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This Supplement contains additional information on the following topics: development of the full 

and partial breast cancer risk scores and their variance in the US population, evaluating the 

performance of strategies that classify young women into high and low risk groups on the basis 

of their risk scores, and the genetic susceptibility variants used to develop the partial risk scores. 

Breast Cancer Risk Scores 

We modeled the lifetime probability of developing breast cancer for an individual with 

genetic risk score s as R = 1− exp −ces( ) , where c is a positive constant.  When the risk scores s 

are not large, the risks of this model can be approximated as R  ces , and for consistency with the 

results of Pharoah (1,2) we used this approximation in our calculations.  We also assumed that 

the risk scores have Gaussian distributions in the population.  The latter assumption is based on 

the Central Limit Theorem for the sum of the genetic factors contributing to a woman’s scores.  

These assumptions imply that a woman’s lifetime genetic risk has approximately a lognormal 

distribution in the population (1,3). 

Full risk scores and their variance 

 Pharoah (1,2) approximated the variance of the full risk scores of European-American females as 

 σ
2  log λMZ( ) , where λMZ  is the ratio of mean lifetime risk among monozygotic twins of breast 

cancer cases relative to that of the population.  The relation follows from the following 

argument.  When the population distribution of log risk is approximately Gaussian with 

parameters µ,σ 2( ) , then the distribution of log risk among breast cancer cases also is 

approximately Gaussian, but with parameters µ +σ 2,σ 2( )  (1). Therefore, since the mean of a 
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log-normally distributed variable with parameters µ,σ 2( )  is eµ+σ 2 /2 ,  the mean risks in the 

population and among cases are, respectively, eµ+σ
2 /2  and eµ+3σ 2 /2 .  Letting Y denote an indicator 

for lifetime breast cancer occurrence, we can thus express the MZ risk-ratio as 

λMZ ≅
ES Ies |Y = 1⎡⎣ ⎤⎦

ES Ies⎡⎣ ⎤⎦
= e

µ+3σ 2 /2

eµ+σ
2 /2

= eσ
2

,  

which gives σ 2 = logλMZ .    

Partial risk scores and their variances  

Epidemiologic data suggest that the locus-specific contributions to breast cancer risk 

combine additively when risk is represented on the logistic scale log[R/(1-R)] (4,5).  Since the 

logistic and log scales are roughly equivalent when risk R is small, this log-additive model 

implies that  logR  logc + s,  where  s = β T g = β1g1 ++ β86g86  is a linear combination of 

genotypes at the 86 unlinked loci listed in Supplementary Table S1, and the coefficients 

β1,...,β86  specify the effect sizes of the 86 risk alleles, obtained as the log per-allele hazard-ratios 

or odds-ratios.   

The population variance of the partial risk scores depends on the multi-locus genotype 

probabilities  

Pr G = g1,...,g86( )⎡⎣ ⎤⎦ =
2
gk

⎛

⎝
⎜

⎞

⎠
⎟k=1

86∏ pk
gk 1− pk( )2−gk     (1) 

where pk is the risk allele frequency of the kth locus in Table 1.  However calculating these 386 = 

1041 probabilities is computationally infeasible.  Instead we approximated the distribution ϕ  by 

sampling from the set of all 3K genotype vectors in proportion to their probabilities.  We 

implemented this sampling procedure in the following steps:  
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1. Sample a genotype vector gi using the genotype probabilities of equation (1), 

assuming linkage equilibrium among loci.    

2. Label gi with score si = β T gi .  

3. Repeat steps 1 and 2 a total of n times to obtain n pairs (gi,si), i = 1,…,n.   

4. Approximate the distribution ϕ s( )  of partial scores by the empirical distribution 

ϕ̂ s( ) = n−1 # i : si = s{ } .   

We used this procedure with a sample of size n = 106 genotype vectors to obtain an empirical 

distribution ϕ̂ s( )  and used this distribution to estimate the variance of the partial risk scores.  

Performance of risk-score-based classification  

We evaluated how well the risk scores perform when used to classify a proportion α  of the 

European-American female population as high-risk, for selected values of α .  Specifically, we 

defined a woman as high-risk if her risk score exceeded the 100 1−α( )th  percentile of the 

relevant population distribution.  For the partial risk scores, we took the population distribution 

to be the empirical distribution ϕ̂ s( )  described above.  For the full risk scores, we approximated 

the risk for a woman with centered scores as  R  ces  and assumed a Gaussian distribution of risk 

scores with variance 1.44.  We also assumed the mean lifetime risk among European-American 

females is R= 12.68% (6).  The performance measures depend on the population mean risk R  

and the relative risk Ψα  among high-risk women compared to low-risk women.  This relative 

risk is 

Ψα = RH

RL

= 1−α
α

es−s
2 /2σ 2

ds
zασ

∞

∫
es−s

2 /2σ 2

ds
−∞

zασ∫
 , 
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where RL  and RH  denote the mean risks in low-and high-risk subgroups, respectively, zα  

denotes the 100 1−α( )th percentile of the standard Gaussian distribution, and σ 2  denotes the 

variance of the risk scores in the population.  The relation 

R = 1−α( )RL +αRH = RL 1+α Ψα −1( )⎡⎣ ⎤⎦  gives the mean risks in high- and low-risk groups as 

RL =  R / 1+α Ψα −1( )⎡⎣ ⎤⎦  and RH = ΨαRL .  The positive predictive value of the classification is 

PPV = RH  and its negative predictive value isNPV = 1− RL .  Its sensitivity and specificity are 

Sn =αRH / R and Sp = 1−α( ) 1− RL( ) / 1− R( ) . The risk among women classified as low risk, 

relative to that of the population, is 1+α Ψα −1( )⎡⎣ ⎤⎦
−1
.   
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