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Supplementary Figure 1. Power on synthetic data for each method in each setting, for the lowest signal 

strength, ℎ2 = 0.1. Fraction of tests deemed significant across various significance levels for each method 

is shown on the y axis. Threshold for significance shown on the x axis. Other signal strengths are shown 

in Figures 1 and 2 and in Supplementary Figure 2. 

  



 

Supplementary Figure 2. Power on synthetic data for each method in each setting, for the lowest signal 

strength, ℎ2 = 0.5. Fraction of tests deemed significant across various significance levels for each method 

is shown on the y axis. Threshold for significance shown on the x axis. Other signal strengths are shown 

in Figures 1 and 2 and in Supplementary Figure 2. 

  



 

 

Supplementary Figure 3. Power on synthetic data for each method in each setting, aggregated across all 

signal strengths, ℎ2 = 0.001,0.01,0.1,0.5. Fraction of tests deemed significant across various significance 

levels for each method is shown on the y axis. Threshold for significance shown on the x axis. Other 

signal strengths are shown in Figures 1 and 2 and in Supplementary Figures 1 and 2. 

 

  



 

Supplementary Figure 4. Relative power gain on synthetic data for the LR over the score test decreases 

as more and more SNPs in a gene set become causal (from 1% to 100%), reflective of less and less model 

misspecification (with none at 100%). Shown is for α=1e-5, although a similar trend is observed for other 

significance thresholds. Strength of the gene set signal here was ℎ2 = 50%. 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

Supplementary Figure 5. Power experiments on synthetic data under model misspecification wherein a 

large polygenic background signal is used for the noise. The background signal was from all even 

chromosome SNPs, and then we tested only sets from odd chromosomes (and injected corresponding 

signal for each respective SNP set). The background noise had a variance of 1.0, while the foreground 

(set) variance was 0.001, 0.01, and 0.1, yielding ℎ2 = 0.001,0.01,0.1. The relative gain in fraction of 

significant hits decreased with increasing foreground signal strength. Equivalently, the relative gain in  

fraction of significant hits increased with increasing polygenic signal strength. For example, at a 

foreground signal strength of 0.01, the relative percent gain was 12% ((46-41)/41*100), while at a 

foreground signal strength of 0.1, the relative percent gain was only 3% ((92-89)/89*100). 



 

Supplementary Figure 6. Paired plots of the − log10 𝑝 values from the analysis of the seven WTCCC 

phenotypes in Table 3 of the main paper (with no background variance component). Red points denote 

hypotheses for which the numerical routine to compute the p-value for the score test lost precision and 

returned p=0. For these points, we assigned them a score p-value equal to the lowest observed p-value in 

that experiment. 



 

Supplementary Figure 7. Paired plots of the − log10 𝑝 values from the analysis of the eight ARIC 

phenotypes in Table 3 of the main paper (using no background variance component). Red points denote 

hypotheses for which the numerical routine to compute the p-value for the score test lost precision and 

returned p=0. For these points, we assigned them a score p-value equal to the lowest observed p-value in 

that experiment. 



 

 

 

Supplementary Figure 8. Paired plots of the − log10 𝑝 values from the analysis of the Warfarin and BMI 

(with rare variants) phenotypes in Table 3 of the main paper (no background variance component used). 

Red points denote hypotheses for which the numerical routine to compute the p-value for the score test 

lost precision and returned p=0. For these points, we assigned them a score p-value equal to the lowest 

observed p-value in that experiment. 

 

Supplementary Table 1. Type I error for WTCCC data using half of chromosomes as polygenic background. 

Gaussian 

phenotype 
𝜶 = 𝟏𝟎−𝟓 𝜶 = 𝟏𝟎−𝟒 𝜶 = 𝟏𝟎−𝟑 

Score 1.1 × 10−5 1.2 × 10−4 1.0 × 10−3 

Linear LR test 7.9 × 10−6 1.2 × 10−4 1.0 × 10−3 

There are no statistically significant deviations from expectation according to binomial test with significance level of 0.05. 

 

Supplementary Table 2. Validation of the three immune-related phenotypes from the WTCCC analysis. Raw number of validated hits found by 

each method. Data for validation were downloaded on 5/27/2014 from http://immunobase.org. “Max # could validate” denotes the total number 

of genes in our analysis found in the immune database, while, “# in db” denotes the total  number genes listsed in the immune database. “1K” 

denotes the analysis with no background variance component, while “2K” denotes the analysis with a background variance component, as 

described in the main paper. 

data set phenotype Score (1K) LRT (1K) Score (2K) LRT (2K) 

Max # 

could 

validate 

# in db 

WTCCC CD 14 25 3 3 492 1045 

WTCCC T1D 36 44 32 42 207 481 

WTCCC RA 24 26 21 25 177 401 

 

 

 

http://immunobase.org/


Supplementary Methods

1 Definitions and frequently used identities

• IJ denotes a J-by-J identity matrix.

• I denotes an identity matrix, where the dimensionality follows from the context.

• N -by-1 vector of phenotypes y

• N -by-D covariates matrix X with full column rank D and N ≥ D

• N -by-N covariance matrix Σθ, for the Gaussian-distributed phenotype y, parameterized by the vector
of covariance parameters θ ∈ Θ. In this paper we assume a simple weighted sum of fixed individual
positive semi-definite matrices. So in the case of no background kernel (that is, no kernel appearing
in the null model), Σθ = σ2

eI + σ2
1K1, whereas for the case where there is a background kernel,

Σθ = σ2
eI + σ2

gKg + σ2
1K1. In both cases, under the null hypothesis σ2

1 = 0, as this is the parameter
being tested. Σθ is assumed to have full rank N (which it will so long as σ2

e > 0).

• N -by-N symmetric covariate orthogonal projection matrix S =
(

IN −X
(
X⊤X

)−1
X⊤

)

and has

rank N −D.

• N -by-N symmetric matrix Pθ =
(
Σ

−1
θ −Σ

−1
θ X(XT

Σ
−1
θ X)−1X⊤

Σ
−1
θ

)
and has rank N −D.

• For any I-by-J matrix A, the J-by-I matrix A† denotes the Moore-Penrose pseudo-inverse of A.

• For any square I-by-I matrix A, the expression |A|+ denotes the pseudo-determinant of A. If A is
positive semi-definite, then |A|+ may be computed as the product of the non-zero eigenvalues. If all
eigenvalues are zero, then the pseudo-determinant is 1.

• SS = S. (See Proposition 5)

• SX = 0. (See Proposition 4)

• PθX = 0. (See Proposition 6)

• PθS = Pθ = SPθ. (See Proposition 7)

• P
†
θ = SΣθS and equivalently Pθ = (SΣθS)

†
(See Lemma 12)

• For any I-by-J matrix A and any parameter θ, ∂A
∂θ is the I-by-J matrix derivative of A with respect

to any covariance parameter θ.

• ∂Pθ

∂θi
= −Pθ

∂Pθ

∂θi
Pθ (See Proposition 8)

• Tr(AB) = Tr(BA) for any two matrices A and B.

• A⊥ is a matrix with columns that are all orthogonal to the columns of the matrix A.
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2 Restricted Maximum Likelihood (REML)

For REML estimation [7] of the mixed model variance parameters, we use the restricted log likelihood [3]
for N individuals with the N -by-1 vector of phenotypes y, the N -by-D matrix of covariates X and the
covariance matrix Σθ, parameterized by θ ∈ Θ, given by

L (θ) = −
(N −D)

2
log(2π)−

1

2
yTPθy −

1

2
log|Σθ|+

1

2
log|XTX| −

1

2
log|XT

Σ
−1
θ X|. (1)

Using Proposition 19, the restricted likelihood can be simplified using Pθ only.

L (θ) = −
(N −D)

2
log(2π)−

1

2
yTPθy +

1

2
log|Pθ|+. (2)

3 Variance component tests

We perform variance component tests, by modifying the matrix Σθ (and consequently the matrix Pθ) with
respect to the variance parameters σ2

e , σ
2
g and σ2

1 , and the kernel matrices K1 and Kg.

Recall that in the case of a variance component test without a background kernel (that is, no kernel Kg

in the null model) Σθ = σ2
eI + σ2

1K1, whereas for the case where there is a background kernel, Σθ =
σ2
eI + σ2

gKg + σ2
1K1. In both cases, under the null hypothesis we set the parameter of interest σ2

1 to 0 and
perform REML estimation on the remaining parameters only.

4 Efficient likelihood ratio tests in the presence of full-rank back-

ground kernels

In [6] it was shown how the likelihood of the mixed model can efficiently be maximized, when both Kg

and K1 are low rank and can be factored, respectively, as GgG
⊤
g and G1G

⊤
1 . Here, we make no special

assumptions (e.g. rank) on the background kernel Kg, only assuming that the variance component K1 (the
component being tested, corresponding to, say, variants in a gene set) is low rank and can be factored as
G1G

⊤
1 .

Σθ = σ2
eI + σ2

gKg + σ1G1G
T
1 .

Introducing δ = σ2
e/σ

2
g and γ1 = σ2

1/σ
2
g , we obtain

Σθ = σ2
g

(
δI +Kg − γ2

1G1G
T
1

)
.

There are several variations of this basic setting that we want to handle efficiently (and do handle efficiently).
These cases are as follows.

The first case occurs when there are variants, Wg, among the variants we are testing (G1), which are also
used in construction of the background kernel, Kg. In this setting, we wish to remove these variants from
the background kernel, in order to correct for proximal contamination [4, 5]) without explicitly computing a
new background kernel from scratch.
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As Kg decomposes in a sum over contributions from individual variants, we can simply subtract off the
contribution of Wg from the complete matrix Kg [5].

Σθ = σ2
g

(
δI +Kg −WgW

⊤
g + γ2

1G1G
T
1

)
.

A special case of this occurs when the set of variants being tested G1 is a subset of the set being removed
from the genetic background kernel. In this case, one can remove this subset from the matrix Wg and instead
modify the variance parameters as follows for additional computational savings:

Σθ = σ2
g

(
δI +Kg −WgW

⊤
g + (γ2

1 − 1)G1G
T
1

)
.

All of these cases can be treated by aggregating all of the ”updating factors” (those factors which are
added/subtracted from Kg) into a single N -by-k the matrix W and maintaining their relative ”weighting”
(i.e., variance parameters) by additionally introducing the k-by-k diagonal weight matrix Γ, which contains
the variance parameters for each column in W on the diagonal,

Σθ = σ2
g

(
δI +Kg +WΓW⊤

)
.

Now that we have presented the cases of interest, we next show how to perform efficient computations for
these cases by using the idea of low-rank updates [5] to the full rank matrix Kg. In Sections 4.1.1 and 4.1.2
we provide the updated squared form part and the updated determinant part of the REML likelihood
respectively.

4.1 Low rank update

The computational bottleneck of the likelihood ratio test is computation of the restricted log likelihood
(Equation 2), which contains several expensive terms if computed naively (the squared form, 1

2y
TPθy, and

the pseudo determinant of Pθ,
1
2 log|Pθ|+. Next we show how to compute each of them efficiently (in terms

of time).

Pθ =(SΣθS)
†

=
(
Sσ2

g

(
δI +Kg +WΓW⊤

)
S
)†

=σ−2
g

(
S (δI +Kg)S + SWΓW⊤S

)†

=σ−2
g

(
U (δI +Λ)U⊤ +UU⊤WΓW⊤UU⊤

)†

=σ−2
g

(
U

(
δI +Λ+U⊤WΓW⊤U

)
U⊤

)†

=σ−2
g U

(
δI +Λ+U⊤WΓW⊤U

)−1
U⊤

=σ−2
g U (δI +Λ)

−1
U⊤

− σ−2
g U (δI +Λ)

−1
U⊤W

(

Γ−1 +W⊤U (δI +Λ)
−1

U⊤W
)−1

W⊤U (δI +Λ)
−1

U⊤ (3)

Assuming that the eigenvalue decomposition of S (δI +Kg)S has been pre-computed, the additional com-
putations required are multiplication of W with the matrix U , an O(N2k) operation. Once this has been
computed once for the corresponding matrix W , the remaining computations can be performed in O(Nk2).
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4.1.1 Squared form update

Given the derivation of the update on Pθ, we can efficiently plug this into the squared form.

1

2
y
T
Pθy =

1

2σ2
g

y
T
U (δI +Λ)−1

U
⊤
y

−

1

2σ2
g

y
T
U (δI +Λ)−1

U
⊤
W

(

Γ
−1 +W

⊤
U (δI +Λ)−1

U
⊤
W

)−1

W
⊤
U (δI +Λ)−1

U
⊤
y

4.1.2 Determinant update

For the determinant we need to modify the low rank update a bit in order to avoid numerical instability.
The problem is that the update matrix is not necessarily positive-semi-definite.

1

2
log|Pθ|+ =

1

2
log|U⊤

ΣθU |+ (4)

=
1

2
log|σ2

g



δIN−D +Λ+U⊤WΓ
︸ ︷︷ ︸

A

W⊤U
︸ ︷︷ ︸

B⊤



| (5)

=
N −D

2
log σ2

g +
1

2
log|δIN−D +Λ+AB⊤| (6)

=
N −D

2
log σ2

g +
1

2
log

(

|δIN−D +Λ| · |I +B⊤ (δIN−D +Λ)
−1

A|
)

, (7)

=
N −D

2
log σ2

g +
1

2
log (|δIN−D +Λ|) + log

(

|I +B⊤ (δIN−D +Λ)−1
A|

)

, (8)

where we have used Sylvester’s theorem for matrix determinants, which states that for matrices A and B

respectively of size, p× n and n× p, that

|Ip +AB|= |In +BA|. (9)

For numerical reasons it is preferable to avoid computation of any matrix determinants and instead diago-
nalize the matrix its eigenvalue decomposition and adding up the logarithms of the respective eigenvalues.
Yet the matrix AB⊤ will have negative eigenvalues if there is at least one negative diagonal entry in Γ, such
that that we cannot just take logarithms of its eigenvalues.

Proposition 1. The matrix I +B⊤ (δIN−D +Λ)
−1

A has an even number of negative eigenvalues.

Proof. By construction we know that the matrix Pθ is positive semi-definite, implying that its pseudo-
determinant is positive. As the matrix δIN−D +Λ also is positive definite, implying that its determinant is
positive, it follows that AB⊤ must also have a positive determinant. As the determinant equals the product
of the eigenvalues, positivity of the determinant implies that the number of negative eigenvalues must be
even.

As a result we can compute the log determinant as the sum of the logarithms of the absolute values of the
eigenvalues and avoid taking logarithms of any negative numbers.

The computational complexity for computing the determinant update equals that for the squared form
update.
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5 Score-based test

We here define the score function of any given covariance parameter, θi, as the derivative of the log restricted
likelihood in Equation 1 with respect to θi

∂L (θ)

∂θi
=−

1

2

∂yTPθy

∂θi
−

1

2

∂ log|Σθ|

∂θi
−

1

2

∂ log|XT
Σ

−1
θ X|

∂θi

=−
1

2
y⊤ ∂Pθ

∂θi
y −

1

2
Tr

(

Σ
−1
θ

∂Σθ

∂θi

)

−
1

2
Tr

(

(XT
Σ

−1
θ X)−1XT

Σ
−1
θ

∂Σθ

∂θi
Σ

−1
θ X

)

=
1

2
y⊤Pθ

∂Σθ

∂θi
Pθy −

1

2
Tr

(

Σ
−1
θ

∂Σθ

∂θi

)

−
1

2
Tr

(

Σ
−1
θ X(XT

Σ
−1
θ X)−1XT

Σ
−1
θ

∂Σθ

∂θi

)

=
1

2
y⊤Pθ

∂Σθ

∂θi
Pθy −

1

2
Tr

(
(
Σ

−1
θ −Σ

−1
θ X(XT

Σ
−1
θ X)−1XT

Σ
−1
θ

) ∂Σθ

∂θi

)

=
1

2
y⊤Pθ

∂Σθ

∂θi
Pθy

︸ ︷︷ ︸

squared form

−
1

2
Tr

(

Pθ
∂Σθ

∂θi

)

︸ ︷︷ ︸

trace term

.

Note that this score function is the difference between a quadratic form in the phenotype, y, and a trace
term that does not involve the phenotype.

Noting that the trace term does not depend on the phenotype data, one can choose to use only the quadratic

form in the score function, ∂L(θ)
∂σ2

1

as the test statistic. For the variance components model considered

in this paper (which is additive/independent in the variance components) this quadratic form is equal to
1
2y

⊤PθK1Pθy. We will refer to this as the score-based test statistic, although we will leave lemmas and
proofs to apply more generally, valid for any of the score components (i.e., for testing any parameter in
the mixed model). Note that this form of this test statistic is the same for the single and two kernel cases.
However, once we set σ2

1 = 0 (the parameter value corresponding to the null hypothesis used to compute
the test statistic), then the score-based test statistic can be re-factored in different ways for the one and two
kernel cases, as shown in Sections 6 and 6.1.

Next we describe what the distribution of the score-based test statistic is, and how to efficiently compute
it. Following that, we describe how to efficiently compute the score-based test statistic itself, for various
models.

5.1 Distribution of the score-based test statistic

In the following, we derive the null distribution of the score-based test statistic under the assumption that
all variance parameters in the null model are known. In particular, for the matrix Σθ, it is assumed that
the nuisance parameters θ are known—that is, Σθ is assumed to be the true covariance matrix of y under
the null distribution. The resulting distribution is a linear combination of χ2 variables, meaning that we can
use Davies method [2] to evaluate significance.

Lemma 2. Assuming that y ∼ N (Xβ ; Σθ ), the score-based test statistic, under the null hypothesis, is
distributed as a weighted sum of χ2

1 variables,

1

2
y⊤Pθ

∂Σθ

∂θi
Pθy ∼

N−D∑

n=1

φnχ
2
1, (10)

where the weights, φn, equal the eigenvalues of the matrix 1/2P
⊤/2
θ

∂Σθ

∂θi
P

1/2
θ , and where the matrix P

1/2
θ is

any matrix square root of Pθ.
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Proof. We start out by re-writing the test statistic, factoring the matrix Pθ as the product of its square

roots (Pθ = P
1/2
θ P

⊤/2
θ ).

1

2
y⊤P

1/2
θ

︸ ︷︷ ︸

u⊤

P
⊤/2
θ

∂Σθ

∂θi
P

1/2
θ P

⊤/2
θ y

︸ ︷︷ ︸

u

.

It is our assumption that under the null distribution y is normal distributed with mean Xβ and covariance

Σθ. As shown in Proposition 20, the (N − D)-by-1 vector u = P
⊤/2
θ y is normally distributed with zero

mean and unit variance.

1

2
u⊤P

T/2
θ

∂Σθ

∂θi
P

1/2
θ u.

Now let V ΦV ⊤ be the spectral decomposition of 1/2P
T/2
θ

∂Σθ

∂θi
P

1/2
θ , with eigenvalues given by the diagonal

of Φ. If we replace this matrix by its spectral decomposition, we obtain the squared form

u⊤V
︸ ︷︷ ︸

v⊤

Φ V ⊤u
︸ ︷︷ ︸

v

,

which in turn can be written as a sum weighted by the eigenvalues, φn,

∑

n

φn · v2n.

Because the matrix of eigenvectors V is orthonormal, it follows that v is also normally distributed with
mean zero and unit variance (and therefore each v2n ∼ χ2

1). Therefore, the term
∑

n φn · v2n is distributed as

the weighted sum of χ2
1 variables with weights φn equal to the eigenvalues of 1

2P
T/2
θ

∂Σθ

∂θi
P

1/2
θ .

5.1.1 Efficient computation of terms needed for the the score-based test statistic null distri-

bution

To compute a p-value for each set test, we need to compute the null distribution from Lemma 2, which
we now show how to do efficiently. In particular, we show how to efficiently compute the eigenvalues of
1
2P

T/2
θ

∂Σθ

∂θi
P

1/2
θ , assuming that ∂Σθ

∂θi
factors as GG⊤. This assumption is true for our score-based test both

with and without the presence of a background kernel. In particular, ∂Σθ

∂σ2
1

= K1 = G1G
⊤
1 .

Lemma 3. For the case where ∂Σθ

∂θi
factors as GG⊤, the non-zero weights of the χ2

1 distributions in Equation

10 can be computed from the matrix 1
2G

⊤PθG.

Proof.

1

2
P

T/2
θ

∂Σθ

∂θi
P

1/2
θ =

1

2
P

T/2
θ GG⊤P

1/2
θ
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This matrix has the same non-zero eigenvalues as the matrix

1

2
G⊤P

1/2
θ P

T/2
θ G =

1

2
G⊤PθG.

Note that 1
2G

⊤PθG can be efficiently computed by efficiently using the tricks shown in Section 7.3.

6 The single kernel score-based test statistic

Let the covariance Σθ be defined as σ2
eI + σ2

1K1, with the parameters θ = [σ2
e , σ

2
1 ] and σ2

e > 0 and σ2
1 ≥ 0.

We are interested in testing the null hypothesis σ2
1 = 0 against the alternative hypothesis σ2

1 > 0.

Under the null hypothesis, σ2
1 = 0, the matrix Pθ reduces to σ−2

e S. It follows that the score with respect to
the parameter σ2

1 is

∂L
(
σ2
e , σ

2
1 = 0

)

∂σ2
1

=
1

2
y⊤Pθ

∂Σθ

∂σ2
1

Pθy −
1

2
Tr

(

Pθ
∂Σθ

∂σ2
1

)

=
1

2σ4
e

y⊤SK1Sy

︸ ︷︷ ︸

squared form

−
1

2σ2
e

Tr (SK1)

︸ ︷︷ ︸

trace term

. (11)

6.0.2 Low rank single kernel score-based test statistic

Let the matrix K1 be defined as G1G
⊤
1 , where G1 is of dimension N × k) contains the set of SNPs being

tested. Then, the single kernel score with respect to the parameter σ2
1 can be evaluated as

∂L
(
σ2
e , σ

2
1 = 0

)

∂σ2
1

=
1

2σ4
e

y⊤SK1Sy −
1

2σ2
e

Tr (SK1)

=
1

2σ4
e

y⊤SG1G
⊤
1 Sy −

1

2σ2
e

Tr
(
SG1G

⊤
1

)

=
1

2σ4
e

(y⊤SG1)(G
⊤
1 Sy)

︸ ︷︷ ︸

squared form

−
1

2σ2
e

Tr
(
G⊤

1 SG1

)

︸ ︷︷ ︸

trace term

. (12)

6.1 The two-kernel score-based test statistic

Let the covariance Σθ be defined as σ2
eI + σ2

gKg + σ2
1K, with parameters θ = [σ2

e , σ
2
g , σ

2
1 ] and σ2

e > 0,
σ2
g ≥ 0, σ2

1 ≥ 0.

We are interested in testing the null hypothesis σ2
1 = 0, vs. the alternative hypothesis σ2

1 > 0.
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The score with respect to the parameter σ2
1 is

∂L
(
σ2
e , σ

2
g , σ

2
1 = 0

)

∂σ2
1

=
1

2
y⊤Pθ

∂Σθ

∂σ2
1

Pθy −
1

2
Tr

(

Pθ
∂Σθ

∂σ2
1

)

=
1

2
y⊤PθK1Pθy

︸ ︷︷ ︸

squared form

−
1

2
Tr (PθK1)

︸ ︷︷ ︸

trace term

(13)

6.1.1 Low rank two kernel score-based test statistic

Let the matrix K1 be defined as G1G
⊤
1 . Further, let the matrix Kg = GgG

⊤
g be low rank. Then, the single

kernel score with respect to the parameter σ2
1 can be evaluated as

∂L
(
σ2
e , σ

2
g , σ

2
1 = 0

)

∂σ2
1

=
1

2
y⊤PθG1G

⊤
1 Pθy −

1

2
Tr

(
PθG1G

⊤
1

)

=
1

2
(y⊤PθG1)(G

⊤
1 Pθy)

︸ ︷︷ ︸

squared form

−
1

2
Tr

(
G⊤

1 PθG1

)

︸ ︷︷ ︸

trace term

. (14)

Using Lemma 11 and Proposition 9, we can efficiently evaluate the squared form without computing Pθ,
and do so in a manner which is linear in N .

7 Additional derivations

The following derivations and proofs have been adapted from [1]. Please see the preamble of this document
for variable definitions when no reminder is provided.

Recall that S =
(

IN −X
(
X⊤X

)−1
X⊤

)

and has rankN−D, and thatPθ =
(
Σ

−1
θ −Σ

−1
θ X(XT

Σ
−1
θ X)−1X⊤

Σ
−1
θ

)

is an N -by-N symmetric matrix with has rank N −D.

Proposition 4. SX = 0.

Proof.

SX = IX −X
(
X⊤X

)−1
X⊤X

︸ ︷︷ ︸

I

= X −X

= 0.

Proposition 5. SS = S.

Proof.

SS = SI − SX
︸︷︷︸

0

(
X⊤X

)−1
X⊤

= S.

8



Proposition 6. PθX = 0.

Proof.

PθX = Σ
−1
θ X −Σ

−1
θ X

(
X⊤

Σ
−1
θ X

)−1
X⊤

Σ
−1
θ X

︸ ︷︷ ︸

I

= XΣ
−1
θ −XΣ

−1
θ

= 0.

Proposition 7. PθS = Pθ.

Proof.

PθS = Pθ − PθX
︸ ︷︷ ︸

0

(
X⊤X

)−1
X⊤

= Pθ.

7.1 Matrix derivative of Pθ

Proposition 8. ∂Pθ

∂θi
= −Pθ

∂Σθ

∂θi
Pθ.

Proof.

∂Pθ

∂θi
=−Σ

−1
θ

∂Σθ

∂θi
Σ

−1
θ +Σ

−1
θ

∂Σθ

∂θi
Σ

−1
θ X(XT

Σ
−1
θ X)−1XT

Σ
−1
θ +Σ

−1
θ X(XT

Σ
−1
θ X)−1XT

Σ
−1
θ

∂Σθ

∂θi
Σ

−1
θ

−Σ
−1
θ X(XT

Σ
−1
θ X)−1XT

Σ
−1
θ

∂Σθ

∂θi
Σ

−1
θ X(XT

Σ
−1
θ X)−1XT

Σ
−1
θ

=−
(
Σ

−1
θ −Σ

−1
θ X(XT

Σ
−1
θ X)−1XT

Σ
−1
θ

) ∂Σθ

∂θi

(
Σ

−1
θ −Σ

−1
θ X(XT

Σ
−1
θ X)−1XT

Σ
−1
θ

)

=− Pθ
∂Σθ

∂θi
Pθ.

7.2 Efficient multiplication with S

Proposition 9. For any N -by-1-vector a multiplication with S can be done efficiently in time complexity
O(ND), without explicitly computing S.

9



Proof.

Sa =
(
I −X

(
X⊤X

)
X⊤

)
a

= a−X
(
X⊤X

)
X⊤

︸ ︷︷ ︸

X†

a

= a−X
(
X†a

)

︸ ︷︷ ︸

OLS

.

The resulting term is nothing but the ordinary least squares (OLS) regression residuals after regressing out
X. Note, that the pseudoinverse of the covariates, X†, need only be computed once (in O(ND2)) and then
can be re-used across different a.For multiplication of matrices by S the result is applied by treating each
row or column as a vector in the multiplication.

7.3 Spectral decomposition of Pθ and efficient computation of squared forms in
Pθ

One computational bottleneck for the score-based test is computation of a matrix square root of Pθ (P
1/2
θ ),

which can be obtained directly from the spectral decomposition of Pθ. Therefore, we seek to efficiently

compute P
1/2
θ . To do so, we note that σ2

gPθ = (S (Kg + δIN )S)
†
, which can be seen using Lemma 12.

Below we show how to compute the a matrix square root of (S (Kg + δIN )S)
†
.

The following lemma was stated without proof in [7] and is proved in Proposition C.15 of [1]:

Lemma 10. Let the economy spectral decomposition of S (Kg + IN )S be U (Λ+ IN−D)U⊤. Then the
economy spectral decomposition of S (Kg + δIN )S is given by U (Λ+ δIN−D)U⊤, where (Λ+ δIN−D) is
a diagonal matrix holding the N −D non-zero eigenvalues of S (K + δIN )S (in contrast, the first N −D
eigenvectors remain unchanged and are given as columns of U .)

Proof.

S (Kg + δIN )S =S ((Kg + IN ) + (δ − 1) IN )S

=S (Kg + I)S + (δ − 1)SINS
︸ ︷︷ ︸

S

=U (Λ+ I)U⊤ + (δ − 1)UIN−DU⊤

=U (Λ+ δIN−D)U⊤,

where we used idempotency of S and Lemma 17 to replace S by UU⊤.

The proof relies on Kg + δI to be full rank, which is always true for δ > 0.

Under certain conditions (“low rank”), these computations can be made more efficient. In particular, for the
case, whereKg is factored asK = GgG

⊤
g , with the N -by-kg factorGg, only the singular value decomposition

of the N -by-kg matrix SGg has to be computed (which is linear in N , rather than cubic as taking the singular
value decomposition ofKg would be). This can be seen by noting that SGg is a matrix square root of SKgS,

and therefore that the economy SVD UΛ
1/2V ⊤ of SGg gives the economy eigenvalue decomposition of

SKgS, which is given by UΛU⊤.

10



Let U⊥ be an N -by-(N − kg −D) matrix with orthogonal columns that are all orthogonal to the columns of
both U , as well as X. Then the economy eigenvalue decomposition of S (Kg + δIN )S is given by

S (Kg + δIN )S =
[
U U⊥

]
[

Λ+ δIkg
0

0 δIN−D−kg

]
[
U U⊥

]⊤
.

Then the economy eigenvalue decomposition of Pθ can be obtained as follows:

σ2
gPθ =(S (Kg + δIN )S)†

using Lemma 12

=
[
U U⊥

]
([

Λ 0

0 0

]

+ δIN−D

)−1
[
U U⊥

]⊤
,

because K = GgG
⊤
g is low rank,

(15)

=
[
U U⊥

]
[

Λ+ δIkg
0

0 δIN−D−kg

]−1
[
U U⊥

]⊤

=U
(
Λ+ δIkg

)−1
U⊤ +

1

δ
U⊥I

−1
N−D−kg

U⊤
⊥

=U
(
Λ+ δIkg

)−1
U⊤ +

1

δ
U⊥U

⊤
⊥ +

1

δ

(
UU⊤ −UU⊤

)

︸ ︷︷ ︸

0

=U
(
Λ+ δIkg

)−1
U⊤ +

1

δ

(
U⊥U

⊤
⊥ +UU⊤

)

︸ ︷︷ ︸
[

U U⊥

][

U U⊥

]⊤
=S

−
1

δ
UU⊤

=U
(
Λ+ δIkg

)−1
U⊤ +

1

δ

(
S −UU⊤

)
.

Lemma 11. It follows that when Kg is factored as Kg = GgG
⊤
g , then for all a and b, any squared form in

Pθ, written here as a⊤Pθb can be computed efficiently only using the singular value decomposition of SGg.

Proof.

a⊤Pθb =a⊤SPθSb

=
1

σ2
g

a⊤S

(

U
(
Λ+ δIkg

)−1
U⊤ +

1

δ

(
S −UU⊤

)
)

Sb

=
1

σ2
g

a⊤SU
(
Λ+ δIkg

)−1
U⊤Sb+

1

δ
a⊤ SSS

︸ ︷︷ ︸

S

b−
1

δ
a⊤SUU⊤Sb

=
1

σ2
g

a⊤SU
(
Λ+ δIkg

)−1
U⊤Sb+

1

δ
a⊤Sb−

1

δ
a⊤SUU⊤Sb.
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7.4 Moore-Penrose pseudoinverse of Pθ

Lemma 12. SΣθS is the Moore-Penrose pseudoinverse of Pθ [1].

Proof. The four properties of the Moore-Penrose pseudoinverse are proven below in Propositions 13 to 16,
thereby completing the proof.

This Lemma was stated and used in [7]. A proof can be found in Lemma C.10 of [1].

Proposition 13. (SΣθS)Pθ is symmetric.

Proof.

(SΣθS)Pθ =SΣθ SPθ
︸︷︷︸

Pθ

=SΣθPθ

=SΣθΣ
−1
θ

︸ ︷︷ ︸

I

−SΣθΣ
−1
θ

︸ ︷︷ ︸

I

X
(
X⊤

Σ
−1
θ X

)−1
X⊤

Σ
−1
θ

=S − SX
︸︷︷︸

0

(
X⊤

Σ
−1
θ X

)−1
X⊤

Σ
−1
θ

=S.

As S is symmetric, (SΣθS)Pθ is also symmetric.

Proposition 14. Pθ (SΣθS) is symmetric.

Proof.

Pθ (SΣθS) =S.

As S is symmetric, Pθ (SΣθS) is also symmetric.

Proposition 15. Pθ is a weak inverse of SΣθS.

Proof.

Pθ (SΣθS)
︸ ︷︷ ︸

S

Pθ =SPθ

=Pθ.

Proposition 16. SΣθS is a weak inverse of Pθ.

Proof.

(SΣθS)Pθ
︸ ︷︷ ︸

S

(SΣθS) = SS
︸︷︷︸

S

ΣθS

=SΣθS.
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Lemma 17. Let UΛU⊤ be the economy spectral decomposition of (SΣθS), where Λ is an (N −D)-by-
(N −D) diagonal matrix, holding the non-zero eigenvalues of (SΣθS), and U is the N -by-(N −D) matrix,
holding the corresponding N −D eigenvectors of (SΣθS) as columns. Then S = UU⊤ [7].

Proof.

S =(SΣθS)Pθ

=(SΣθS) (SΣθS)
†

=
(
UΛU⊤

) (
UΛ

−1U⊤
)

=UΛU⊤U
︸ ︷︷ ︸

I

Λ
−1U⊤

=U ΛΛ
−1

︸ ︷︷ ︸

I

U⊤

=UU⊤.

Proposition 18. Let UΛU⊤ be the economy spectral decomposition of (SΣθS), where Λ is an (N −D)-
by-(N − D) diagonal matrix, holding the non-zero eigenvalues of (SΣθS), and U is the N -by-(N − D)
matrix, holding the corresponding N −D eigenvectors of (SΣθS) as columns. Then U⊤

ΣθU = Λ [7].

Proof.

U⊤
ΣθU =

I
︷ ︸︸ ︷

U⊤U U⊤
ΣθU

I
︷ ︸︸ ︷

U⊤U

=U⊤SΣθSU

=U⊤U
︸ ︷︷ ︸

I

ΛU⊤U
︸ ︷︷ ︸

I

=Λ.

7.5 Pseudo-determinant of Pθ

Proposition 19.

1

2
log|Pθ|+ = −

1

2
log|Σθ|+

1

2
log|XTX| −

1

2
log|XT

Σ
−1
θ X|

This Proposition was stated without a proof in [3]. A proof was provided in Proposition C.7 in [1].

Proof. From Lemma 12 we know that Pθ = (SΣθS)
†
.

|Pθ|+ =|SΣθS|
−1
+

13



Let UΛU⊤ be the economy spectral decomposition of (SΣθS), where Λ is an (N − D)-by-(N − D)
diagonal matrix, holding the non-zero eigenvalues of (SΣθS), and U is the N -by-(N −D) matrix, holding
the corresponding N −D eigenvectors of (SΣθS) as columns.

|Pθ|+ =|SΣθS|
−1
+

=|Λ|−1 ·

1
︷ ︸︸ ︷

|X⊤
Σ

−1
θ X| · |X⊤

Σ
−1
θ X|−1

Using Proposition 18, we can replace Λ by U⊤
ΣθU .

=|U⊤
ΣθU |−1 · |

(
X⊤

Σ
−1
θ X

)−1

I
︷ ︸︸ ︷

X⊤
Σ

−1
θ X

(
X⊤

Σ
−1
θ X

)−1
|−1 · |X⊤

Σ
−1
θ X|−1

=|U⊤
ΣθU |−1 · |

(
X⊤

Σ
−1
θ X

)−1
X⊤

Σ
−1
θ

I
︷ ︸︸ ︷

ΣθΣ
−1
θ X

(
X⊤

Σ
−1
θ X

)−1
|−1 · |X⊤

Σ
−1
θ X|−1

=

∣
∣
∣
∣
∣
∣
∣






U⊤
ΣθU 0

0
(
X⊤

Σ
−1
θ X

)−1
X⊤

Σ
−1
θ

︸ ︷︷ ︸

Q

Σθ Σ
−1
θ X

(
X⊤

Σ
−1
θ X

)−1

︸ ︷︷ ︸

Q⊤






∣
∣
∣
∣
∣
∣
∣

−1

· |X⊤
Σ

−1
θ X|−1

To shorten notation we define the matrix Q =
(
X⊤

Σ
−1
θ X

)−1
X⊤

Σ
−1
θ .

=

∣
∣
∣
∣
∣
∣
∣
∣







U⊤
ΣθU

0

︷ ︸︸ ︷

U⊤
ΣθQ

⊤

QΣθU
︸ ︷︷ ︸

0

QΣθQ
⊤







∣
∣
∣
∣
∣
∣
∣
∣

−1

· |X⊤
Σ

−1
θ X|−1

As X⊤U = 0 it follows that also QΣθU = 0.

=

∣
∣
∣
∣
∣

[
U⊤

Q

]

Σθ

[
U⊤

Q

]⊤
∣
∣
∣
∣
∣

−1

· |X⊤
Σ

−1
θ X|−1

Using |AB| = |A| · |B| for full rank matrices A and B, we get

=|Σθ|
−1 ·

∣
∣
∣
∣
∣

[
U⊤

Q

] [
U⊤

Q

]⊤
∣
∣
∣
∣
∣

−1

· |X⊤
Σ

−1
θ X|−1

=|Σθ|
−1 ·

∣
∣
∣
∣

[
U⊤U U⊤Q⊤

QU QQ⊤

]∣
∣
∣
∣

−1

· |X⊤
Σ

−1
θ X|−1

Using the well-known formula for the determinant of a block-matrix, we get

=|Σθ|
−1 · |U⊤U

︸ ︷︷ ︸

I

|−1 · |QQ⊤ −QU
(
U⊤U

)−1
U⊤

︸ ︷︷ ︸

S

Q⊤|−1 · |X⊤
Σ

−1
θ X|−1

=|Σθ|
−1 · |QQ⊤ −QQ⊤

︸ ︷︷ ︸

0

+QX
︸︷︷︸

I

(
X⊤X

)−1
X⊤Q⊤

︸ ︷︷ ︸

I

|−1 · |X⊤
Σ

−1
θ X|−1

=|Σθ|
−1 · |X⊤X| · |X⊤

Σ
−1
θ X|−1.
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7.6 Matrix square root of Pθ

Let UΛ
1/2V ⊤ be the economy singular value decomposition of P

1/2
θ , where the N -by-(N − D) matrix U

is the matrix of left singular vectors of P
1/2
θ (and eigenvectors of Pθ), Λ

−1/2 is the (N − D)-by-(N − D)

matrix holding the non-zero singular values of P
1/2
θ on the diagonal (and a diagonal matrix square root of the

matrix Λ
−1 of non-zero eigenvalues of Pθ), and V is the matrix of right singular vectors of P

1/2
θ . Also note

that S = UU⊤, as shown in Lemma 17, that SX = 0, as shown in Proposition 4, and that SΣθS = P
†
θ ,

as shown in Lemma 12.

Proposition 20.

y ∼ N (Xβ ; Σθ ) ⇒ P
⊤/2
θ y ∼ N (0 ; I ) .

Proof. An affine transformation of a normally distributed variable is normally distributed. From Proposi-
tion 21 it follows that that the expectation of the transformed variable is zero. From Proposition 22 it follows
that the covariance matrix of the transformed variable is IN−D, completing the proof.

Proposition 21.

P
⊤/2
θ Xβ = 0.

Proof.

P
⊤/2
θ Xβ = V Λ

−1/2U⊤Xβ

= V Λ
−1/2

IN−D

︷ ︸︸ ︷

U⊤U U⊤Xβ

= V Λ
−1/2U⊤ SX

︸︷︷︸

0

β

= 0.

Proposition 22.

P
⊤/2
θ ΣθP

1/2
θ = IN−D.
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Proof.

P
⊤/2
θ ΣθP

⊤/2
θ = V Λ

−1/2U⊤
ΣθUΛ

−1/2V ⊤

= V Λ
−1/2

IN−D

︷ ︸︸ ︷

U⊤U U⊤
ΣθU

IN−D

︷ ︸︸ ︷

U⊤U Λ
−1/2V ⊤

= V Λ
−1/2U⊤ SΣθS

︸ ︷︷ ︸

P †

θ

UΛ
−1/2V ⊤

= V Λ
−1/2 U⊤U

︸ ︷︷ ︸

IN−D

ΛU⊤U
︸ ︷︷ ︸

IN−D

Λ
−1/2V ⊤

= V Λ
−1/2

ΛΛ
−1/2

︸ ︷︷ ︸

IN−D

V ⊤

= IN−D.
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