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1  The   Probabilistic Principal Components and  Covariates 

Analysis (PPCCA) model. 
 

The PPCCA model [1] is an extension  of the PPCA  model which includes covariates. The PPCCA 

models the  high dimensional  spectrum xT
 = (xi1 , . . . , xip ) of subject  i (i = 1, . . . , n)  as a linear 

function  of the  corresponding  low dimensional  latent variable  uT   = (ui1 , . . . , uiq ), where (q ≪ p). 
The PPCCA model can be expressed as follows 

 
xi  =   Wui + µ    + ϵi 

where  W  is a p × q loadings  matrix, µ is a mean  vector  and  ϵi   is multivariate Gaussian  noise 

for observation i, i.e.  p(ϵi )  = MVNp ( 0 , σ2 I ) where I denotes  the  identity matrix. The  PPCCA 

model differs from the  PPCA  model in that it allows the  covariates  to influence the  distribution 
of the latent variables  or scores u i.e. 

 

 
 

p(u|β)    = 
n ∏ 

MVNq (βC i , I). 
i=1 

Here β is a q × (L + 1) matrix  of parameters which capture  the  relationship between  the  latent 

variable  and the covariates  and  C i is a (L+1) vector  of an intercept term  and the L covariates  of 

observation i. 

 
For a given sample size n, the pilot data  can be simulated  from the PPCCA model as follows: 

 
1.  Generate parameter values from their  prior distributions: 

 

 
p(β 

k 
)    =  MVNL+1 (µ     β 

, Σβ ) for k = 1, . . . , q 

p(ui )    =  MVNq (βC i , I)  for i = 1, . . . , n 

p(wj )    =  MVNq (µW 
, ΣW ) for j = 1, . . . , p 

p(σ2 )    =  IG[α1 , α2 ] 
 

 
 

2.  Conditional on  the  generated parameters and  latent variables  the  pilot  data   x  are  then 

simulated  from the PPCCA model: 

 
p(xi |ui , W, σ2 ) = MVNp (Wui , σ

2 I) 
 

For similar reasons to those discussed in the paper  in the case of PPCA, the hyperparameters 

are specified to be µ   = µ 
β W 

= 0, Σβ = ΣW = I, α1  = 3 and α2  = 4. 
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2  The  Dynamic Probabilistic Principal Components Anal- 

ysis  (DPPCA) model. 
 

Dynamic  PPCA  (DPPCA) is another  extension  of PPCA  which  allows PPCA  to  appropriately 

model longitudinal metabolomic  data.  The DPPCA model models the correlation due to repeated 

measurements by assuming a stochastic volatility (SV) model [2] for the errors and for the scores of 

the PPCA  model.  As detailed  in [3], the error for observation i at time m is assumed  distributed 

as  ϵim   = MVNp (0, σ2  I)  and  the  associated  score  is distributed uim = MVNq (0, Hm ),  where 

Hm = diag(h1m , . . . , hqm ).  Under  the  DPPCA model, at  time m,  the  log volatilities  of the  errors 
ηm   = log σ2

 and  the  scores λkm  = log hkm  where  k  = 1, . . . , q components, have  a stationary 

autoregressive process AR(1): 
 
 

ηm =  ν + ϕ(ηm−1  − ν ) + rm 

λkm  =   µk + ϕk (λk(m−1) − µ) + rkm 

 
where  ν  and  µk  are  the  means  and  ϕ and  ϕk  are  the  persistence  parameters of the  two  models 
respectively.   The  persistence  parameters are constrained between  [−1, 1]. The  innovations of the 

two models rm and rkm are assumed to be normally  distributed, N(0, v2 ) and N(0, v2 ) respectively. 

 
Pilot  data  are simulated  from the  DPPCA model by focusing on the  initial  time  point of the 

experiment  since it  is expected  that the  same  number  of subjects  are  followed over  time.   The 

initial  state  of the DPPCA model, by stationarity, is given as: 
 

 
 

p(x1 |W1 , u1 , η1 )    = 
n ∏ 

MVNp (W1 ui1 , exp(η1 )I) 
i=1 

 

where x1 , W1 and u1  are the data,  the loadings and the scores at the initial  time point.  The pilot 

data  for the first time point of a longitudinal metabolomic  study  are then  simulated  as follows: 
 

1.  Generate the model parameter values and latent variables  from their  prior distributions: 

( 

p(η1 |ν, ϕ, v2 )    =  N   ν, 

( 

v2  
) 

1 − ϕ2 

v2  
) 

p(λk1 |µk , ϕk , v
2 )    =   N µk , 

  k   

1 − ϕ2
 

for k = 1, . . . , q 

p(ui1 |λ1 )    =  MVNq (0, H1 ) for i = 1, . . . , n 

p(wj1 )    =  MVNq (µW 
, ΣW ) for j = 1, . . . , p 

 

 
where H1  = diag[exp(λ11 ), . . . , exp(λq1 )]. 

 

2.  Conditional on  the  generated parameters and  latent variables  the  pilot  data  x1   are  then 

simulated  from the DPPCA model: 
 
 

p(xi1 |W1 , ui1 , η1 )    =  MVNp (W1 ui1 , exp(η1 )I)  for i = 1, . . . , n. 

 
For  similar  reasons  to those  discussed  in the  paper  in the  case of PPCA, and  above in the 

case of PPCCA, the hyperparameters for the loadings matrix  prior distribution are specified 

to be µ 
W 

= 0 and  ΣW  = I.  For  the  SV part  of the  DPPCA model,  the  hyperparameters 

are  assumed  to  be:   ν  = µk  = 0, ϕ  = ϕk  = 0.8,  and  v2   = v2
 = 0.1.   These  values  are 
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based on prior knowledge of longitudinal metabolomic  experiments i.e.  positive dependence 

is expected  across time and the log volatilities  are expected  to closely fluctuate around  zero. 
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