Supplemental figure legends

Supplemental Figure 1: *Villin-promoter-dependent claudin-2 overexpression is specific to the intestinal tract.* **A.** Cartoon depicting the claudin-2 transgene expression construct used to generate CI-2TG mice; **B.** Immunoflourescent analysis of claudin-2 expression in the colon of CI-2TG mice and WT-littermates; **C.** Immunoblot analysis to detect claudin-2 expression in organs known to express (small intestine and kidney) or not express (lung and heart) the Villin protein; **D.** Immunofluorescent analysis of claudin-2 expression in the intestine of CI-2TG mice and WT-littermates; **E.** Intestine length increases in CI-2TG mice *versus* WT-mice; **F.** Paracellular Na+ flux (N# 5, *p<0.05); **G.** Immunofluorescent imaging demonstrating higher retention of rectally administered FITC-dextran in the colonic epithelium of CI-2TG mice; and **H.** Representative electron microscopic images demonstrating tight junction ultrastructure in CI-2TG mice and WT littermates (N# 6).

Supplemental Figure 2: Details of the histopathological analysis from DSS-treated Cl-2TG mice and WT littermates. Values are presented as mean} sem (n = 12). *p<0.05, ***p<0.001 versus DSS-treated WT mice.

Supplemental Figure 3: Protection of CI-2TG mice against DSS-colitis is not strain dependent. CI-2TG mice backcrossed (more than 10 generations) to the C57BL/6 strain were used. To induce colitis, mice were provided with DSS (3% w/v) in the drinking water for 7 days. (A). Weight loss during the course of DSS administration; (B). Disease activity index; C (*i-ii*). Colon length (cm) in control and DSS-treated mice; and C (*iii*). Colon weight/cm ratio; (D). Cumulative injury scores from the colons of DSS-treated mice; (E). Representative H&E staining of colonic tissues from control and DSS-treated mice. Values are presented as mean} sem. **p<0.01, ***p<0.001. Scale bars=500 or 50 µm.

Supplemental Figure 4: Details of the histopathological analysis from WT and CI-2TG mice subjected to DSS-dependent chronic colitis. Values are presented as mean} sem (*N*#12). *p<0.05, ***p<0.001 versus DSS-treated WT mice.

Supplemental Figure 5: Representative tables depicting the downregulation of genes associated with epithelial integrity and survival, and upregulation of genes associated with mucosal inflammation. The DSS-treated WT-mice were compared with the control WT-mice that received regular drinking water and DSS-treated CI-2TG mice were compared with DSS-treated WT-mice. (A). Genes associated with proliferation/survival and epithelial integrity; and (B). Genes associated with mucosal inflammation. Fold change in expression and associated P-value is provided.

Supplemental Figure 6: FACS analysis data demonstrating the % enrichment of F480+cells is presented to demonstrate purity of the macrophages used in our in-vitro activation analysis.

Supplemental Table 1

Antibody	Company	Address	
Anti-Claudin-2	Invitrogen Corp.	San Francisco, CA, USA	
Anti-Claudin-3	-do-	-do-	
Anti-Claudin-4	-do-	-do-	
Anti-Occludin	-do-	-do-	
Anti-Zo-1	-do-	-do-	
Anti-Phospho-P65	Cell Signaling Technology, Inc.	Danvers, MA, USA	
Anti-P65	-do-	-do-	
Anti-Phospho-P38	-do-	-do-	
Anti-P38	-do-	-do-	
Anti-Phospho-AKT	-do-	-do-	
Anti-AKT	-do-	-do-	
Anti-Phospho-ERK1/2	-do-	-do-	
Anti-ERK1/2	-do-	-do-	
Anti-Phospho-P65	-do-	-do-	
Anti-Phospho-STAT3	-do-	-do-	
Anti-STAT3	-do-	-do-	
Anti-Cleaved Caspase-3	-do-	-do-	
Anti-E-cadherin	BD Biosciences	San Jose, CA, USA	
Anti-β Catenin	BD Biosciences	San Jose, CA, USA	
Anti-P-27	Santa Cruz biotechnology Inc.	Santa Cruz, CA, USA	
Anti-c-myc	-do-	-do-	
Anti-Cyclin D1	-do-	-do-	
Anti-Brdu	BD Biosciences	San Jose, CA, USA	
Anti-Active Caspase-3	BD Biosciences	San Jose, CA, USA	
Brdu	Sigma-Aldrich	St. Louis, MO, USA	
Anti-β Actin	Sigma-Aldrich	St. Louis, MO, USA	
RNeasy Kit	Qiagen	Valencia, Santa Clarita, CA, USA	
Dextran Sodium Sulfate	MP Biomedicals	Solon, OH, USA	
iScript cDNA synthesis kit	Bio-Rad	Hercules, California, USA	
2× iQ [™] SYBR Green Supermix	Bio-Rad	Hercules, California, USA	
MILLIPLEX MAP Mouse	Millipore Corp.	Billerica, Massachusetts, USA	
Cytokine/Chemokine Panel Kit			
FITC-labeled dextran	Sigma-Aldrich	St. Louis, MO, USA	
anti-mouse F4/80	Invitrogen Corp.	San Francisco, CA, USA).	
Streptavidin magnetic beads	BD Biosciences	San Jose, CA, USA	
Collagenase	Sigma-Aldrich	St. Louis, MO, USA	
Dispase II	Sigma-Aldrich	St. Louis, MO, USA	
70-μm cell strainer	BD Biosciences	San Jose, CA, USA	
Zeocin	Invitrogen	Carlsbad, CA, USA	
Chemiluminescence	Amersham Biosciences	Piscataway, NJ, USA	

Supplemental Table 2

Injury score Criteria:

Inflammation (A)	% involved by inflammation (B)	Depth of inflammation (C)	Crypt damage (D)	% involved by crypt damage (E)	Injury score
0-3 0 (None) 1 (Mild) 2 (Moderate) 3 (Severe)	1-4 1 (1 to 25%) 2 (26 to 50%) 3 (51 to 75%) 4 (>75%)	0-3 0 (None) 1 (Mucosa) 2 (Submucosa) 3 (Transmural)	1-4 1 (Basal 1/3 damaged) 2 (Basal 2/3 damaged) 3 (Only surface intact) 4 (Entire crypt and surface lost)	1-4 1 (1 to 25%) 2 (26 to 50%) 3 (51 to 75%) 4 (>75%)	=(A+C)*B+(D*E)

Supplemental Table 3 (Real-time PCR primers)

Gene	Sense Primer	Antisense Primer
Actin	5'-CCAGAGCAAGAGAGGTATCC-3'	5'-CTGTGGTGGTGGAAGCTGTAG-3'
KC	5'-GCTGGGATTCACCTCAAGAA-3'	5'-CTTGGGGACACCTTTTAGCA-3'
TNF	5'-CTGTGAAGGGAATGGGTGTT-3'	5'-GGTCACTGTCCCAGCATCTT-3'
IFN	5'-GCCACGGCACAGTCATTGAA-3'	5'-CGCCTTGCTGTTGCTGAAGA-3'
IL-6	5'-AGAGACTTCCATCCAGTTGC-3'	5'-TCCTTAGCCACTCCTTCTGT-3'
IL-10	5'-TAGAGCTGCGGACTGCCTTC-3'	5'-CTTCACCTGCTCCACTGCCT-3'
TLR-2	5'-GCTGGAGGACTCCTAAGGCT-3'	5'-GTCAGAAGGAAACAGTCCGC-3'
TLR-4	5'-ACCAGGAAGCTTGAATCCCT-3'	5'-TCCAGCCACTGAAGTTCTGA-3'
MyD 88	5'-GAGCGTTTCGATGCCTTCAT-3'	5'-CGGATCATCTCCTGCACAAA-3'
Ki67	5'-AGAAGACCTGCTACTCCAAAGA-3'	5'-AGTTTGCGTGGCCTGTACTAA-3'
P21	5'-TGTCCGTCAGAACCCATGC-3'	5'-AAAGTCGAAGTTCCATCGCTC-3'