
Bit-parallel, general integer-scoring alignment

APPENDIX

Definitions
Max = M −G, the largest possible value for ∆V or ∆H .
Min = G, the smallest possible value for ∆V or ∆H .
Mid = I − G, the value that marks the border between Zones A
and B and Zone C.
∆Vi and ∆Hi: bit-vectors that represent the locations of the ∆V or
∆H value i ∈ [Min,Max].
<< 1: a shift of one bit toward the higher order bits in a bit-vector,
with the insertion of a 0 at the lowest order bit.
∆V <<

i : notation for ∆Vi << 1. The shift prepares the output of
one cell for input to the next.
Matches: a bit-vector representing the locations of the matches.
Block in ∆Hmin: within ∆Hmin, a region in which there are several
contiguous bits set to the same value (either 0 or 1).

The following theorems refer to Figure 1 which shows the
relationship between values in four adjacent cells of an alignment
scoring matrix.

∆V


∆H︷ ︸︸ ︷

x
h−→ y

v ↓ ↓ u
w → z

Fig. 1. The relationships between scores in adjacent cells in the scoring
matrix: w, x, y, z are scores, h, v, u are differences: h = y−x, v = w−x,
u = z − y.

Function Table. Theorem 6.1 defines the function table for ∆V .
The function table for ∆H is identical but transposed.

THEOREM 6.1. Given x, y, w and z as in Figure 1, match score
M ≥ 0, mismatch score I < 0 and gap (indel) score G < 0, ∆V
input v and ∆H input h, with v, h ∈ {Min,Min+ 1, . . . ,Max},
the output ∆V value u is:

u =



M − h, if there is a match, for h ∈ {Min, . . . ,Max}
(Match case) (1)

I − h, if v, h ∈ {Min, . . . ,Mid} (Zone C) (2)
v − h + G, if v ∈ {Mid + 1, . . . ,Max} and v > h

(Zones A and B) (3)
G, otherwise (Zone D) (4)

PROOF. From the similarity recurrence formula:

z = max


x + M if match
x + I if mismatch
w + G horizontal gap
y + G vertical gap

Match case: Suppose that there is a match. Then

z = max(x + M,w + G, y + G)

= max(x + M,x + v + G, x + h + G)

but, v, h ≤ M − G. Taking the largest value creates equality in all
three terms, so z = x + M for all values of v, h. Substituting,

u = z − y = z − (x + h) = z − x− h = M − h.

Mismatch case (Zone C): Suppose that there is a mismatch and
z = x + I . Then

x + I ≥ w + G ≥ x + v + G⇒Mid = I −G ≥ v

x + I ≥ y + G ≥ x + h + G⇒Mid = I −G ≥ h

so h, v ∈ {Min, . . . ,Mid}. Substituting,

u = z − x− h = I − h.

Horizontal gap (Zones A and B): Suppose z comes from a
horizontal gap only. Then z = w + G and

w + G > x + I ⇒ x + v + G > x + I ⇒ v > I −G = Mid

w + G > y + G⇒ x + v + G > x + h + G⇒ v > h.

Then v ∈ {Mid + 1, . . . ,Max} and v > h, case (3). Substituting,

u = z− x−h = w +G− x−h = w− x−h+G = v−h+G.

Vertical gap (Zone D): Suppose z comes from a vertical gap. Then
z = y + G and

y + G ≥ w + G⇒ x + h ≥ x + v ⇒ h ≥ v

y + G ≥ x + I ⇒ x + h + G ≥ x + I ⇒ h ≥ I −G = Mid.

Since z = y + G, u = G.

Output ∆V values. Theorems 6.2–6.5 are used to compute the
∆V output values for the four zones of the function table. The proof
for ∆H values is omitted.

Zone A.

THEOREM 6.2. (Zone A max value.) Given the bit-vector ∆Hmin

and the bit-vector Matches, the bit-vector ∆V <<
max (∆Vmax << 1)

can be computed using the following equation:

∆V <<
max =

(((∆Hmin ∧Matches) + ∆Hmin)⊕∆Hmin)

⊕ (∆Hmin ∧Matches)

PROOF. Let left be the direction of the least significant bit and
right the direction of the most significant bit. There are two ways for
u to equal Max, either h = Min and there is a Match or h = Min
and v = Max. Let

InitialVmax = ∆Hmin ∧Matches.

Then InitialVmax represents all the positions where u = Max
because of a Match. We consider two cases: a block of consecutive
1s in ∆Hmin and a block of consecutive 0s.

1

Loving, Hernandez, Benson

Block of consecutive 1s: Let Matches contain k 1s at locations
{p1, p2, . . . , pk} within the block with p1 the leftmost at the dth
location within the block. InitialVmax also has 1s at these locations
and nowhere else in the block. The operation InitialVmax +∆Hmin
adds these 1s and causes a carry from p1 to the end of the block. In
the result, 1s occupy all positions left of p1 in the block, positions
{p2, p3, . . . , pk}, and the position immediately to the right of the
block, if it exists. When we XOR this result with ∆Hmin, the 1s left
of p1 are set to 0, p1 is set to 1, the 0s between the pis are set to 1s,
and the positions {p2, p3, . . . , pk} are set to 0. The bit to the right
of the block remains 1. The final XOR of the result and InitialVmax

sets p1 to 0, and {p2, p3, . . . , pk} to 1, since in InitialVmax those
positions are all 1. The final result is a block of n−d+1 1s, starting
at position p1 + 1 and ending at the first position to the right of the
block.

Block of consecutive 0s: Within the block, InitialVmax is all 0s
because ∆Hmin was 0. Likewise InitialVmax + ∆Hmin is all 0s,
unless a carry has entered the block from the left, in which case
the leftmost bit in the region is a 1. When we XOR this result with
∆Hmin, the output is again all 0s, aside from the possible initial 1
bit. After the final XOR with InitialVmax the output is again all 0s,
except possibly the initial bit.

Bits set to 1 now occupy all locations where u = Max, i.e., either
from h = Min and there is a Match, or h = Min and v = Max,
all shifted one bit to the right.

THEOREM 6.3. (Zone A Remaining Values.) Let u ∈ {Max −
1,Max− 2, . . . ,Mid+ 1} be a ∆V output value in Zone A. Then
the output bit-vector ∆V <<

u can be computed by the equation

∆V <<
u =

[(∆HM−u ∧Matches)∨ (1)

(
∨

k,l|l−k+Min=u
k 6=Min
l>Mid

(∆Hk ∧ (∆V <<
l ∧ ¬Matches)))] << 1 (2)

+ Remain∆Hmin ⊕Remain∆Hmin (3)

where Remain∆Hmin = ∆Hmin ⊕ (∆Hmin ∧Matches).

PROOF. From the function table, an output of u can be obtained
in three ways: from a match, from ∆V input values v ∈ {Mid +
1,Mid + 1, . . . ,Max}, and from the propagation of u through a
block of 1s in ∆Hmin.

Formula Part 1: By Theorem 6.1 (1), when there is a match,
u = M −h⇒ h = M −u, so the bit-vector ∆HM−u∧Matches
gives locations where the output is u due to matches.

Formula Part 2: (∆V <<
l ∧ ¬Matches) excludes locations in

∆V <<
l with Matches, since the value of ∆V is not used if there is

a match. The ∆Vl values are shifted (∆V <<
l) so that they are input

to the next cell. Output values of u lie on the diagonal defined by
∆Hk and ∆Vl where l − k + Min = u. ANDing every such pair
(excluding the pair where k = Min and l = u + 1, which will be
used in the last step) and ORing the result gives a bit-vector of the
locations where the u output values come from the diagonal.

Parts 1 and 2 yield the locations in ∆V <<
u that must be computed

before propagating through blocks of ∆Hmin.

The << 1 operation shifts these output values one bit toward the
high order bit so they can act as input to the next cell.

Formula Part 3: In Part 1 of Theorem 6.2, ∆Hmin inputs
were used to produce u output. These locations must be excluded
from the propagation, since they have already produced an output.
Remain∆Hmin is exactly ∆Hmin with all such locations excluded.
The operations + Remain∆Hmin⊕Remain∆Hmin carry out the
propagation through the blocks of ∆Hmin, as in the proof of theorem
6.2 and results in output values shifted by one bit to the right.

Zones B and C.

THEOREM 6.4. Let u ∈ {Mid,Mid−1, . . .Min+1} be a ∆V
output value in Zones B or C.

∆V <<
u =

(∆HM−u ∧Matches)∨ (1) ∨
k,l|l−k+Min=u,

l>Mid

[∆Hk ∧ (∆V <<
l ∧ ¬Matches)]

∨
(2)[

∆HI−u ∧

(
¬

Mid+1∨
l=Max

∆V <<
l

)]
(3)

PROOF. From the function table, the ∆V output of u can be
obtained in three ways: from a match, from ∆V input values
v ∈ {Mid + 1,Mid + 2, . . . ,Max} (Zone B), and from the ∆V
input values v ∈ {Min,Min + 1, . . . ,Mid} (Zone C) .

Formula Part 1: See proof of 6.3 Formula Part 1.
Formula Part 2: See proof of 6.3 Formula Part 2.
Formula Part 3: The ∆V values from Min to Mid have

the same outputs in the function table, given the same ∆H
input value. From Theorem 6.1 (2), since v ∈ {Min,Min +
1, . . . ,Mid} and u 6= Mid = G, then u = I − h and
h = I − u. Since Zone A has already been computed, we
know the ∆V values from Max to Mid + 1. Since the sets
{Min,Min + 1, . . . ,Mid} and {Mid + 1,Mid + 2, . . . ,Max}
are complementary, we find the locations of the ∆V values
from Min to Mid by taking the bit-wise complement of the
ORed bitvectors ∆VMid+1,∆VMid+2, . . . ,∆Vmax. ANDing them
to ∆HI−u gives the locations of u.

Zone D.

THEOREM 6.5. (Zone D.) Suppose that the bit-vectors ∆V <<
max ,

∆V <<
Max−1, . . .∆V <<

Min+1 have been computed (Zones A, B, and C).
Then we can compute the bit-vector ∆V <<

min with the equation:

∆V <<
min = ¬

(
max∨

k=Min+1

∆V <<
k

)
.

PROOF. The locations of all previously computed ∆V outputs

shifted 1 bit to the right is simply
max∨

k=Min+1

∆V <<
k , so the

locations that have Min output shifted 1 bit to the right must be

¬

(
max∨

k=Min+1

∆V <<
k

)
.

2

Bit-parallel, general integer-scoring alignment

BitPAl packed calculates the u values in Zones B and C by
addition using an encoding which converts all ∆V values v into the
following b values and all ∆H values h into the following c values:

b = v −Min

c = Min− h

The b values are zero or positive in the range [0,Max−Min] and
the c values are zero or negative in the range [Min−Max, 0]. The
range of their sums is [Min−Max,Max−Min].

Using individual bit-vectors to represent each ∆V or ∆H
value results in very low information density - few bits are set
compared to the overall number of bits. Instead, we use a twos
complement encoding consisting of k bit vectors to store both the
b and c encodings as above. The b values are stored in vectors
∆V bits20 ,∆V bits21 , . . . ,∆V bits2k , the c values are stored in
vectors ∆Hbits20 ,∆Hbits21 , . . . ,∆Hbits2k , and k is set to
accommodate the range of sums, i.e., 2k ≥ 2 ∗ (Max−Min) + 1
or k = dlog2(2 ∗ (Max−Min) + 1)e

For Zones B and C, all ∆V values < Mid are treated as Mid. In
this case we modify the encoding above so that

b =

{
Mid−Min if v ≤Mid

v −Min otherwise

The following theorem shows how to find output ∆V values using
addition.

THEOREM 6.6. (Packed Zones B and C.) Consider v, h, and u
from Figure 1 and let b and c be as in the encoding above. If b+c >
0, then b + c = u−Min, otherwise u = Min.

PROOF.

b + c > 0:
v > Mid:

b + c = v −Min + Min− h = v − h and b + c > 0⇒ v − h >
0 ⇒ v > h. From Theorem 6.1 (3), u = v − h + G ⇒ u =
b + c + G⇒ b + c = u−G⇒ b + c = u−Min.

v ≤ Mid:
b + c = Mid −Min + Min − h = Mid − h and b + c > 0 ⇒
Mid− h > 0⇒Mid > h. From Theorem 6.1 (2), u = I − h⇒
u = Mid+Min−h⇒ u−Min = Mid−h⇒ b+c = u−Min.
b + c ≤ 0:
v > Mid:

b + c = v −Min + Min− h = v − h and b + c ≤ 0⇒ v − h ≤
0⇒ v ≤ h. Then by Theorem 6.1 (4), u = G = Min

v ≤ Mid:
b+c = Mid−Min+Min−h = Mid−h and b+c ≤ 0⇒Mid−
h ≤ 0⇒Mid ≤ h. Suppose that Mid = h. Then by Theorem 6.1
(2), u = I − h = I −Mid = I − (I −G) = G = Min. Suppose
that Mid < h. Then by Theorem 6.1 (4), u = G = Min.

Application to Distance Based Scoring
THEOREM 6.7. For any distance based integer scoring scheme

described by alignment weights (m, i, g) with m = 0, i, g > 0,
i ≤ 2g, the global alignment bit-parallel methods described above
apply to an equivalent similarity based integer scoring scheme, with
weights (M, I,G), with M = 0, I = −i, and G = −g.

Fig. 2. Function tables for unit-cost edit-distance. ∆V output on left, ∆H

output on right. I (Increase) = +1, S (Same) = 0, D (Decrease) = −1.

PROOF. Let M = 0, I = −i, and G = −g. Equivalence of the
two scoring schemes for global alignment was established in (Smith
and Waterman, 1981), Theorem 3, which states that for similarity
scores M, I,G, the corresponding distance scores are m = 0, i =
M − I, and g = M/2 − G. By substitution, M, I, and G will
produce m, i, and g.

The change in scoring weights is merely a remapping of the
values for Max, Min, and Mid as defined above. The function table
dimensions and Zones remain unchanged. Since M ≥ 0, k ≥ 0.
Since i, g > 0, i > 2k, g > k.

EDIT-DISTANCE IN 15 OPERATIONS
Our best BitPAl algorithm for unit-cost edit-distance uses
23 operations. A faster bit-parallel algorithm was previously
constructed by ? as a simple modification of the k-differences, bit-
parallel approximate pattern matching algorithm of Myers (1999)
. The difference in the two algorithms amounts to a change in the
values in column zero of the alignment scoring matrix. For pattern
matching, there is no penalty for deletion of characters in the text
before starting to match the pattern, so each cell in column zero
has value zero. For global unit-cost edit-distance, deletion in each
string from the beginning is penalized, so the value in cell i of
column zero is i. Bit-parallel algorithms work on the difference
in the values stored in adjacent cells, and the difference, for edit-
distance, between column zero cells in row i and i − 1 is always
one. The modification made by ? to the 15 operation algorithm
of Myers (1999) was to add an additional operation to put the
one in the initial bit of the bit-vector representing the differences
between vertically adjacent cells in a row. That modification has
16 operations. Below we show how to achieve global, unit-cost
edit-distance in 15 operations.

The algorithm assumes the ∆H values for the previous row are
available. Three differences are possible, −1, 0, and +1, and in
what follows, these are designated D (decrease), S (same), and I
(increase). Since there are only three values, it is enough to save
vectors for two and derive the third if necessary. The key to this
algorithm is that the two vectors that we save are D and S|D, the
union of S and D. They contain enough information to derive S and
I , but in our method these are not needed explicitly. However, S|D
is used three times and having it in hand saves one operation.

Several observations, derived from the function table (Figure 2),
form the basis of our approach:

3

Loving, Hernandez, Benson

1. D always gives the same output, ∆V = +1, whether there
is a match or not, so it can always be treated as a match. To
represent this, we use a vector Mm which is the union of the
Match and D positions

2. ∆H runs of non-match I or non-match S are central to the
algorithm. We represent these in the vector RI|S , which is the
union of all non-match I positions and non-match S positions.
Note that RI|S is the complement of Mm.

a. In runs preceded by ∆V = 0 or + 1, all I output 0, all S
output +1. These runs are designated +1|0RI|S .

b. In runs preceded by ∆V = −1, all I left of the first
(leftmost) S in the run output -1, all other I ouput 0. The first
S outputs 0, all other S ouput +1. These runs are designated
−1RI|S .

The central steps of the algorithm are shown in Figure 4. Below
is a description of steps.

• Steps 1 – 3 set up vectors which are used more than once: Mm,
RI|S , and notMI , which is all non-match I .

• Step 4 is shown separately for clarity. It computes RI|SorS,
i.e., a vector which includes the RI|S runs and all match S
outside the runs. The computation is through a backdoor, so
that S does not need to be computed explicitly.

• Steps 5 and 6. The ADDITION in Step 5 is set up to force a
carry of 1 into every RI|S run preceded by S or D (+1|0RI|S)
and no carry into every run preceded by a match I (−1RI|S).
In the case of the forced initial carry, every position in the run
produces a carry. All I positions are set to 0 and all S positions
are set to 1. In the case of no initial carry, the first (leftmost) S
causes the first carry. All I to the left of the first S are set to 1
and all I right of the first S are set to 0. The first S is set to 0
and all remaining S are set to 1. The AND in Step 6 is used to
mask out all but the results in the RI|S runs. All other positions
are set to 0.

• Step 7 defines ∆V0, the vector for positions where ∆V = 0.
The second term in the XOR contains a 1 at each RI|S position
and each match S position. It therefore complements the results
inside the RI|S runs from Step 6 and puts a 1 in every match
S position outside the runs. For −1RI|S runs, the first S and
all I to its right are set to 1 and for +1|0RI|S runs, all I are
set to 1. Inspection of the function table confirms that these are
correctly set. Output ∆V = 0 occurs at

1. match S. This is all S outside the RI|S runs.

2. S and input ∆V = −1. This is the first S in −1RI|S runs.

3. non-match I and input ∆V 6= −1. These are the I in
+1|0RI|S runs and the I in −1RI|S runs that follow the
first S.

• Step 8 defines ∆V+1, the vector for positions where ∆V =
+1. The first term puts a 1 in every D position. The AND in
the second term selects the S positions in the RI|S runs that
were set to 1 in Step 6 (all S except the first ones in −1RI|S

runs). Again, inspection of the function table shows that these

Step

****** Setup ******

1. Mm = M |D

2. RI|S = ∼Mm

3. notMI = RIS | S|D

4. RI|SorS = notMI
∧ D

****** the add ******

5. Sum = notMI + S|D

6. MaskSum = Sum & RI|S

****** new ∆V vectors ******

7. V0 = MaskSum ∧ RI|SorS

8. V+1 = D | (MaskSum & S|D)

****** new ∆V vector shifts ******

9. V <<
0 = (V0 << 1)

10. V <<
+1 = (V+1 << 1)

****** penalty for column zero ******

11. V <<
+1 + = 0x0000000000000001

****** new ∆H vectors ******

12. D = Mm & V <<
+1

13. S|D = V <<
+1 | (Mm & V <<

0)

Fig. 4. 15 Operation unit-cost edit-distance algorithm

are correctly set. Note that only S is required for the AND, but
S|D is available and works as well.

• Steps 9 and 10 shift the ∆V vectors 1 bit so they can be used
as input to compute the new ∆H vectors.

• Step 11 sets the bit in the first column of the ∆V+1 vector so
that global edit-distance is computed.

• Step 12 sets the new D. From the function table, output ∆H =
D when input ∆V is +1 and 1) there is a match or 2) input ∆H
is D. Mm stores the latter two conditions.

• Step 13 sets the new S|D. From the function table, output
∆H = S or D when ∆V is +1 (first column of table), or
∆V = 0 and 1) input ∆H = D or 2) there is a match. Again,
Mm stores the latter two conditions.

REFERENCES
Hyyrö, H. and Navarro, G. (2005). Bit-parallel witnesses and

their applications to approximate string matching. Algorithmica,
41(3), 203–231.

Myers, G. (1999). A fast bit-vector algorithm for approximate string
matching based on dynamic programming. Journal of the ACM
(JACM), 46(3), 395–415.

4

Bit-parallel, general integer-scoring alignment

Fig. 3. Illustration of steps 1–8. Mm consists of all matches and all D. RI|S , shown in boxes, consists of all non-match I or S. notMI is everything
but match I . Adding notMI and S|D and masking with AND of RI|S produces MaskSum, lower boxes. V+1 comes from any D or any S set to 1 in
MaskSum. V0 comes from any match S or any 0 in MaskSum.

5

