Supplementary Information

Forkhead box M1 regulates quiescence-associated radioresistance of human head and neck squamous carcinoma cells

Jaimee C. Eckers¹, Amanda L. Kalen¹, Ehab H. Sarsour¹, Van S. Tompkins², Siegfried Janz², Jyung Mean Son¹, Claire M. Doskey¹, Garry R. Buettner¹, Prabhat C. Goswami¹

¹Free Radical and Radiation Biology Division, Department of Radiation Oncology; ²Department of Pathology, University of Iowa, Iowa City, IA, USA

Running title: FOXM1 and quiescent cancer cell radioresistance

Results presented in the Supplemental section show: (1) radioresistance of quiescent HNSCC in an independent cell line, FaDu; (2) significant decrease in FOXM1 mRNA (FaDu cells) and protein levels (FaDu and Cal27) in quiescent compared to proliferating HNSCC; and (3) no perturbation in cell cycle phase distributions in FOXM1 overexpressing HNSCC.

Corresponding author:% Prabhat C. Goswami, PhD Free Radical and Radiation Biology Division Department of Radiation Oncology University of Iowa Iowa City, IA-52242-1181 Phone: (319) 384-4666 prabhat-goswami@uiowa.edu

Supplementary Table SI

Gene	Gene Bank No.	Sequence (5′➔ 3′)	Amplicon size (bp)
18S rRNA	NR_077069	Forward: CCTTGGATGTGGTAGCCGTTT	104
		Reverse: AACTTTCGATGGTAGTCGCCG	
MnSOD	NM_000636.2	Forward: TTGGCCAAGGGAGATGTTAC	157
		Reverse: AGTCACGTTTGATGGCTTCC	
САТ	NM_001752.3	Forward: CATCCAGAAGAAAGCGGTCA	140
		Reverse: CCAAGTGAGATCCGGACTGC	
PRDX3	NM_006793.2	Forward: GCCGTTGTCAATGGAGAGTT	179
		Reverse: CAACAGCGTCAGAGTCACCT	
FOXM1	NM_202002.2	Forward: GCAGGCTGCACTATCAACAA	154
		Reverse: TCGAAGGCTCCTCAACCTTA	
DUSP1	NM_004417	Forward: CGCGCAAGTCTTCTTCCTCAAA	195
		Reverse: AAGGGCAGGATTTCCACCGG	
DUOX2	NM_014080	Forward: TGTGTATGAGTGGCTGCCCAGC	113
		Reverse: ACTGCTCAGAGGCCACCACAAA	
CCL5	NM_002985	Forward: GCAGCCCTCGCTGTCATCCT	176
		Reverse: AAGACGACTGCTGGGTTGGAGC	
G6PD	NM_000402.3	Forward: CCCGGAAACGGTCGTACACT	72
		Reverse: CATGACGCTGTCTGCGCTTC	

PCR primers used in this study

Supplementary Figure S1

Supplementary Figure S1: Quiescent FaDu HNSCC cells are radioresistant. A

clonogenic assay designed to accommodate post-lethal damage repair was used to examine surviving fraction in FaDu HNSCC. Asterisks represent statistical significance of quiescent compared to proliferating cells. n=3; P<0.05.

Supplementary Figure S2

Supplementary Figure S2: Quiescent HNSCC have lower expression of FOXM1 than proliferating cells. (A) A Q-RT-PCR assay was used to measure FOXM1 mRNA levels in proliferating and quiescent FaDu cells. Fold change in mRNA levels in quiescent cells was calculated relative to corresponding mRNA levels in proliferating cells. Asterisks represent statistical significance of quiescent compared to proliferating FaDu cells. n=3; P<0.05. (B) Western blot analysis of FOXM1 in proliferating and quiescent Cal27 and FaDu cells.

Supplementary Figure S3

Supplementary Figure S3: Irradiated quiescent Cal27 cells do not show a difference in cell cycle phase distribution. Flow cytometry measurements of cell cycle phase distributions in quiescent Cal27 cells following radiation.