
S4 Detailed model description1

S4.1 Statistical model2

The statistical model formally describes the framework and assumptions of the model for the kitchen3

task scenario. First, an extension of the CSSM to correctly handle durative actions is described. Then4

the overall DBN interpretation of the model is given. Afterward, the sensor model, duration model, and5

action selection heuristics are discussed in detail.6

S4.1.1 Durative actions7

The model given in Appendix S2 assumes that actions take a single time step, where progression of time8

is given by observation events. This requires that sensor data – usually some kind of real time signal –9

is already partitioned into segments that correspond to individual actions, each segment representing a10

single observation. In this case, the subscript t in yt simply counts the number of actions that have been11

observed. However, in general correct segmentation needs additional context information for disambigua-12

tion [1], such as the possible sequence of actions. The assumption that the CSSM will be presented with13

observations that represent complete action sightings, as for instance used in all but one of the previous14

CSSM studies (Sec. 1.3.2), thus hides important aspects of the real-world inference problem.15

Therefore, a model was chosen where multiple observations may correspond to a single action. This16

model introduces real-valued random variables U and V that represent the starting time of an action A17

and its duration. The action duration density τ(v | a, u) := p(V |A,U) defines the probability that action18

A stops at time V if started at time U . Let Fτ (v | a, u) be the cumulative distribution function of τ . The19

probability that an action’s duration lies in the interval (v, v′] then is ζv,v
′

a,u := P (v < V ≤ v′ | a, u) =20

Fτ (v′ | a, u) − Fτ (v | a, u). If this duration is known to be greater than v, the corresponding conditional21

probability is P (v < V ≤ v′ | a, u, V > v) = ζv,v
′

a,u /ζ
v,∞
a,u .22

Note that durative actions will increase state space complexity.23

S4.1.2 Overall CSSM model structure24

For the probabilistic model of Sec. 1.2 (see Appendix S2 for details), a DBN with the structure given25

in Fig. 1 was used. Yt = (Wt, Zt) is the observation data for time step t. Vt is the associated time26

stamp, required to be strictly increasing. As discussed in Appendix S2, state and action observations27

were assumed to be conditionally independent, i. e., p(yt | at, st) = p(wt | st) p(zt | at).28

Xt = (At, Dt, Gt, St, Ut) defines the hidden state. For this study, Gt, the current goal, could be29

assumed to be constant, so that p(gt |xt−1) = [gt = gt−1]. This allowed to efficiently precompute goal30

distance values, which depend on Gt. The boolean flag Dt signals termination of At−1 in the interval31

(vt−1, vt]. It is a Bernoulli random variable defined by p(Dt=1 | vt, vt−1, at−1, ut−1) = ζt/ζ
vt−1,∞
at−1,ut−1 where32

ζt := ζ
vt−1,vt
at−1,ut−1 . The variable Dt introduces a context-specific independence [2] into the DBN: if dt = 0,33

then At, St, and Ut carry over their values from the previous state and are independent of their other34

parents. Otherwise, new values for At, St, and Ut are selected as follows:35

A new action is selected according to γ by: p(at | dt = 1, st−1, at−1, gt) = γ(at | gt, st−1, at−1). Ut36

is the starting time of action At, given by p(ut | dt = 1, ut−1, vt, vt−1, at−1) = τ̄(ut |ut−1, vt, vt−1, at−1),37

where τ̄(ut |ut−1, vt, vt−1, at−1) := [vt−1 < ut ≤ vt] τ(ut | at−1, ut−1)/ζt is the truncated duration density,38

constrained by vt−1 < ut ≤ vt. St is the LTS state for time step t: either the result of applying the39

new action to the previous state, or by carrying over the old state. For the purpose of this study,40

actions could be assumed to be deterministic and with instantaneous effect, giving the simple model41

p(st | dt = 1, st−1, at) = [st = at(st−1)]. As outlined for aLTS model development in Appendix S3,42

non-deterministic effects for modeling complex interleaving were represented by multiple actions.43
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Figure 1. CSSM DBN structure. Boxes represent tuples of random variables. An arc starting /
ending at a box (= a tuple) represents a set of arcs connected to the tuple’s components. Nodes with
double outline signify observed random variables.

S4.1.3 Sensor models and scrambling44

As construction of an elaborate observation model was not in the focus of this study, the following model45

was selected for its conceptual and computational simplicity: all actions a of a given class c = class(a)46

share the same observation distribution, such that p(z | a) := p(z | c) and the distributions p(z | c) :=47

N(z |µc,Σc) were represented by multivariate normal distributions with unconstrained covariance Σc.48

The parameters µc, Σc were computed from the pool of all observations annotated with class c from all49

data sets. Although there is no reason to believe that the observation data is particularly well represented50

by this model, it was found to perform reasonably well in the baseline models, justifying its further use in51

this study. The 16 action classes can be seen in Fig. 6 or Fig. S3. For example, an action class is TAKE,52

while the actions belonging to it are take carrot, take bottle, take spoon etc.53

A potential significant limitation of this model is its stationarity with respect to durative actions,54

which might be violated by the sensor data. A “run” for class c is a consecutive sequence of observations55

labeled with c. A run (often) represents an action that lasts several time steps. It might be the case that56

observations in the middle of a run are more “typical” for action class c than at the beginning (or end) of57

the run, where the transition to a different action class takes place and both kinds of motions are mixed.58

In this case, the expected probability of observations should increase from the run borders towards the59

run center. This effect should be specifically prominent for actions with long durations (which have long60

stable “center periods”). This could, for instance, impact the ability to correctly detect the start of such61

actions and eventually degrade recognition performance.62

Conceptually, a better option to solve this problem is either to include temporal information into the63

observations [3] or – more general – to use a hierarchical approach, where the temporal structure of an64

action’s observations are represented by suitable sub-models [4]. A much simpler potential solution is65
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to scramble observations within a run. This will destroy order effects and other dependencies between66

observations in a run. Clearly this approach is only possible in offline situations with data where the67

runs are already delimited (either by annotations or by some suitable segmentation algorithm). However,68

regarding the study objectives, the use of scrambling is considered a justified surrogate for defining69

appropriate sub-models.70

As alternative to the IMU sensors, which give continuous-domain observations of the A state com-71

ponent, a location-based model was set up, giving categorical observations (place names) of the S state72

component. Motivation for introducing this alternative observation model was to demonstrate that73

CSSMs allow an exchange of observed X component without requiring adaptation of the system model.74

In addition, it was of interest to:75

(i) Test in how far a switch from continuous (IMU) to discrete (place names) observation modalities76

introduces additional challenges for inference.77

(ii) Provide a non-peaked observation model that assigns a non-negligible probability to every state, in78

order to test susceptibility of inference method to this observation model property.79

With respect to these objectives, a very simple model was considered sufficient, where the locations of80

the protagonist (3 places) and the food (6 places) were used (see Tbl. S5). For the conditional probability81

p(zt | st) the value 10−6 was used in case the locations observations zt did not match the locations found82

in st and essentially 1 otherwise. The observations themselves were computed from the aLTS model by83

stepwise execution of the aLTS ground actions recorded in the annotations and using the location slot84

values of the observed objects in the resulting state. While being realistic with respect to the temporal and85

causal structure of the underlying human activity, these synthetic observations are unrealistic concerning86

the precision of temporal alignment and error model; they can be expected to exaggerate the achievable87

precision. Nevertheless, as this was a convenient mechanism to obtain data for new observation models88

for simple comparison purposes, its use was considered legitimate.89

S4.1.4 Duration model90

For simplification it was assumed that all actions of a given class share the same action duration distri-91

bution and that the duration of an action does not depend on the time the action has started. Therefore,92

τ(v | a, u) = τ∗(v − u | class(a)) where τ∗(d | c) is the class-specific duration distribution. As there is yet93

no prior knowledge on action durations, it was necessary to use the durations found in the training data94

as proxy.95

Note that duration distributions τ∗(d | c) with large or even infinite support increase the branching96

factor. In order to determine this effect on inference performance, an instance based model (with finite97

support) and a parametric duration model (infinite support) was built. Let (dc,1, . . . , dc,nc
) be the set98

of durations observed for actions of class c. The instance based model was given by the corresponding99

empirical distribution function, so that Fτ∗(d | c) := n−1
c

∑nc

i=1[dc,i ≤ d], where Fτ∗ is the distribution100

function of τ∗. For the parametric models, an approach was chosen that would provide a trade-off between101

technical simplicity and flexibility. First, a lognormal model for the pooled observation was built, see102

Fig. 2 for a comparison with the actual durations and a kernel density estimate. Then those classes were103

determined whose means were significantly (at the .05 α level) different from the pooled mean by fitting104

an ANOVA model (analysis of variance). For these special classes as well as for the remaining pooled105

classes, the distribution giving the maximum likelihood was selected from a set of candidate distributions106

whose parameters were fitted to the observed class durations. The set of candidate distributions was107

Cauchy, exponential, gamma, geometric, lognormal, negative binomial, normal, Poisson, and Weibull.108

The parametric models were expected to have an impact on performance for two reasons: (i) they109

might not provide a good fit to the empirical data, (ii) since they are continuous, they provide a greater110

number of possible durations, thereby increasing the branching factor and thus inference complexity.111
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Figure 2. Kernel density estimate of pooled action durations vs. fitted lognormal density.
Blue circles are the observed action durations. The red line is the kernel density estimate, the green line
the fitted lognormal density.

S4.1.5 Action selection model112

As primary goal-driven action selection feature, the goal distance feature fδ as discussed in Appendix S2113

was chosen. Goal distances were computed by an exhaustive process, computing the set of LTS states114

reachable from the initial state and then for all reachable states the shortest path to a goal state. For115

simplicity, unit costs were used for actions. This approach will become intractable with models of increas-116

ing state space complexity. In addition, it is not yet established that goal distance indeed best describes117

human action selection preferences. Approximate distance values therefore might achieve the same result,118

for a much lower computational cost. Two approximations were considered in this study:119

• A goal distance heuristic fh, that assigns heuristic distances to LTS states based on values of LTS120

state variables. The trial task’s script consisting of 14 serial task steps was used to define a map121

from LTS state s to remaining script steps h(s) based on its state variable values (see Tbl. S1 for122

this map). h(s) then was used as distance value. (Most script tasks required several LTS actions for123

their realization.) The motivation of this heuristic is the idea that prior knowledge on the typical124

coarse-grained sequential structure of everyday activities should be easy to obtain [5,6]. Analyzing125

fh thus should provide insight into the usefulness of such knowledge.126

• A restricted goal distance feature fδ̄. Here, only those LTS states were considered that are visited127

when using the annotations as exact observations. All other states discovered during inference128

received the nominal goal distance 100. Restricted goal distance fδ̄ should give an upper limit to129

the gain achievable by a goal distance measure.130

To gain insight on the effect of weight factors, each of these features was tested with the weight values131

λi = −(2k), k ∈ {0, . . . , 4}, using exponential probing. To limit experimental complexity, we refrained132

from evaluating interactions between features by only assigning one of fδ, fh, fδ̄ a non-zero weight.133

In the special case λδ = λh = λδ̄ = 0 all applicable actions receive the same selection probability,134

resulting in uniform selection. (This locally uniform selection strategy is not the same as giving each135
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possible action sequence the same probability – such a globally uniform action selection model requires a136

considerable more complex feature computation.)137

S4.2 iLTS model development138

Building the inference LTS (iLTS, cf. Appendix S3) requires two steps: choosing an appropriate modeling139

language and implementing the model. The following two sections justify the choice and present the model140

development process used.141

S4.2.1 Modeling language142

As pure execution speed was not the primary concern of this study, Common Lisp was chosen as im-143

plementation language for the inference procedures. This allowed a very convenient way to represent144

actions in a PDDL / STRIPS like fashion as S-expressions, providing considerable latitude regarding the145

expressive power available for defining precondition terms and effect expressions, as essentially any valid146

Lisp expression could be used. For instance, the action of taking the food from the cutting board was147

defined by the following expression:148

(:action (take food cutting_board)149

:precondition (and (eq ($ location self) ($ location cutting_board))150

(eq ($ location food) ’cutting_board)151

(> ($ available hands) 0))152

:effect (($ location food) ’hands153

($ available hands) (- ($ available hands) 1)))154

State variables are referred to by symbol lists, such as ($ location self). The precondition states155

that the protagonist (self) and the cutting board must be at the same location, the food must be on156

the cutting board, and the protagonist needs to have at least one free hand. The effect states that the157

location of the food will now be one of the protagonist’s hand and that he has one less free hand available.158

The state model was created by traversing all action definitions, collecting the state variable references,159

and compiling this to a Lisp defstruct containing one structure slot for each state variable. At the same160

time, action definitions were compiled to two pairs of Lisp functions, the first computing the precondition161

value, the second one for applying the effect to a state. State variable references were replaced by162

the corresponding slot access functions for the state defstruct; the value assignment in the effect was163

performed via setf. For efficiency considerations, only atomic values (symbols, characters, integers, and164

floating point numbers) were allowed as values for state variables. Therefore, states could be considered165

as words of constant length, allowing the use of tries as dictionaries for handling state sets, providing166

significantly faster access than hash tables in the Lisp environment [7] used in this study.167

S4.2.2 Model development process168

A two-stage process was used for iLTS model development. First a feasible solution A∗ for the domain169

model (the set of action definitions) was constructed iteratively, and then this solution was refined to170

the final model A using local model modifications. For constructing the feasible solution, the domain171

expert used an iterative procedure for successively building action sets A0,A1, . . . ,AS =: A∗ of increasing172

complexity.173

Constructing the feasible solution begins by setting A0 := ∅. For the current action set As, the174

model developer applies all action sequences obtained from the annotations in parallel and identifies the175

smallest t where the action ai,t of some dataset i fails at time t. For instance, the first action wash hands176

from the annotations of subject 1 (cf. Tbl. S3) is executed in the iLTS of A0, failing because this action177

is not included in A0 = ∅. If no action sequence fails, the feasible solution A∗ := As has been found.178
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Otherwise either (a) ai,t refers to an action not contained in As (as in the example), or (b) ai,t is in179

As, but its precondition is not met in the current iLTS state after applying the preceding actions (for180

instance because take is executed twice, but was previously modeled to allow only one object in hand,181

cf. Tbl. S3, t = 4–8). In case (a), the model developer adds a new action schema with precondition and182

effect matching the informal semantics of the domain. In case (b), the model developer either relaxes the183

precondition or extends the effect of some other action such that the precondition of ai,t is met. It is the184

task of the domain expert to judge which of the refinement strategies to apply for reconciling a failure.185

The developer repeats the process with As+1 := As until a feasible solution has been found.186

In the second step, the domain expert would refine A∗ to the final action set A by adding preconditions187

in order to limit the number of possible plans. (For instance, in the case of the given trial setting, the188

protagonist would sit down at the table only after the food has been cooked). Note that this two stage189

process – consisting of the iterative construction of a feasible solution and then applying local search to190

refine the feasible solution towards a local optimum A – is similar to heuristic optimization strategies for191

solving integer programming problems.192
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