An LC-SRM Approach for the Separation and Quantitation of Sialylated N-glycans Linkage Isomers

Shujuan Tao¹, Yining Huang¹, Barry E. Boyes^{1,2} and Ron Orlando¹*

¹Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA

²Advanced Materials Technology Inc, Wilmington, DE 19810, USA

*Corresponding author: Complex Carbohydrate Research Center, 315 Riverbend Road, Athens, GA 30602, Tel: (706) 542-4429, Fax: (706) 542-4412, email: <u>orlando@ccrc.uga.edu</u>

Supporting Information

List of Figures

Figure S-1: [Sialidase S digestions for Tri-2SA fractions by SRM detection]	2
Figure S-2: [Sialidase S digestions for Tri-3SA fractions by SRM detection]	3
Figure S-3: [Sialidase S digestions for Tri-4SA fractions by SRM detection]	. 4
Figure S-4: [Diagram of Branching/linkage Isoforms]	5
Table S-1: [SRM transitions for Sialidase S digestion of fetuin N-glycan studies]	6
Table S-2: [P-Values obtained from Independent Two-Tailed Students T-test]	7

Figure S-1. Sialidase S digestions for Tri-2SA fractions by SRM detection. (**A**) LC-SRM trace for Tri-2SA(m/z at 936.9) from analysis of the fetuin N-glycans. LC-SRM analysis illustrates (**B**) the disappearance of the red peak (Tri-2SA) and the appearance of the dark blue peak (Tri-0SA) after Sialidase S digestion for the first fraction; (**C**) the disappearance of the red peak (Tri-2SA) and the appearance of the purple peak (Tri-SA) after Sialidase digestion for the second fraction; and (**D**) no change of the red peak (Tri-2SA) after Sialidase S digestion for the third fraction. **Figures B-D** contain SRM traces for all three possible glycans resulting from this treatment, i.e., the Tri-0SA, Tri-SA and Tri-2SA, however the low levels make these difficult to see in all of the figures.

Figure S-2. Sialidase S digestions for Tri-3SA fractions by SRM detection. (**A**) LC-SRM trace for Tri-3SA (m/z at 1033.9) from analysis of the fetuin N-glycans. LC-SRM analysis illustrates (**B**) the disappearance of the green peak (Tri-3SA) and the appearance of the dark blue peak (Tri-0SA) after Sialidase S digestion for the first fraction; (**C**) the disappearance of the green peak (Tri-3SA) and the appearance of the green peak (Tri-3SA) and the appearance of the green peak (Tri-3SA) after Sialidase S digestion for the first fraction; (**C**) the disappearance of the green peak (Tri-3SA) and the appearance of the green peak (Tri-3SA) after Sialidase S digestion for the second fraction; and (**D**) the disappearance of the green peak (Tri-3SA) and the appearance of the green peak (Tri-2SA) after Sialidase S digestion for the third fraction; and (**E**) no change of the green peak (Tri-3SA) after Sialidase S digestion for the fourth fraction. **Figures B-E** contain SRM traces for all four possible glycans resulting from this treatment, i.e., the Tri-0SA, Tri-SA, Tri-2SA and Tri-3SA, however the low levels make these difficult to see in all of the figures.

Figure S-3. Sialidase S digestions for Tri-4SA fractions by SRM detection. (**A**) LC-SRM trace for Tri-4SA(m/z at 1130.9) from analysis of the fetuin N-glycans. LC-SRM analysis illustrates (**B**) the disappearance of the grey peak (Tri-4SA) and the appearance of the purple peak (Tri-SA) after Sialidase S digestion for the first fraction; (**C**) the disappearance of the grey peak (Tri-4SA) and the appearance of the red peak (Tri-2SA) after Sialidase S digestion for the second fraction; and (**D**) the disappearance of the grey peak (Tri-4SA) and the appearance of the grey peak (Tri-3SA) after Sialidase S digestion for the third fraction. Figures B-D contain SRM traces for all five possible glycans resulting from this treatment, i.e., the Tri-0SA, Tri-SA, Tri-2SA, Tri-3SA and Tri-4SA, however the low levels make these difficult to see in all of the figures.

Figure S-4. Branching isoforms. (**A**) Two isomeric structures for Bi-2SA(3,6) glycans; (**B**) Three isomeric structures for Tri-2SA(3,3) glycans.

Group	Observed <i>m/z</i> (charge)	Theoretical <i>m/z</i> (charge)	Composition	Peak No.
Ι	1222.1 (+2)	1222.06 (+2)	Bi-2SA	1, 2, 4
II	1259.2 (+2)	1259.08 (+2)	Tri-SA	3
III	936.9 (+3)	936.75 (+3)	Tri-2SA	5, 6, 8
IV	1367.8 (+2)	1367.60 (+2)	Bi-3SA	7, 9
V	1033.9 (+3)	1033.78 (+3)	Tri-3SA	10, 11, 13, 15
VI	1155.9 (+3)	1155.49 (+3)	Tetra-3SA	12, 14
VII	1130.9 (+3)	1130.81(+3)	Tri-4SA	16, 17, 19
VIII	1252.9 (+3)	1252.52 (+3)	Tetra-4SA	18, 20, 21

 Table S-1. N-glycans Detected in the Fetuin Sample.

Composition	Q1 (charge)	Q3 (charge)	CE (V)	Dwell (msec)
Bi-0SA	931.1 (+2)	441.4 (+1)	70	100
Bi-SA	1076.5 (+2)	441.4 (+1)	70	100
Bi-2SA	1222.1 (+2)	441.4 (+1)	70	100
Tri-0SA	1113.7 (+2)	441.4 (+1)	70	100
Tri-SA	1259.2 (+2)	441.4 (+1)	70	100
Tri-2SA	936.9 (+3)	441.4 (+1)	70	100
Tri-3SA	1033.9 (+3)	441.4 (+1)	70	100
Tri-4SA	1130.9 (+3)	441.4 (+1)	70	100

 Table S-2. SRM transitions for Sialidase S digestion of fetuin N-glycan studies.

Table S-3. P-Values obtained from Independent Two-Tailed Students T-test of the difference between the relative quantitation using UV and SRM detection when (I) the response for each glycoform is calculated relative to the summed response for all identified glycans and (II) the response for each glycoform is calculated relative to the summed response for all glycoforms with the same composition.

	P-Value	P-Value
Bi-2SA(3,3)	1.0E-05	0.5113
Bi-2SA(3,6)	8.7E-05	0.3489
Bi-2SA(6,6)	3.9E-05	0.0916
Tri-2SA(3,3)	5.5E-04	0.3409
Tri-2SA(3,6)	8.1E-04	0.4050
Tri-2SA(6,6)	0.0021	0.6826
Tri-3SA(3,3,3)	0.2697	0.9177
Tri-3SA(3,3,6)	6.0E-05	0.5113
Tri-3SA(3,6,6)	0.0146	0.0519
Tri-3SA(6,6,6)	0.0044	0.2180
Tri-4SA(3,3,3,6)	2.8E-05	0.0428
Tri-4SA(3,3,6,6)	2.2E-05	0.0594
Tri-4SA(3,6,6,6)	3.2E-05	0.0065

Bold values are significant at $P \le 0.001$.