
S2 Computational state space models1

This section provides a brief review of the pertinent notions of CSSMs from the perspective of intention2

recognition (IR) and activity recognition (AR). We draw on concepts of action languages [1], symbolic3

planning [2, p. 366], and plan recognition [3]. Our discussion of IR and AR is focused on the objective of4

introducing the probabilistic machinery of CSSMs; for a more general perspective on the field of IR we5

refer the reader to available surveys [4–7].6

S2.1 Actions, states, intentions, plans7

We consider dynamic systems whose behavior can be formally captured by the notion of labeled transition8

systems (LTS). An LTS is a triple (S,A,→) where S is a set of states, A a set of labels (which we in9

this context usually call “actions”) and → ⊆ S × A × S a ternary relation, representing the labeled10

transitions. If for two states s, s′ ∈ S and an action a ∈ A we have that (s, a, s′) ∈ →, we say that s′11

is reachable from s by a, or s′ is the result of applying a in s. This is written as s
a→ s′. If for a given12

s ∈ S and a ∈ A there exists an s′ ∈ S such that s
a→ s′, we say that a is applicable to s, or that s fulfills13

the precondition of a. If for any pair (s, a) there exists at most one s′ such that s
a→ s′, we say that a14

is deterministic, resp. that a has deterministic effects. In this case we can consider a to be a function15

defined by s′ = a(s) ⇐⇒ s
a→ s′. If all actions are deterministic, the LTS itself is deterministic. For16

simplicity, we consider only LTS with deterministic effects (we will introduce nondeterminism later via17

the nondeterministic choice between the different actions that may be applicable to a state). Note that18

S and A need not be finite.19

A goal is a set of states. A plan l = (a1, . . . , an) for a goal g ⊆ S and an initial state s0 ∈ S is a20

finite sequence of actions ai such that sn ∈ g where sn = an(· · · a2(a1(s0)) · · ·). We say that l achieves21

g. Furthermore, we say that an agent executing a plan l that achieves a goal g has the intention to22

achieve g. Using this notion of intention we can say that intentions are isomorphic to goals. We can23

recognize an agent’s intentions by observing the agent to work on a plan known to achieve some goal g24

(intention recognition). Informally, we refer to the number of alternative paths (between two states) as25

(local) “dispersion” of an LTS.26

S2.2 Action languages and latently infinite LTS27

It is easy to arrive at LTS where S and→ are infinite, even though A is finite – for instance by introducing28

states that represent counter values and actions that increment such counters (the natural numbers and29

the successor function are such an LTS). In the domain of intelligent assistive systems, protagonist30

activities such as setting a table by incrementally moving items from the kitchen to the dining room31

result in this counting behavior. Such LTS can not be represented by explicit enumeration of states32

and transitions. However, in case every action can be represented by an algorithm, defined in a suitable33

algorithmic language (which we call “computational action language”), then also these LTS have a finite34

representation. An action here can be considered a function that computes (generates) a resulting state35

from its origin state: the LTS graph is incrementally expanded during computation. As long as only36

a finite subset of states needs to be considered in a given intention recognition task, computations on37

such latently infinite systems remain feasible. Clearly, a computational action language – possibly Turing38

complete – is also helpful for providing a compact representation of a finite, yet bulky LTS.39

Informally, a basic model for an action language can be defined as follow:40

• There is a set of variable names and a set of value domains whose disjoint union describes the set41

of possible values.42

• A state is a finite map of variable names to values. In unstructured, atomic state models, as used43

in HMMs, state values are opaque labels that only support to compare for identity. In order to44

1

allow computations on states (such as generating a new state from a given state), state values have45

to provide a suitable algebraic structure, such as given by this slot-value model.46

In assistive settings, structured states enable a straightforward mechanism for guidance in case47

of erroneous, unexpected, or ineffective behavior: planning mechanisms can readily be used for48

computing a route from the current state to the original goal state. This option is not available in49

unstructured state models. Here, contingency plans have to be enumerated explicitly.50

• We assume that the language allows to write expressions that may refer to state variables. Let E51

be the set of all expressions. We write e(s) to denote the value that an expression e ∈ E takes on52

in the context of a state s ∈ S (that is: the value of e where the values of variables in e are taken53

from the state s).54

• An action a is defined by55

1. The precondition πa: a boolean expression on state variables. If the value πa(s) for a given56

state s is true, then we say that a is applicable to s. We write this as s |= πa.57

2. The effect εa: a finite map of variable names vi to expressions ei. If a is applied to a state58

s, a new state s′ results from s by assigning the value of ei(s) to each vi and by copying the59

remaining mapping from s.60

The STRIPS language [8] is a particularly simple instance of an action language (although not Turing61

complete), where add and delete lists of STRIPS actions effectively model the assignment of “true” or62

“false” to variables. PDDL 2.1 [9] is another example from the planning domain, supporting numerical63

expressions and infinite value domains of variables. Other examples are rule-based expert system lan-64

guages such as CLIPS [10] or the production rule language of the ACT-R cognitive architecture [11], both65

Turing complete.66

Action languages such as PDDL typically support action schemata – action templates that contain67

template variables from which actions can be constructed by instantiating these template variables with68

domain values. A single schema represents the set of actions that can be created by instantiating its69

variables. To differentiate actions – which have no template parameters – from action schemata, the70

former are sometimes called “ground actions”. The unique label of a ground action a created from a71

schema is the tuple consisting of schema name and the parameter values used for instantiation.72

S2.3 CSSMs: Probabilistic interpretation73

State space models (SSMs) [12] are a general class of probabilistic models where a sequence of observations74

is explained by the sequential evolution of a hidden state variable. Let X be some set of states, let X1:t75

be a sequence of random variables with value domain X . Furthermore, let Y be a set of observations and76

Y1:t a sequence of random variables with value domain Y. Then the joint distribution p(x1:t, y1:t) can be77

described by an SSM if it recursively (over time t) factorizes into a transition model p(xt |xt−1) and an78

observation model p(yt |xt), that is p(x1:t, y1:t) = p(y1 |x1) p(x1)
∏t
i=2

(
p(yt |xt) p(xt |xt−1)

)
. The SSM is79

stationary if p(xt |xt−1) = p(x′ |x) and p(yt |xt) = p(y |x) for random variables X ′, X with value domain80

X and Y with value domain Y. Hidden Markov models, Kalman filters, and dynamic Bayesian networks81

are instances of SSMs that use specific function families for representing the transition model and the82

observation model. Given a sequence of observations y1:t with yi ∈ Y, we can employ the combination of83

prediction (computing the next state based on past observations) and correction (computing the current84

state based on the current observation and the prediction) for recursive state estimation, as given by the85

two equations86

p(xt | y1:t−1) =

∫
xt−1∈X

p(xt |xt−1) p(xt−1 | y1:t−1)dxt−1 (1)

p(xt | y1:t) =
p(yt |xt) p(xt | y1:t−1)

p(yt | y1:t−1)
(2)

2

where p(xt | y1:t) is known as marginal filtering distribution (correspondingly, p(x1:t | y1:t) is the joint87

filtering distribution, as it jointly estimates the whole state series x1:t). The underlying idea of com-88

putational state space models (CSSMs) is to use computational action languages for representing the89

transition distribution. This approach is interesting when the process under observation can be consid-90

ered as performing some kind of sequential “computation”, including such phenomena as goal directed91

behavior of human protagonists.92

A CSSM is defined by an LTS (S,A,→) with a set of goals G as follows. One defines X := S ×A×G93

and X := (S,A,G). The transition model becomes:94

p(x′ |x) = p(s′, a′, g′ |x)

= p(s′ | a′, g′, x) p(a′ | g′, x) p(g′ |x)

= p(s′ | a′, s) p(a′ | g′, s, a) p(g′ |x),

where the last step reflects two simplifying design assumptions: (i) The LTS action a′ selected for gen-95

erating the new LTS state s′ from the previous state s does not depend on the previous goal g. (ii) The96

new LTS state s′ depends only on the previous LTS state s and the action a′ applied to this state. Specif-97

ically, if the underlying LTS is deterministic, then p(s′ | a′, s) = [s′ = a′(s)]. (These assumptions are not98

strictly necessary, but they simplify the resulting model structure.) We call γ(a′ | g′, s, a) := p(a′ | g′, s, a)99

the action selection distribution. If the underlying LTS is deterministic and if goals are fixed, then all100

nondeterminism is solely introduced by the action selection distribution, which models the protagonist’s101

freedom of choice.102

As the probabilistic state variable X contains both the LTS state S and the LTS action A, an103

observation model p(y |x) ≡ p(y | s, a, g) may be built on observations of LTS states, of LTS actions,104

or combinations of both. One often has the assumption that the observations factor into independent105

state and action observations Y = (W,Z), so that state observations W only depend on the state S and106

action observations Z only depend on the action A. This leads to the additional simplifying independence107

p(y |x) ≡ p(w, z | s, a, g) = p(w | s) p(z | a). This has been used for example by [13]. The availability of108

state observations for inference is an interesting aspect of CSSMs, as it is no longer necessary to assume109

that protagonist actions can be directly observed. At the same time, state estimation via the filtering110

equation allows to make statements about S even in case only action observations are available.111

S2.4 Action selection112

The action selection distribution γ models the non-deterministic behavior of protagonists in the case that113

multiple actions are applicable to a given situation. Specifically for human protagonists, this behavior is114

potentially influenced by a large set of factors [14] that are current target of research on human behavior.115

They encompass decision theoretic quantities, such as an “action’s utility” in reaching the goal from the116

given state (being used, for instance, in the ACT-R cognitive architecture [11]), as well as situation-based117

conflict resolution strategies from the domain of rule-based expert systems, such as “specificity” [15].118

Independent of the specific number and nature of the different factors, they can be combined using a119

log-linear model [16], so that the action selection distribution γ is given by120

γ(a′ | g′, s, a) ∝ exp

(∑
i∈I

λifi(a
′, g′, s, a)

)
(3)

where the functions fi : A×G×S×A → R represent the different factors and the λi ∈ R their respective121

weights, for some index set I. For instance, let δA(s, g) be the distance (or, more general, the cost of the122

optimal path) from state s to goal g given the action set A and w(s, a′, s′) the length (cost) associated with123

the LTS edge s
a′→ s′. Define Qg′(a

′, s) := w(s, a′, a′(s)) + δ(a′(s), g′). Then the action selection model124

given by [17], where γ(a′ | g′, s, a) ∝ exp
(
β Qg′(a

′, s)
)

(adapted from eq. (8) in [17]) naturally arises as125

3

special case of (3) by setting I = {δ} and fδ(a
′, g′, s, a) := Qg′(a

′, s) as well as λδ := β. Likewise, we126

can incorporate concepts such as “specificity”, a function σ : A × S → R, where σ(a′, s) quantifies how127

specific the precondition of a′ is for s, as another factor of (3). Restricting action selection to only those128

actions that are applicable to s, where s |= πa′ , can be seen as very simple special case of specificity. One129

observes that [s |= πa′] = exp
(
fπ(a′, g′, s, a)

)
where130

fπ(a′, g′, s, a) :=

{
0, if s |= πa′

−∞, otherwise.

So this restriction can easily be embedded as another feature into (3), with weight λπ := 1.131

We will therefore assume that (3) represents the basic functional structure of the action selection132

distribution in CSSMs. In the face of a large set of factors not yet fully understood, the interesting133

aspect of using the log-linear model is that it allows (i) factors fi that interact in arbitrary ways, and134

(ii) the estimation of the factor weights λi from training data. Thus, for the purpose of using CSSMs,135

it is not necessary to wait for research to arrive at a final set of independent factors governing human136

action selection.137

References138

1. Gelfond M, Lifschitz V (1998) Action languages. Linköping Electronic Articles in Computer and139

Information Science 3.140

2. Russell S, Norvig P (2010) Artificial Intelligence – A Modern Approach. Prentice Hall, third141

edition.142

3. Kautz HA (1991) A formal theory of plan recognition and its implementation. In: Brachman RJ,143

Allen JF, Kautz HA, Pelavin RN, Tenenberg JD, editors, Reasoning about Plans, San Francisco,144

CA, USA: Morgan Kaufmann Publishers Inc. pp. 69–126.145

4. Aggarwal JK, Ryoo MS (2011) Human activity analysis: A review. ACM Computing Surveys 43:146

16:1–16:43.147

5. Chen L, Hoey J, Nugent C, Cook D, Yu Z (2012) Sensor-based activity recognition. IEEE Trans-148

actions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 42: 790–808.149

6. Han TA, Pereira LM (2013) State-of-the-art of intention recognition and its use in decision making.150

AI Communications 26: 237–246.151

7. Sadri F (2011) Logic-based approaches to intention recognition. In: Chong NY, Mastrogiovanni F,152

editors, Handbook of Research on Ambient Intelligence: Trends and Perspectives, IGI Global. pp.153

346–375.154

8. Fikes RE, Nilsson NJ (1971) Strips: A new approach to the application of theorem proving to prob-155

lem solving. In: Proceedings of the second International Joint Conference on Artificial Intelligence156

(IJCAI). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., pp. 608–620.157

9. Fox M, Long D (2003) PDDL2.1: An extension to PDDL for expressing temporal planning domains.158

Journal of Artificial Intelligence Research (JAIR) 20: 61–124.159

10. Giarratano JC, Riley GD (2004) Expert Systems: Principles and Programming. Boston, MA:160

Course Technology, fourth edition.161

4

11. Anderson JR, Bothell D, Byrne MD, Douglass S, Lebiere C, et al. (2004) An integrated theory of162

the mind. Psychological Review 111: 1036–1060.163

12. Koller D, Friedman N (2009) Probabilistic Graphical Models. Cambridge, MA: MIT Press.164

13. Hoey J, Plötz T, Jackson D, Monk A, Pham C, et al. (2011) Rapid specification and automated165

generation of prompting systems to assist people with dementia. Pervasive and Mobile Computing166

7: 299–318.167

14. Prescott TJ, Bryson JJ, Seth AK (2007) Theme issue ‘modelling natural action selection’. Philosph-168

ical Transactions of the Royal Society B – Biological Sciences 362: 1521-1721.169

15. Krüger F, Yordanova K, Burghardt C, Kirste T (2012) Towards creating assistive software by170

employing human behavior models. Journal of Ambient Intelligence and Smart Environments 4:171

209–226.172

16. Berger A, Pietra SD, Pietra VD (1996) A maximum entropy approach to natural language pro-173

cessing. Computational Linguistics 22: 40–71.174

17. Ramı́rez M, Geffner H (2011) Goal recognition over POMDPs: Inferring the intention of a POMDP175

agent. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI).176

Barcelona, Spain, pp. 2009-2014.177

5

