
S3 Annotation procedure and annotation ontology1

S3.1 Underlying rationale.2

Objective of annotation is to provide a target label `t for every observation yt such that methods for3

supervised learning can be applied. In addition, comparing target values with the values estimated from4

observation data is used for quantifying the performance of the estimation procedure. These labels are5

called “ground truth”, as they conceptually provide a symbolic representation of the true state of the6

world at time t. However, in reality, labels are a finite set L := {`1, . . . , `n} where besides the equality7

relation no other algebraic structure on L exists. In current annotation practice, each label value ` ∈ L is8

accompanied by some textual description (such as “take knife”), that supports the annotator in selecting9

what label `t to attach to an observation yt. This description looks like a symbolic representation – but10

this often is an illusion: There is no formal set of constraints on the structure of label sequences that11

would enforce them to reflect constraints on causality implied by the labels’ textual descriptions. The12

language of formally valid label sequences is L∗ itself.13

There is nothing that denies an annotator to produce the label sequence “go from A to B”,“wait”,“go14

from C to D”. Under the natural interpretation of these textual labels, such annotations represent acausal15

behavior. Instances of this phenomenon can readily be found in the data provided by [1–3]. As long16

as models do not aim at exploiting the causal structure of behavior, such annotation oddities are no17

problem. However, in order to use CSSMs, we must rely on “ground truth” to indeed represent a true18

causal sequence of states and actions. This therefore requires that already the annotation is based on19

a formal model of causal behavior. Causality not available in the annotation model can not be reliably20

exploited in an inference model. The consequence of this is that already the annotations must be based on21

an LTS, the annotation LTS (aLTS). A second consequence is that the algebraic refinement relations that22

hold between the aLTS and the CSSM LTS (the inference LTS, iLTS) determine the CSSM’s capability23

to correctly estimate annotation sequences – for instance, unless the iLTS is a refinement of the aLTS,24

the CSSM model will not be able to differentiate between certain states and actions that are discernible25

in the aLTS. Thus, from a certain viewpoint, CSSM model development already begins at the annotation26

stage.27

In addition to these considerations, annotations should be agnostic to the capabilities of the underlying28

sensors. Some researchers select the annotation dictionary based on the expected capability of the sensor29

used in the experiment to identify such actions or states [4–6]. For instance, temperature sensors in30

the shower, pressure sensors in the bed, and reed switches in doors strongly correlate with annotated31

activities showering, sleeping, and opening / closing. This approach may seem convenient at first glance,32

but was rejected for two reasons: (i) it exaggerates the resulting model’s discriminative capabilities (as33

“difficult” things are simply dropped from the target set), and (ii) it is in fundamental disagreement with34

the “philosophy” of CSSMs, as the resulting annotation dictionary – and the data set annotations – is35

not reusable for other sensor modalities.36

S3.2 aLTS development method and data set annotation.37

For aLTS model development, a simplified process of model driven engineering [7] was used to combine38

information from the empirical samples with the background knowledge of the domain expert.39

1. From the video log the atomic domain objects and their state variables were identified by the40

domain expert. All physical entities were considered as domain objects that were independently41

manipulated by the protagonist (including the protagonist). Roughly, objects x, y are independent,42

if a specific manipulation of x does not imply another specific manipulation of y and vice versa.43

Although this is not an exact definition it was sufficient for the purpose of this study.44

A deliberate design choice was to avoid aLTS state variables with continuous domains, as this would45

introduce another source of variance into the model that would further increase the difficulty of46

1



identifying the different causes of model performance. Therefore, protagonists would be hungry or47

¬hungry, protagonist locations would be elements of some (small) finite set, glasses would be filled48

or ¬filled, etc.49

2. Atomic actions were identified from the resulting state sequences. Atomic actions are those actions50

that do not contain other actions that have an effect on the state of domain objects. Thus, the51

notion of atomicity is essentially implied by the granularity of the aLTS state model. Actions were52

identified from the video log by assigning an action to every frame sequence that would delimit a53

state change to an aLTS object.54

3. aLTS actions were abstracted into action schemata by (a) identifying classes of domain objects and55

(b) classes of domain actions such that all elements of an aLTS action class could be generated56

from the corresponding action schema by instantiating the parameters of this action schema with57

elements of suitable domain object classes. These action schemata would represent the causality of58

the domain using a precondition–effect model.59

For the purpose of this study, natural language was chosen as source of intuitive prior knowledge,60

by allowing the aLTS designer to select a small set of verbs (such as take) as labels for the identified61

action schemata. Following, these aLTS action schema labels are referred to as action classes.62

Typically, in this abstraction process a set of state transitions such as {(xt−1=1 7→ xt:=1), (xt−1=2 7→63

xt:=4), (xt−1=3 7→ xt:=9)} would be represented by a single action such as xt := x2t−1, replacing64

explicit values with a computation that generates the desired values as needed. These computational65

representations are a powerful mechanism for generalization, that extends the scope of the model66

towards an infinite range of states. Inventing computational actions requires inductive reasoning; it67

adds knowledge not deducible from the training data. Usually, this will be prior knowledge available68

to the aLTS designer.69

4. Finally, the annotation sequences defined for the data sets were checked against the aLTS actions70

to ensure that each annotation sequence would be a valid path through the LTS defined by the71

aLTS actions.72

S3.3 Complex interleaving.73

Although many actions could be considered as deterministic, non-deterministic effects were used to re-74

solve some non-trivial interleaving patterns. For instance, consider the interleaved process of eating and75

drinking. In case no other actions are allowed to intervene, this can be summarized by the following76

regular grammar:77

((take(spoon,table), eat, put(spoon,table)) | (take(glass,table), drink, put(glass,table)))∗

Clearly, the last eat (resp. drink) will achieve ¬hungry (resp. ¬thirsty ). To model this behavior, the78

¬hungry effect of eat was considered to be a probabilistic effect, one of the preconditions of eat being79

hungry. Note that the transition from eat to drink and vice versa requires certain intervening actions80

(e.g., put(spoon,table), take(glass,table)). The interleaving of “eating” and “drinking” therefore can not81

be handled by a simple interleaved execution of two parallel actions eat and drink (as proposed – for a82

different scenario – in [8]). For the same reason, the duration of eat can not be represented by a single83

durative PDDL action.84

Implementationally, a single action a with precondition πa and a finite distribution over n probabilistic85

effects ε
(i)
a having probability pi was approximated by a set of n actions ai with single preconditions86

πai = πa and deterministic effects εai := ε
(i)
a , where the relative probability of selecting ai depends on pi.87

2



References88

1. Regneri M, Rohrbach M, Wetzel D, Thater S, Schiele B, et al. (2013) Grounding action descriptions89

in videos. Transactions of the Association for Computational Linguistics (TACL) 1: 25–36.90

2. Spriggs E, de La Torre F, Hebert M (2009) Temporal segmentation and activity classification from91

first-person sensing. In: IEEE Workshop on Egocentric Vision, in conjunction with CVPR 2009.92

Miami, Florida, USA, pp. 17–24.93

3. de la Torre F, Hodgins J, Montano J, Valcarcel S, Forcada R, et al. (2009) Guide to the carnegie94

mellon university multimodal activity (CMU-MMAC) database. Technical Report CMU-RI-TR-08-95

22, Robotics Institute, Carnegie Mellon University.96

4. Donnelly M, Magherini T, Nugent C, Cruciani F, Paggetti C (2011) Annotating sensor data to97

identify activities of daily living. In: Abdulrazak B, Giroux S, Bouchard B, Pigot H, Mokhtari M,98

editors, Toward Useful Services for Elderly and People with Disabilities, Springer Berlin Heidelberg,99

volume 6719 of Lecture Notes in Computer Science. pp. 41–48.100

5. van Kasteren TLM, Kröse BJA (2009) A sensing and annotation system for recording datasets in101

multiple homes. In: Proceedings of the 27th Annual Conference on Human Factors and Computing102

Systems. Boston, USA, pp. 4763–4766.103

6. Stikic M, Van Laerhoven K (2007) Recording housekeeping activities with situated tags and wrist-104

worn sensors: Experiment setup and issues encountered. In: Proceedings of the first International105

Workshop on Wireless Sensor Networks for Health Care (WSNHC). Braunschweig, Germany.106

7. Fondement F, Silaghi R (2004) Defining model driven engineering processes. In: Proceedings of107

the third Workshop in Software Model Engineering Satellite workshop at the seventh International108

Conference on the UML. Lisabon, Portugal.109

8. Shi Y, Huang Y, Minnen D, Bobick A, Essa I (2004) Propagation networks for recognition of partially110

ordered sequential action. In: Proceedings of the IEEE Computer Society Conference on Computer111

Vision and Pattern Recognition (CVPR). Washington DC, USA, pp. 862–869.112

3


