.0112 -0.048 -4e-04 (0.378901) 0.917
2.1 0.4498 0.2239 -0.3542 0.0116 -0.0455 -2e-04 (0.676714) 0.912
2.2 0.4625 0.2291 -0.355 0.0119 -0.0443 -2e-04 (0.707177) 0.905
2.3 0.4757 0.2334 -0.3524 0.0119 -0.0455 -2e-04 (0.779472) 0.899
2.4 0.4928 0.2354 -0.3544 0.0119 -0.044 -3e-04 (0.661867) 0.888
2.5 0.5055 0.2379 -0.3522 0.0122 -0.0465 -3e-04 (0.619435) 0.884

Table S1: R0, coefficients of the linear model between outbreak probability and all parameters
regulating the interventions and coefficient of determination R2. Unless specified p−value is less
than 0.00001.
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Figure S3: Probability of outbreak for different values of R0 by assuming baseline scenario
(uncontrolled epidemics, black), reference scenario (red) and by varying one-by-one the value of
the following parameters. A Probability of detection of infected close contacts Pc: 1 (blue), 0.8
(green) and 0.4 (orange). B Delay from initial warning to intervention Ti: 0 (blue diamonds), 1
(green), 5 (orange), 10 (light blue), 20 (pink), 30 (blue triangles). C Delay from case detection
to household quarantine Tt: 0 (blue), 2 (green) and 4 (orange). D Probability of detection of
infected random contacts Pg: 0.9Pc (light blue), 0.7Pc (orange), 0.3Pc (green) and 0.1Pc (blue).
E Different policy of intervention: contact tracing, laboratory closure, quarantine of laboratory
workers households and closure of schools and workplaces attended by households members of
laboratory workers (orange), contact tracing and laboratory closure (green) and only contact
tracing (blue). F Self reporting probability Pr: 0.9Pg (light blue), 0.7Pg (orange), 0.6Pg (green)
and 0.5Pg (blue).

of epidemics can spread without ascertainment of the virus escape (see also Figure 2 of the Main
Text).

The other most relevant parameter is Ti. Figure S3B clearly shows that delay in the start of
intervention drastically increases outbreak probability: in particular starting interventions with
a delay of more than 20 days for epidemics having R0 larger than 1.3 is almost equivalent to
not intervening at all. On the other hand, starting interventions with a delay of 1 day only can
drastically increase the containment probability even for large values of R0.

Figure S3C shows that while a delay of 2 days in household quarantine after case detection
does not make a large difference, a delay of 4 days can make containment much more difficult,
even for low values of R0; on the other hand, household quarantine immediately after case
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dots) and 10 cases (pink diamonds). B Zoom of the bottom left part of panel A.

detection, though very difficult to implement, would lead to systematically better results in
terms of outbreak containment.

Figure S3D shows that the variability in Pg has a clear impact on outbreak probability.
Figure S3E shows the effect of different initial interventions on the laboratory’s contact net-

work. It shows that closure of the laboratory is the only crucial intervention to put in place
soon after detection of the accidental escape, especially for large values of R0. Additional mea-
sures such as quarantine of laboratory workers households and closure of schools and workplaces
attended by households members of laboratory workers are of little impact.

Figure S3F shows the negligible impact of changes in Pr. This is due to the fact that changing
Pr from 0.5Pg to 0.9Pg means changing Pr from 0.15 to 0.27.

2.3 Different number of index cases

By assuming a larger number of index cases among laboratory workers, containing the epidemic
becomes more difficult (see Figure S4A). However, increasing the number of index cases also
increases the probability of detecting the escape from the BSL facility; this effect is largely ap-
preciable for R0 = 1.1 and 1.2, in fact by assuming 2-5 index cases in the laboratory, the epidemic
outbreak probability when the reference intervention is assumed is nearly 0 (see Figure S4B).

2.4 Different seeding locations

Results reported in the main text mainly refer to the accidental release from a BSL facility
located in Rotterdam (NL). In order to understand whether our findings may be affected by
population density and country-specific socio-demography, we consider alternative locations for
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Figure S5: A The map shows population density of a given area of France (colors from yellow to
dark brown indicate increasing densities, scale as in Figure 1 of the main text), the location of
the BSL facility (in Paris, red point), the location of workers houses (blue points), the location
of workplaces and schools attended by household members of laboratory’s workers (green) in one
randomly chosen simulation. Black concentric circles indicate distances of 10km, 20km, 30km
from the laboratory. B As A but the BSL facility is located in a rural area south of Paris.

the BSL facility, located both in urban (London, UK, Stockholm, SE, Milan, IT, Madrid, ES,
Paris, FR) and rural areas. Rural areas are low population density areas – small towns or villages
– in Wales (UK, ≈ 80 km north of Cardiff), Uppland (SE, ≈ 100 km north of Uppsala), Sardinia
island (IT, ≈ 50 km east of Sassari), Andalusia – Castile la Mancha (ES, ≈ 50 km north-east of
Cordoba), Centre-Burgundy (FR, ≈ 80 km south-east of Orleans). We do not consider further
locations for the BSL facility in the Netherlands, as population density is rather homogeneous
in the whole country and it is difficult to identify wide low-density areas. In the main text we
compare results by assuming reference interventions in all seeding areas (see Fig. 4 in the main
text). Here we analyze results for France, by considering both urban and rural seeding (see
Figure S5A and B), in greater detail.

First of all, we consider the case where the BSL facility is located in Paris. Without consid-
ering control measures, the probability of observing an epidemic outbreak after virus escape is
quite similar to that in the Dutch scenario: slight differences can be observed for low values of
R0 (see Figure S6A). On the other hand, marked differences exist when the reference interven-
tion is put in place: in particular for R0 values lower than 1.7 outbreak probability in the Paris
scenario is more than two times higher than in the Netherlands case (see Figure S6A). Such large
differences can be due to dissimilarities in social and demographic characteristics of French and
Dutch populations because, despite a general similarity, some marked country-specific features
such as age structure and average household size exist (see the comparison presented in [1]).
However, although quantitatively different, the general patterns obtained by varying Pc and Ti

are the same observed in the Dutch case (compare Figure S6B and C with Figure S3A and B).
Second, we discuss the case where the BSL facility is located in a low-density area ( ≈ 80

km south-east of Orleans, 150 km south of Paris). As shown in Figure S5, the commuting
distance traveled by individuals in the low-density area is larger than that observed for urban
areas; this pattern is consistent with what has been reported in [5]. As we assume the same
social and demographic characteristics of the population in the whole France, by comparing this
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Figure S6: A Percentage variation of the outbreak probability of simulations where the BSL
facility is located in Paris, France (subscript Fu in the formula) with respect to simulations
having seeding in Rotterdam, The Netherlands (subscript N), for different values of R0, for
both baseline (black) and reference (red) scenarios. B Probability of outbreak for simulations
seeded in Paris for different values of R0 by assuming baseline scenario (uncontrolled epidemics,
black), reference scenario (red) and for different values of Pc, namely: 1 (blue), 0.8 (green)
and 0.4 (orange). C Probability of outbreak for simulations seeded in Paris for different values
of R0 by assuming baseline scenario (uncontrolled epidemics, black), reference scenario (red)
and for different values of Ti, namely: 0 (blue), 1 (green), 5 (orange) and 10 (light blue). D
Percentage variation of the outbreak probability of simulations where the BSL facility is located
in a rural area south of Paris (subscript Fr) with respect to simulations having seeding in Paris,
for different values of R0, for both baseline (black) and reference (red) scenarios. E As B, but
the simulations are seeded in a rural area south of Paris. F As C, but the simulations are seeded
in a rural area south of Paris.

case with the Paris one, we can appreciate the net effect of different population densities. From
the comparison shown in Figure S6D, outbreak probabilities for untreated epidemics are similar,
while a largely different effect of containment measures can be observed: in particular, outbreaks
starting in densely populated areas are more difficult to control. This is also clear by looking at
the effectiveness of interventions as obtained by varying Pc and Ti (see Figure S6E and F).
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