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ABSTRACT Bacterial cytoskeletal protein FtsZ assembles in a head-to-tail manner, forming dynamic filaments that are essen-
tial for cell division. Here, we study their dynamics using unbiased atomistic molecular simulations from representative filament
crystal structures. In agreement with experimental data, we find different filament curvatures that are supported by a nucleotide-
regulated hinge motion between consecutive FtsZ monomers. Whereas GTP-FtsZ filaments bend and twist in a preferred orien-
tation, thereby burying the nucleotide, the differently curved GDP-FtsZ filaments exhibit a heterogeneous distribution of open
and closed interfaces between monomers. We identify a coordinated Mg2þ ion as the key structural element in closing the nucle-
otide site and stabilizing GTP filaments, whereas the loss of the contacts with loop T7 from the next monomer in GDP filaments
leads to open interfaces that are more prone to depolymerization. We monitored the FtsZ monomer assembly switch, which in-
volves opening/closing of the cleft between the C-terminal domain and the H7 helix, and observed the relaxation of isolated and
filament minus-end monomers into the closed-cleft inactive conformation. This result validates the proposed switch between the
low-affinity monomeric closed-cleft conformation and the active open-cleft FtsZ conformation within filaments. Finally, we
observed how the antibiotic PC190723 suppresses the disassembly switch and allosterically induces closure of the intermono-
mer interfaces, thus stabilizing the filament. Our studies provide detailed structural and dynamic insights into modulation of both
the intrinsic curvature of the FtsZ filaments and the molecular switch coupled to the high-affinity end-wise association of FtsZ
monomers.
INTRODUCTION
The cytoskeletal protein FtsZ forms filaments that organize
into the bacterial Z-ring, which recruits other cell-division
proteins and may lead to membrane constriction (2) through
a combination of FtsZ filament condensation, bending, and
recycling. FtsZ polymers attached to engineered membranes
exhibit an intrinsic curvature and twist, which have been
suggested to facilitate their equatorial assembly in the cell
(3). FtsZ polymers attached via the partner protein FtsA to
a supported membrane organize into dynamic patterns
driven by the treadmilling and fragmentation of polar FtsZ
filaments in the absence of motor proteins (4). FtsZ and
its eukaryotic relative tubulin are GTPases that form similar
protofilaments with GTP at the interfaces between consecu-
tive monomers (5), and both have built-in molecular
switches that are triggered by nucleotide g-phosphate hy-
drolysis and permit assembly-disassembly regulation.
Thus, GTP binding displaces the balance toward the forma-
tion of FtsZ filaments, sheets, and bundle condensates,
whereas upon hydrolysis to GDP, FtsZ filaments curve and
eventually depolymerize.

Given its ubiquity and its central role in bacterial cell di-
vision, FtsZ is an attractive target for the development of
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new antibiotics (6). FtsZ has been validated as the target
of the in vivo effective antibacterial compound PC190723
(7), which modulates FtsZ assembly by stabilizing its poly-
mers (8,9) and binds into the cleft between the C-terminal
domain and the core helix H7 of this protein (9–11). More-
over, several nucleotide analogs (12,13) and nonnucleotide
compounds that selectively target the nucleotide site of
FtsZ have also been identified (14–16).

To explain the puzzlingly cooperative assembly behavior
of single-stranded FtsZ protofilaments, a self-switching
model between inactive and actively associating protein
conformers has been proposed to be responsible for trans-
mitting the assembly conformational changes from one
FtsZ monomer to another along the filament (17–19). In a
previous work (20), we predicted that the FtsZ assembly
switch involves an interdomain movement that closes and
opens the cleft between the C-terminal domain and the
core helix H7, thereby modifying the axial association be-
tween FtsZ monomers. Interestingly, mutations that block
FtsZ in its inactive closed conformation and mutations
that are resistant to PC190732 (7) have both been found to
cluster at the interdomain cleft, indicating that the FtsZ
switch is targeted (20). This molecular switch has also
been supported by the changes observed in the trypto-
phan-induced quenching of a fluorophore after FtsZ assem-
bly (21). However, all reported crystallographic structures
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of FtsZ from various organisms have exhibited a closed-
cleft conformation (22), with the exception of the recent
Staphylococcus aureus FtsZ (SaFtsZ) structure, in which
the crystal packing exhibited a straight filament formed by
open-cleft monomers (9–11). This open-cleft structure has
been considered to be functionally relevant because 1), it fa-
cilitates the formation of a tight interface that encloses the
nucleotide between bacterial FtsZ monomers in the fila-
ment, in contrast to the accessible nucleotide in the more
open association interface of an archaeal FtsZ dimer (23);
and 2), it permits the binding of PC190723 as a wedge
into the open interdomain cleft, which explains the stabiliz-
ing effect of this ligand on FtsZ assembly. A structural
comparison of SaFtsZ with other FtsZs supports the cleft-
opening mechanism of the FtsZ assembly switch. However,
proof involving the same FtsZ protein, such as a closed-cleft
monomeric structure of the same Sa-FtsZ molecule or an
open filamentous structure of other FtsZs, is required.
Nevertheless, the open-cleft Sa-FtsZ filament structure con-
stitutes an ideal framework in which to study FtsZ assembly
dynamics. Previous molecular-dynamics (MD) studies have
focused on monomeric or dimeric crystallographic struc-
tures of archaeal or mycobacterial FtsZ in the inactive
closed-cleft conformation (24–29). Although these studies
shed light on several aspects of FtsZ dynamics, they were
not based on the functional open-cleft FtsZ structure, or
their filament simulations were not sufficiently long. Here,
we describe extensive MD simulations of bacterial SaFtsZ
filaments from more realistic crystallographic FtsZ filament
structures (10,11). As we will show, the results of these sim-
ulations allow for a better understanding of nucleotide-
dependent filament dynamics, provide atomic insight into
how nucleotide hydrolysis weakens the association between
monomers along the filament, and unravel the mechanism of
the SaFtsZ assembly switch that is blocked by PC190723 to
inhibit bacterial cell division.
MATERIALS AND METHODS

We studied the dynamic properties of FtsZ filament structures in three

different states: with bound GTP, with GDP, and with GDP plus

PC190723 (hereafter abbreviated as PC). MD simulations were performed

on FtsZ heptamers (~500,000 atoms, including water molecules) with

GROMACS version 4.6 (30,31) using the Amber99sb (32) force field. In

each case, independent MD simulations of 300 ns duration were performed

twice to confirm the reproducibility of the results. In the case of the most

flexible filament, the GDP-bound one, we extended the simulation to

500 ns. The filament length was sufficient to sample different representative

conformations of the FtsZ filaments. The heptameric filament had the

largest affordable size to perform long-scale MD simulations in our avail-

able supercomputing facilities. The filament’s stability and the consistent

dynamical behavior of the monomer interfaces found in our simulations

provide enough confidence that our observations grasp the main features

of FtsZ filament dynamics, although inaccessible larger-sized filaments

(on the order of 100 monomers) and longer timescales (several microsec-

onds) should better reproduce the macroscopic mechanics of FtsZ fila-

ments. Note that we carefully removed the influence of end monomers in

the dynamic measurements to avoid border effects. We observed consistent
results in all simulations that were quite stable after 200 ns. In all cases, the

simulations reached a steady state and the integrity of the filaments was

well maintained over the long simulation times (see Fig. S1 in the Support-

ing Material). We also performed simulations of isolated SaFtsZ monomers

bound to GDP, GTP, and GDP þ PC using the same simulation parameters

employed for the filaments.
Systems preparation

The initial straight coordinates were obtained from the x-ray crystal struc-

tures of SaFtsZ (11) bound to GDP (PDB ID 3V08) and to complex

PC190723 (PDB ID 3V0B). The GTP filament was obtained by replacing

the GDP coordinates of the GDP filament with GTP and Mg2þ, acquired
from the Methanococcus jannaschhi FtsZ (MjFtsZ) atomic structure (23)

(PDB ID 1W5A). Filaments of seven monomers were generated by crystal-

lographic symmetry operations. The parameters of the ligands GDP and

GTP were taken from the Amber parameter database. The topology

of PC190723 was constructed using the AmberTools utilities of the

AMBER11 package (33). The generalized AMBER force field (34) was

chosen to parametrize the molecule. Ab initio quantum mechanics calcula-

tions at the HF/6-31þG* level were performed, and the restrained electro-

static potential method was used to assign partial charges to these

molecules.

The filament structures were placed in triclinic boxes of explicit TIP3P

water molecules (35) with a minimum distance of 15 Å between the protein

surface and the border of the box. The boxes were replicated by periodic

boundary conditions. Water molecules were replaced with sodium counter-

ions to neutralize the systems. Additional sodium and chloride ions were

added corresponding to an ionic strength of 50 mM. Extra Mg2þ and Cl�

ions were also added to obtain a concentration of 10 mM, which corre-

sponds to experimental FtsZ filament assembly conditions.
MD simulations

For each system, two independent simulations with different initial veloc-

ities were performed using the parameters described below. The solvated

systems were minimized using steepest descent followed by conjugate

gradient methods (double precision). Initial velocities were randomly as-

signed according to a Maxwell distribution at 50 K in accordance with

the atomic masses. To equilibrate water and ions around the filaments,

each system was gradually heated over 6 ns from 50 to 298 K by increasing

the temperature by 50 K every 1 ns. Heating was carried out with position

restraints on the protein and ligands atoms. After that, the position restraint

was limited to backbone atoms only and equilibration was continued for

another 6 ns. During the equilibration, a 2 fs integration time step was

used and the neighbor list was updated every 10th time step. Finally, the po-

sition restraints were removed and the equilibrated filament structures were

used as the starting points for 300 ns and 500 ns production MD simula-

tions. An integration time step of 2 fs was used. The trajectories were

sampled every 40 ps for analysis. Simulations were carried out in the

NPT ensemble. The pressure of the simulation boxes was kept at an average

of 1 bar using the Berendsen barostat (36) with a time constant of 0.5 ps and

a compressibility of 4.5 � 10�5 bar�1. The solvent and filament-ligand

complex were coupled separately to an external heat bath at 298 K with

the velocity-rescaling thermostat (37) using a time constant of 0.1 ps.

The LINCS algorithm (38) was used to constrain the bond lengths, and

the water geometries were constrained by the SETTLE algorithm (39).

The electrostatic interactions were evaluated using the particle-mesh Ewald

method (40) with van der Waals interactions truncated at 14 Å.

To study the effect of Ca2þ, we repeated the MD simulations of the GDP

and PC filaments while including this bound cation, as in the original crys-

tallographic structures. We performed additional MD simulations of the

GDP filament by substituting Naþ with Kþ. No significant difference was

observed with respect to the monovalent cation used.
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RESULTS

Dynamics of bacterial FtsZ filaments

The initial states of the MD trajectories had the same
straight nature of the crystallographic filaments, which
was rapidly lost in all cases, revealing the intrinsic flexibility
of FtsZ filaments. The GDP filament exhibited a higher
conformational variability, whereas the GTP and PC fila-
ments adopted more rigidly curved conformations. These
dynamical differences are illustrated in Fig. 1 A, where
the final snapshot of each filament (yellow ribbons) is super-
imposed on an illustrative snapshot acquired during the pre-
vious 100 ns (gray). The nucleotide-dependent curvatures
can be directly visualized in Movie S1, which displays the
entire trajectories in parallel. It is apparent that the fluctua-
tion around the curved pattern was very small for the PC
filament, slightly larger for the GTP filament, and very large
for the GDP case. In the GTP-bound filament, the nucleotide
g phosphate and the coordinated Mg2þ ion induced filament
curvature in a preferred orientation (Fig. 1 A), in which the
association interfaces are closed (Fig. 1 B). The GDP-bound
filament exhibited various curved patterns and even adopted
S-shaped conformations (Fig. 1 A) by opening and closing
the association interfaces between the monomers. From
the illustrative dimer interfaces displayed in Fig. 1 B, it is
readily apparent how the GDP-open interface (in green) ex-
poses the nucleotide to the solvent to a greater degree than
the GDP (cyan) and GTP (blue) closed interfaces, in which
the top monomer covers the nucleotide. The buried surface
between these FtsZ monomers increased from 1017 Å2 for
the open interface to 1107 (GDP) or 1168 Å2 (GTP) for
the closed interfaces, reflecting the existence of a stronger
interaction in the closed state. The GDP-open interface
may facilitate the previously observed nucleotide dissocia-
tion from FtsZ polymers (41) and GTP exchange. Relative
differences in bending and twisting can also be observed
in the pairwise alignments of representative dimers
(Fig. S2), which indicate that the GDP-closed interface
conformation is clearly bent and untwisted with respect to
the GTP conformation. Finally, the stiffer PC filaments
were curved, also occluding the nucleotide, indicating an
allosteric effect of this FtsZ filament-stabilizing ligand on
the intermonomer association interfaces.

We characterized the curvature of the three types of MD-
simulated filaments by analyzing the intrinsic bending be-
tween monomers. We monitored the relative orientation of
each pair of monomers throughout the final 100 ns of the tra-
jectories, as described previously (24,42) (Fig. 2 A; see
Fig. S3 for details). For this purpose, we analyzed eight con-
tact interfaces per case, considering both MD runs and
excluding the interfaces at the ends of the filaments to avoid
border effects. The angle distributions of the intermonomer
interfaces (Fig. 2 B) were relatively wide, highlighting the
extent of the fluctuations. In all simulated cases, the distri-
Biophysical Journal 107(9) 2164–2176
butions of the main bending angle q1 were centered at rela-
tively small negative values that corresponded to closed
interfaces covering the nucleotide. For the GDP filaments
alone (Fig. 2 B, green line), an additional population
emerged at 6.65 4.4�, overlapping the closed-interface dis-
tribution (�6.65 4.0�) and indicating bending in the oppo-
site opening direction.

Different interface configurations have been observed in
MD simulations of the archaeal (MjFtsZ) dimer, in which
single transitions from GDP-open to GDP-closed interfaces
have been documented (24). Instead, we found that multiple
intermediate conformations between the closed and open in-
terfaces coexisted along the bacterial GDP filament during
the simulation, which is indicative of a dynamic equilib-
rium. Fig. 2 C illustrates the dynamical changes of the
bending angle q1 observed in an MD simulation of a single
GDP filament at four monomer-monomer interfaces. During
the first part of the simulation, we observed fluctuations
between the GDP-open and GDP-closed interface configu-
rations, but at the end, the filament consisted of heteroge-
neous interfaces that typically fluctuated around a given
configuration (see Fig. 2 C). For example, the S-shaped
GDP filament displayed in Fig. 1 A corresponds to alter-
nating open and closed interfaces. In contrast, with GTP
the interface between monomers remained closed during
all simulation times (see Fig. S4). Note that to facilitate
comparisons between different interfaces, we computed
the bending angles using a fixed reference framework
(gray axes in Fig. 2 A) aligned to the maximal bending
amplitude of the GTP case. However, the direction of the
maximal amplitude of the bending of other cases exhibits
different orientations. The GDP-open bending points
approximately toward the C-terminal end, whereas GDP-
closed interface filaments point in the opposite direction.
The maximal bending orientations of GTP and GDP-closed
filaments deviate by 35�. For orientation purposes and com-
parison with the bending of the structural homolog tubulin,
the FtsZ views in Fig. 2 A roughly correspond to tubulin
viewed from the inside of the microtubule lumen and
from the microtubule end. The bending direction of the
hinge opening of the GDP interfaces would point toward
the outside of a microtubule, which is comparable to the cur-
vature in bent protofilaments peeling off at disassembling
microtubule ends (43).

The bending of the PCfilament (�4.6�5 4.5�)was similar
to that of the GDP-closed interfaces. The largest amplitude
for the closed conformation was found with the GTP inter-
faces (�9.0� 5 4.3�), indicating a major closure of the
GTP filaments. The relative differences in the second
bending angle q2 were smaller. In this case, the values were
2.6� 5 2.8� and 3.8� 5 4.2� for the GDP- and PC-bound fil-
aments, respectively, whereas the GTP filaments fluctuated
around the initial straight position (�0.3� 5 3.7�).
Interestingly, the GTP filaments twisted, with F angles
of �10.2� 5 4.8� between consecutive monomers, whereas
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FIGURE 2 Characterization of interface confor-

mations. (A) Coordinate frame used to calculate

the relative rotations between consecutive mono-

mers in the filaments. The rotation about the z

axis, which is directed along the filament, de-

scribes the twist between consecutive monomers

(F); the main bending angle q1 was chosen to lie

in the maximal bending direction of the GTP fila-

ment; and the secondary bending angle q2 was

defined around the x axis (see Fig. S3 for additional

information). The maximal bending directions are

represented with colored arrows for the GDP-open

(green), GTP-closed (red), and GDP-closed (blue)

intermonomer interface configurations and super-

imposed with the reference frame used to measure

the bending angles (gray). The GDP-open maximal

bending is directed approximately to the C-termi-

nal domain, whereas GDP-closed interface fila-

ments point in the opposite direction. The

bending orientations of GTP and GDP-closed fila-

ments deviate by 35�. Note that this view is

roughly equivalent to tubulin viewed from the in-

side of a microtubule. The bottom image is a

view along the z axis defined in the top image.

(B) The plots represent the corresponding angle

distributions for the GDP filament (green), GTP

filament (red), and PC filament (blue) from the

final 100 ns of the MD trajectories. (C) Time evo-

lution of the main bending angle q1 for the four

central interfaces of an illustrative GDP filament.

Notice that the GDP filament converges to a het-

erogeneous filament formed by open (~6o) and

closed (~�6�) interfaces. In contrast, the monomer

association remains closed during all of the simu-

lations for GTP and GDP-bound filaments (see

Fig. S4) (D) Average conformations of representa-

tive monomers within GDP (green) and GTP (blue)

filaments from the final 100 ns of the trajectory

aligned by a maximum-likelihood superimposition

criterion using THESEUS (1). To see this figure in

color, go online.
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the GDP filaments fluctuated around �2.2� 5 3.5�, and
the PC filaments twisted by �6.2� 5 6.1� (Fig. 2 B). In our
bacterial FtsZ filament MD simulation, the contacts with
FIGURE 1 (A) Snapshots of the FtsZ MD trajectories for a GDP filament, G

plane of bending of the GTP- and GDP-closed filaments (see text). In each case

on a snapshot acquired during the previous 100 ns (gray ribbon). (B) Close-up

GDP-closed (cyan), and GTP (blue) filaments. The orientation in this panel c

axis. The secondary structure elements mentioned in the text are indicated. To

Biophysical Journal 107(9) 2164–2176
neighboring monomers at the interfaces naturally con-
strained the hinge-opening motion, reducing the bending
amplitude toward more realistic moderately curved filament
TP filament, and GDP þ PC filament viewed perpendicular to the average

, the final filament structure after 300 ns (colored ribbon) is superimposed

views of illustrative dimer interfaces corresponding to GDP-open (green),

orresponds to the filament in panel A rotated by 45� around the filament

see this figure in color, go online.
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conformations (44). In contrast, one crystal structure of FtsZ
from Mycobacterium tuberculosis FtsZ (MtFtsZ) (26) and
the dimer simulations of MjFtsZ (24) and MtFtsZ (26) ex-
hibited stronger bending.

Remarkably, the monomer structures within the GDP and
GTP filaments appear very similar when compared with
each other (Fig. 2 D). Therefore, the observed conforma-
tional changes resulted primarily from a rigid-body hinge
movement between the monomers (see illustrative transi-
tions using normal mode analysis (45) in Movie S2). In
fact, the average root mean-square deviations (RMSDs) of
the independently aligned monomers within the filaments
are similar (Fig. S5). In both cases, the largest fluctuations
were observed for the T3, T7, and H6-H7 loops, and for
the C-terminal domain that fluctuated around the open-cleft
conformation. Interestingly, the tip of H7 was consistently
more bent for GTP than for GDP (Fig. 2 D). In the case
of the PC filaments, the rigidity was reflected in lower
monomer RMSDs (Fig. S5), although fluctuations of the
H6-H7 loop and the C-terminal domain were still evident.
Nevertheless, we found it intriguing that the stabilizing
agent PC induced a filament conformation similar to that
for GTP.

Rough estimates of macroscopic parameters were ob-
tained based on the angle distributions. The average inward
radial force produced per monomer in a filament is propor-
tional to DqkBT/(2ls

2) (24), where Dq is the mean bending-
angle difference between two conformational states, s is the
variance of q in the final conformation, l is the length of an
FtsZ monomer (~4.0 nm), T is the temperature (298 K), and
kB is the Boltzmann constant. Based on the q1 angle distri-
butions, hydrolysis from the GTP-closed to the GDP-open
interface conformation yields 23 pN of inward bending
force at each interface, and the smaller GTP to GDP-closed
interface transition produces a force of 4 pN. The GDP-
closed to GDP-open transition alone produces a signifi-
cant force of 19 pN. Such interface transitions and a
membrane-attachment element could provide the constric-
tion force generated by FtsZ without the need for any other
proteins (44,46). Previous MD simulations of MjFtsZ dimer
(24) reported somewhat larger forces of 30 pN for the GTP
to GDP-open transition, and 20 pN per monomer for the
GTP to GDP-closed transition. However, all of these rough
estimates are greater than the experimentally measured
force of 5 pN generated by bending of a structurally related
microtubule protofilament (47). In addition, homogeneous
GDP-open and GDP-closed interface filaments are abstrac-
tions and, as was the case in our simulations, a variety of
conformations coexist along the filament, allowing for
different intermediate curved conformations and hence
smaller effective constriction forces. The true picture must
be even more complex, as FtsZ protofilaments contain a
mixture of GDP- and GTP-bound subunits that can reach
a ratio of 50:50 (48), and such subunits can undergo ex-
change within steady-state FtsZ filaments (49).
The mean radii of curvature for homogeneous filaments,
estimated as l/q1, were 50 nm, 26 nm, and 35 nm for PC,
GTP, and GDP-closed, respectively, whereas the GDP-
open interface filament had the opposite curvature with a
35 nm radius. The curvature of the PC filament was compat-
ible with the ~100-nm-diameter toroids observed by elec-
tron microscopy in carbon-adsorbed SaFtsZ polymers
assembled with PC (see, for example, Fig. 8 C in Andreu
et al. (8)). We note that these values are collectively one
order of magnitude smaller than the ~1 mm diameter of a
bacterial cell (50).

Our SaFtsZ filaments in silico are apparently quite flex-
ible. The persistence length values computed according to
the method described by Grafmüller and Voth (42) were
88 nm for GTP and 113 nm for GDP-PC filaments, which
are much shorter than the value for microtubule protofila-
ments (42). The dynamic heterogeneity of the GDP filament
curvature precluded the computation of reliable persistence
length values. Comparison with current experimental mea-
surements is difficult because the persistence length values
are considerably larger than the heptamers simulated, and
because of the large disparity in measurements found in
the literature for GTP/GDP filaments of FtsZ from other
species. For example, in a cryo-electron microscopy study
of Escherichia coli FtsZ (EcFtsZ), Turner et al. (51) visual-
ized relatively straight filaments with a persistence length of
1.4 mm. In contrast, we previously estimated protofilament
persistence length values in the 100 nm range, also using
cryo-electron microscopy of EcFtsZ but neglecting intrinsic
filament curvature (17). Nevertheless, the disparity in
persistence lengths can be visualized directly from the cor-
responding electron micrographs (see Fig. 1 in Turner et al.
(51) versus Fig. 3 in Huecas et al. (17)). Moreover, these
measurements were based only on the bending flexibility
alone and ignored the torsional contribution; however,
we observed a significant twist component in the GTP-fila-
ment simulations. The importance of filament twisting was
recently highlighted (29) based on the high twisting poly-
morphism found in atomic force microscopy images of
filaments attached to mica. On the other hand, negative-stain
electron microscopy of FtsZ rings attached to the outside of
0.5-mm-diameter lipid tubules showed ribbons of laterally
associated protofilaments (52).
Insights into the GTP/GDP regulation of
interfacial interactions in FtsZ filaments

The differences in dynamic behavior and curvature between
filaments are logically related to monomer interactions. In
Fig. 3, the intermonomer contacts from the final 100 ns of
each simulation are projected onto the corresponding top
and bottom interfaces. At first glance, it appears that there
were many common contacts, but clear differences existed
depending on the conformational state. Both the GTP and
GDP-closed interface configurations featured a closed
Biophysical Journal 107(9) 2164–2176



FIGURE 3 Interface contact surfaces. Intermonomer contacts were

calculated between all pairs of residues from two consecutive filament

FtsZ monomers. Two residues were considered to be in contact if they

had at least one pair of atoms separated by<4 Å. The surface images corre-

spond to the plus-end surface of the bottom monomer (left) and the minus-

end surface of the top monomer (right). The presence of contacts during the

simulation is projected on corresponding interface surfaces with a color

ramp from red to white to blue. Blue regions correspond to contacts that

were present throughout the entire simulation, white regions correspond

to contacts that were present for 50% of the simulation, and red regions ex-

hibited no contact at all. Contacts were only calculated for the four central

monomer interfaces throughout the final 100 ns of the MD simulations. To

see this figure in color, go online.
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nucleotide-binding site and hence their contact patterns
were quite similar. In the case of GTP, the binding site
was fully enclosed, with stable contacts (dark blue regions)
all around the nucleotide. In contrast, the GDP-closed inter-
face exhibited less stable contacts (lighter blue or white
regions) between the H1/H2/T3 regions of the bottom
monomer and the H8/T7 region of the top monomer. Finally,
the GDP-open interface configuration exhibited the smallest
contact region, with fewer contacts between the H1 and H2
helices and the T7 loop, suggesting a weaker monomer-to-
monomer association. Thus, we can identify two major
monomer-monomer contact regions. The first region in-
cludes the common interactions of the N-terminal domain
of the bottom monomer with the C-terminal domain (seg-
ments 260–300) of the top monomer. This region is shared
by all filament interfaces and corresponds to the blue areas
of Fig. 3 that are close to the center of each panel. This re-
gion includes the contacts of the top monomer’s H10 helix
and its flanking regions with the T5 and H6-H7 loops of
the bottom monomer. A stable hydrogen bond links the
H5 helix and the H10-S9 loop through the Arg-141 and
Asp-289 residues, respectively. Other stable hydrogen
bonds were established between Met-179 (loop H6-H7)
and Leu-270 (H10), and between Lys-142 (H5) and Asp-
213 (H8). Because we observed nearly the same contact
pattern in each simulation (see the contact maps presented
in Fig. S6), we believe that this first region constitutes the
common anchor between monomers that supports the fila-
ment and acts as a hinge for opening the intermonomer
interface.

The second characteristic contact region exhibits all of
the differences among the filaments, and involves the con-
tacts of the T7 loop and the H8 helix of the top monomer
(residues 203–219) with the elements of the N-terminal
domain of the bottom monomer. These contacts are repre-
sented by the blue and white areas in Fig. 3 that are missing
in the GDP-open configuration. In the GTP and GDP-closed
interface configurations, the T7 loop (Glu-206 and Asn-208)
bound the bottom monomer’s H1 and H2 helices (Asn-25,
Arg-29, and Asp-46). Interestingly, whereas the H1 contact
became stronger in the presence of the g phosphate, all of
the T7-loop interactions were missing in the GDP-open
configuration. In a similar manner, H8 bound the T3 loop
of the bottom monomer in the GTP filament, whereas the
GDP-closed and GDP-open filaments exhibited progres-
sively weaker contacts (Fig. S6). In the GTP filament, the
first residue of H8, Asp-210, interacted with Gly-70, Ala-
71, and Gly-72; however, this residue interacted only with
the glycines in the GDP-closed interface and only with the
alanine in the GDP-open interface. Additionally, the GDP-
open interface lacked a hydrogen bond between Phe-138
(T5) and Gln-283 (H10) and an electrostatic interaction be-
tween Glu-206 (T7) and Lys-184 (H8), which were present
in the closed filaments. A common feature of all GDP-
bound filaments was the presence of a monovalent cation
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or a water molecule at the T7 loop, which coordinated the
main-chain carbonyl groups of Leu-200, Leu-209, Leu-
210, and Val-203, and the side-chain carbonyl from Asn-
208, Asp-46, and Glu-48. This coordination was present
during the major part of the GDP simulations and it was
hardly observed with GTP filaments. The majority of the
contacts of the initial GDP crystal structure were present
to a greater or lesser extent during the simulations, with
the following exceptions: 1) contacts of top monomer loop
T7 and helix H8 with bottom monomer H5 that were
observed in the GTP and GDP filaments but lost in the
PC-bound filament (Fig. S6); and 2), the key contacts
made by the GTP g phosphate and coordinated Mg2þ ion
with the top monomer, since these elements are absent
from the GDP crystal structure but were introduced in the
MD simulations.

The key element that held the GTP-bound interface
closed was the coordinated Mg2þ ion, which also stabilized
GTP in a position suitable for hydrolysis. GTP was
primarily bound by the bottom monomer, but in the fila-
ment the Mg2þ ion connected the g and b phosphates to
the T7 loop of the top subunit (Fig. S7). This additional in-
termonomer connection was supported by a stable interac-
tion of the cation with Asn-208 from the T7 loop of the
top monomer and by weaker interactions with the flanking
Asp-210 (T7) and Asp-213 (H8). Twowater molecules com-
pleted the Mg2þ coordination shell formed by g phosphate,
b phosphate, and Asn-208. Precisely one of these coordi-
nated water molecules was located at the appropriate dis-
tance and orientation with respect to the g phosphate for
the hydrolysis reaction to occur. The polarization of this
attacking water molecule could be produced by either one
of the neighbor residues, Asp-210 or Asp-213, which were
located at the correct hydrogen-bonding distance during
our simulations. In addition, hydrogen bonds between
Asn-208 and the a and b phosphates also stabilized the in-
termonomer contacts.
FIGURE 4 Relaxation of the FtsZ assembly switch. (A) Sample trajec-

tories exhibiting closure of the interdomain cleft for the seven monomers

in a GTP filament. The time evolution of the distance between the centers

of mass of the end of the H7 helix (residues 196–202) and the S9 sheet (res-

idues 295–300) during the MD simulation is shown. The distance fluctuated

around the initial distance of 13 Å for all monomers in the filament except

for the last monomer at the minus end, whose cleft closed by 4 Å, as indi-

cated by the blue line. Similar results were observed for other GTP and

GDP filaments, where the minus-end monomer quickly closed the cleft.

The gray line corresponds to the more rapid closure detected in the simula-

tions of an isolated monomer. For comparative proposes, we extended the

simulation of the isolated monomer to 500 ns. (B) Superimposition of the

initial filament open-switch structure (red) on the final MD closed-switch

structure of the last monomer in the filament simulation (blue) and (C)

on the isolated-monomer simulation (gray). (D) Maximum-likelihood

superimposition of all monomer conformations during the final 100 ns in

the isolated-monomer simulation. (E) The final closed-switch monomer

structure (gray) superimposed on the crystallographic structure of Bacillus

subtilis (yellow, PDB ID 2VXY). To see this figure in color, go online.
The FtsZ assembly switch mechanism and the
interdomain cleft

It has been proposed that the ability of FtsZ to cooperatively
assemble into single-stranded filaments is related to a
change in monomer conformation that involves an opening
movement of the C-terminal domain with respect to the core
helix H7 (see Introduction) (17–21). An open-cleft mono-
mer conformation has been identified in the structures of
SaFtsZ monomers forming a single-stranded crystal fila-
ment in which the H7 helix downshifts and inserts the T7
loop into a wider pocket of the subunit below, creating an
axial association between SaFtsZ monomers (9,10) that is
tighter than in other FtsZs structures. Remarkably, in our
GTP and GDP filament simulations, the open-cleft confor-
mation was maintained, except for the minus-end monomer,
which closed the cleft. To monitor this transition, we
measured the distance between the centers of mass of the
end of the H7 helix (residues 196–202) and the S9 b strand
(residues 295–300) from the C-terminal domain. As shown
in Fig. 4 A, during the simulation this distance fluctuated
around the initial value of 13 Å in all monomers except
the last one, for which the distance was reduced to 9 Å.
The closure of the last monomer was observed in nearly
all GTP and GDP simulations, suggesting the tendency of
the FtsZ molecule to close the cleft when it is free from
the restriction of a bottom subunit. To investigate this
further, we performed two unbiased long MD simulations
Biophysical Journal 107(9) 2164–2176
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of an isolated open-cleft monomer bound to GTP or GDP.
As before, the H7-S9 distance quickly decreased and under-
went a spontaneous transition to the closed-cleft conforma-
tion (gray line in Fig. 4 A). The structural change of a
SaFtsZ monomer during the transition from the actively
associating open-cleft conformation to the low-affinity
closed-cleft conformation is presented in Movie S3. The
fact that the cleft of the minus-end and the isolated mono-
mers remained closed during the major part of simulations
is a good indicator of stability and hence sampling suffi-
ciency (Fig. 4 A). The cleft closure can also be observed
either by superimposing the initial open structure (red) on
the final closed MD conformations of the minus-end
(blue, Fig. 4 B) and free monomers (white, Fig. 4 C) or by
comparing the ensemble average conformations of the
closed isolated monomer (Fig. 4 D) with the open-filament
conformations (Fig. 2 D). Collectively, these results reveal
the natural tendency of monomeric SaFtsZ to adopt the
closed-cleft conformation. Given the high structural homol-
ogy among FtsZs, it is possible that other FtsZ family mem-
bers may share this tendency. In fact, our closed-cleft
SaFtsZ MD structure is closed similarly to other bacterial
FtsZ monomer structures, as illustrated for the FtsZ of
Bacillus subtilis (BsFtsZ) in Fig. 4 E. Despite their resem-
blance, however, and as expected from the variability
observed in this region for the monomers simulations
(Fig. 4 D), they do not superpose well in the tip of H7 and
the loop H6-H7 regions. We observed a deformation
of the top of the helix and the surrounding loops, rather
than the C-terminal subdomain rotation that was previously
observed with two SaFtsZ T7-loop deletion mutants with in-
hibited GTPase (53).

Thus far, the results of our extensiveMD simulations have
provided insight into bacterial FtsZ filament dynamics and
the nucleotide regulation of association interfaces between
FtsZ monomers. These findings support the physiological
relevance of the SaFtsZfilament crystal structure and confirm
the existence of the structural assembly switch by employing
the same FtsZ protein that was previously inferred only
through comparisons of different structures (9,11).
Mechanism of FtsZ filament stabilization by
antibiotic PC190723

The curvature of the GDPþ PC filaments in our MD simula-
tions resembled that of the GTP filaments; however, the sta-
bilization mechanism of the stiffer PC filament was distinct.
Whereas the GTP g phosphate and Mg2þ directly linked
adjacent FtsZ monomers in the GTP filament, PC allosteri-
cally induced the closure of the intermonomer interface by
blocking the assembly switch in the active conformation.
The presence of PC stabilized the contacts of the top mono-
mer’s T7 loop with the bottommonomer’s H2 andH1 helices
and impeded those observed in other filaments with bottom
H5 helix (Fig. S6). The stabilization of the T7 loop promoted
Biophysical Journal 107(9) 2164–2176
closure of the intermonomer interface, causing the filament
to curve in a manner similar to what was observed in the
GTP case, but in a slightly different direction (Figs. 1–3).
The PC interfaces curved in same direction as the GDP-
closed configuration (Fig. 2 A), whereas the GTP filament
bent 35� apart, enclosing the nucleotide more tightly. In
contrast to the free GDP filaments, the PC-bound filaments
were twisted as in the GTP case. This behavior increased
the interfacial packing in the PC filament, reducing the
intrinsic flexibility of the monomer (Fig. S5). Our simulation
results are fully consistent with experimental observations of
the stabilizing effect of this compound in the close homolog
BsFtsZ (8). Because this ligand binds to the interdomain
cleft, it also held open the minus-end subunit of the filament,
in contrast to the behavior observed in the GTP and GDP
filaments without PC.
Filament-stabilizing effect of Ca2D ions

We initially omitted the Ca2þ ion found in the crystallo-
graphic filament structures of SaFtsZ from the MD simula-
tions because no other FtsZ structures contain this cation
and because the Ca2þ concentrations that affect SaFtsZ
polymerization and GTPase are rather high (1–10 mM)
(11). Moreover, a nearly identical calcium-free SaFtsZ fila-
ment structure was recently documented (54). Nevertheless,
we examined the effects of the Ca2þ ion in the GDP and PC
filaments by performing equivalent long MD simulations. In
contrast to the calcium-free situation, the interfaces of the
Ca2þ-GDP filament were closed, resulting in a more stable
curved filament. As in the crystal structure, the Ca2þ was
coordinated with two water molecules inside the T7 loop,
supporting an apparent increase in the intermonomer con-
tact near H2 (see Fig. S8). Because the PC filament was
already quite rigid, we were unable to detect any further dif-
ferences caused by the presence of Ca2þ in terms of relative
stability. Interestingly, isolated SaFtsZ monomers spontane-
ously lost their bound Ca2þ during the MD simulations, as
did the last monomer at the minus-end of the filament. These
results suggest that the Ca2þ ion plays a secondary role in
stabilizing the T7 loop in FtsZ filaments.
DISCUSSION

Nucleotide-regulated FtsZ filament interfacial
dynamics

Our MD simulations of representative bacterial FtsZ fila-
ment structures demonstrated that nucleotide-dependent
intermonomer contacts play a key role in controlling the
intrinsic curvature of the filaments and, by extension, their
stability. In agreement with the experimentally observed
polymorphism of FtsZ protofilaments, we found different
filament curvatures supported by a nucleotide-regulated
hinge motion between interfacial subunits. Revealing a
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high intrinsic variability, the GDP-bound filaments fluctu-
ated among various curved conformations, forming a hetero-
geneous distribution of open and closed interfaces. By
contrast, locking the intermonomer nucleotide site, the
GTP-bound filaments converged to less flexible polymers
that curved in a preferred orientation. The conformational
changes of this highly dynamic equilibrium associated with
GTP hydrolysis may provide a structural basis for the initial
Z-ring constriction. The coordinated Mg2þ contributed
significantly to monomer binding in the GTP filament by
tightly connecting the T7 loop of the top subunit to the nucle-
otide firmly attached to the bottom subunit. This interaction
closed the binding pocket, thereby stabilizing the GTP in a
conformation suitable for hydrolysis. Another important
element of the hinge was the intrinsic flexibility of the H6-
H7 loop and the tip of the H7 helix of the bottom subunit,
which facilitated the complementarity between adjacent sub-
units and eventually helped to transmit a conformational
change through H7 from one FtsZmonomer to another along
the filament. Althoughwe observed flexibility in the T3 loop,
the relative differences for this loop in the MD simulations
of the GTP and GDP filaments provide no evidence for a
hydrolysis-dependent conformational switch supporting the
bending between subunits at this loop, as postulated by others
(26). Although the GTP g phosphate can actually pull away
from the T3 loop in isolated FtsZ monomers (55), we think
that the g phosphate and the coordinated Mg2þ ion play the
major role in FtsZ filament stability.

The intrinsically curved FtsZ filaments may generate a
bending force on a much less curved membrane without
the need for GTP hydrolysis (56). Intermediate curvatures
have also been observed in atomic force microscopy images
of FtsZ protofilaments adsorbed on mica (57–59) and in
FtsZ polymers attached to engineered membranes (3). In
addition, the torsion of spontaneously twisted FtsZ filaments
caused by side attachment to mica or membrane surfaces
should generate filament curvature and force (29). Our
MD simulations indicate clear differences in the average
curvature and twist between GTP- and GDP-FtsZ filaments,
which suggest that the GTP/GDP balance in the FtsZ fila-
ments modulates their attachment to the membrane through
FtsA and ZipA, as well as any resulting mechanical function
in bacterial cells. The straighter or more curved filament
conformations observed by microscopy could also be influ-
enced by additional interactions experienced by the C-ter-
minal FtsZ tails. It is known that the flexible C-terminal
linker and the constant and variable zones of the C-terminus,
which are absent in the crystal structures and MD simula-
tions, participate in FtsZ polymerization, FtsZ filament teth-
ering to the membrane, and Z-ring formation (60,61).

Mutations at interfacial residues affect the stability of fil-
aments, which further demonstrates the importance of the
intermonomer contact regions (20,26,62,63). Many of these
interfacial mutations affect cell division, but FtsZ can still
polymerize into filaments, indicating that the Z-ring
constriction can be disrupted by a defect in the filament dy-
namics. Interestingly, an FtsZ mutation at a key Mg2þ-bind-
ing residue, Asp208Ala, resulted in a lack of polymerization
even in the presence of calcium ions (see Fig. 8 in Matsui
et al. (11)). To explain this result, Matsui et al. (11) proposed
that the coordination of Ca2þ with Asp-208 stabilizes the
GTP polymer, thereby slowing the hydrolysis to GDP. By
contrast, our simulations demonstrated the importance of
this residue in anchoring the upper monomer through the co-
ordinated Mg2þ. The same authors recently presented muta-
genesis results concerning the T7 loop in SaFtsZ (54). They
replaced the T7-loop sequence (VSGEV) with that of BsFsZ
(TPGLI) without affecting the GTPase activity. This result
provides further evidence of common interface contacts be-
tween different FtsZs and the representativeness of the
SaFtsZ filament structure. Two T7-loop deletion mutants
with inhibited GTPase showed domain movements; how-
ever, they still crystallized as straight protofilaments (38).
It would be worthwhile to determine, using the appropriate
mutants, which crystal-packing contacts make SaFtsZ form
straight protofilaments in different space groups, in contrast
to other FtsZs. Nevertheless, SaFtsZ protofilaments did
curve both during our MD simulations and when adsorbed
to carbon onto electron microscope grids.
Association-induced activation switch of FtsZ
monomers

The cooperative assembly of FtsZ is related to a conforma-
tional change that involves the opening and closing of the
cleft between the C-terminal domain and the H7 helix
(20,21). In our simulations, we observed a closure of the
minus-end monomer in the filament and the natural ten-
dency of the isolated monomer to adopt a relaxed closed-
cleft conformation. These results support the presence of
a conformational equilibrium between the low-affinity
closed-cleft and active filament-forming open-cleft confor-
mations that was previously inferred from comparisons
among structures of different FtsZs (9,11), but had not yet
been observed in the same FtsZ protein. Interestingly, in
Matsui et al. (54), the truncated GDP-bound chimeras
DT7GAG and DT7GAN yielded closed-cleft structures similar
to those observed for BsFtsZ, whereas GTP-DT7GAN main-
tained the wild-type open conformation. The structures of
such GDP-bound chimeras are similar to the closed-cleft
conformation observed in the monomeric state. Thus, we
suggest that the nucleotide-dependent change observed by
these authors reflects the transition between actively associ-
ating and inactive monomers rather than a real change pro-
duced in the filament. Although the chimeras exhibited no
GTPase activity (likely attributable to defective polymeriza-
tion), these results also suggest that the contacts of the T7
loop, particularly those related to g phosphate or Mg2þ,
play a pivotal role in controlling the activation switch. In
contrast to typical GTPase switches, in which the nucleotide
Biophysical Journal 107(9) 2164–2176
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binding induces an activating conformational change in the
unassociated protein (64), the unassembled states of FtsZ
and its eukaryotic homolog, tubulin (5,23), are predomi-
nantly inactive and switch to the active forms by assembly
contacts with the aid of GTP binding, which lowers the cor-
responding free-energy barrier (53). Note that for accuracy,
we have intentionally avoided using the terms ‘‘curved’’ and
‘‘straight’’ because we observed dynamically curved FtsZ
filaments in all of our simulations. In fact, regardless of
the sampling limitations, our results clearly indicate the
intrinsic instability of straight FtsZ filaments.
Mimicking a nondisassembling GTP filament with
PC190723

The binding of PC stabilizes the FtsZ filament in a bent
conformation similar to that observed for the GTP filaments.
PC permanently holds the interdomain cleft open, in oppo-
sition to the natural tendency of the monomer to adopt the
closed-cleft conformation. As a result of internal move-
ments, this cell-division inhibitor allosterically stabilizes a
closed intermonomer interface with additional links be-
tween the top T7 loop and H8 helix and the H2 helix of
the bottom monomer. Because the PC binding site is
occluded in the FtsZ monomer, it is likely that this com-
pound binds only to the open-cleft conformation, displacing
the equilibrium toward the high-affinity conformation
FIGURE 5 Scheme of the FtsZ assembly-disassembly cycle mechanism cons

assembly switch. See the main text for details. To see this figure in color, go on
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required for FtsZ polymer elongation. This switching to
the conformation for polymerization explains the coopera-
tive critical concentration behavior of PC-induced FtsZ
polymerization (17). Regardless, there is no exact equiva-
lence for the PC binding site in tubulin. The general
stabilization mechanism is partially related to that of micro-
tubule-stabilizing agents, which bind lateral contact ele-
ments that hold protofilaments together and thus suppress
the monomer disassembly switch.
FtsZ assembly-disassembly cycle

The nucleotide-dependent filament dynamics and the as-
sembly switch can be integrated into the FtsZ assembly-
disassembly cycle schematically illustrated in Fig. 5. In an
initial, moderately curved GTP filament, the interdomain
clefts are open and the intermonomer interfaces are closed,
poised for nucleotide hydrolysis. GTP hydrolysis then cuts
the links formed by the g phosphate and the Mg2þ between
adjacent monomers, yielding a filament that is more flexible
and prone to depolymerization. The intermonomer inter-
faces in an all-GDP model filament fluctuate between
the open and closed states, whereas the monomer clefts
remain open. The transition from the GTP-closed to the
GDP-closed and GDP-open interface conformations
could contribute to the constriction of the FtsZ rings in
bacterial cells or reconstituted systems. The GDP filament
tructed by integrating the nucleotide-dependent filament dynamics and the

line.
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depolymerizes into GDP monomers whose interdomain
clefts rapidly close (alternatively, some subunits might
back-exchange GTP into the filament). The bound GDP
spontaneously exchanges with GTP (which is present in
excess), producing closed-cleft GTP monomers that are
ready for polymerization. The assembly of the GTP-FtsZ
monomers into a new filament is associated with the open-
ing of their clefts through a mechanism that we cannot
currently address using all-atom MD simulations. However,
based on the properties of the system, one possibility is that
GTP monomers with closed clefts initially associate as weak
open-interface dimers or trimers. These inactive oligomers
then isomerize into a tighter closed-interface active olig-
omer with an open plus-end monomer cleft, which consti-
tutes a linear polymerization nucleus (17) that further
elongates to form the filament (see the scheme of Fig. 5).
How the observed conformational changes can be integrated
to explain the cooperative assembly behavior remains an
intriguing issue. To this end, both the top and bottom inter-
faces of a monomer must simultaneously switch to the high-
affinity form (19). Our simulations clearly identified the
cleft closure as the necessary conformational change at
the bottom interface. However, we have only characterized
the high flexibility of the tip of the H7 helix and the H6-H7
loops, which we speculate would sustain the conformational
change at the top interface. We note that in addition to coop-
erative assembly, individual FtsZ filaments are also capable
of treadmilling and fragmenting (4), as well as associating
among themselves and with divisomal partners. The latter
processes, in combination with assembly and disassembly,
most likely constitute the constriction mechanisms of the
Z-ring during cell division. Our findings shed new (to our
knowledge) light on the structural basis of the FtsZ assem-
bly process itself, in which two linked hinge motions, one
located at the intermonomer interface and one at the cleft
between monomer domains, modulate filament stability
and dynamics in a remarkably simple manner.
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Figure S1.  RMSD evaluated along the trajectories. (A) Average RMSD of the FtsZ monomers within the 
corresponding filaments along trajectories. The structures of the two end monomers have been excluded to avoid 
border effects, and two runs are plotted per case. (B) Average RMSD for the isolated GDP FtsZ monomer. In all the 
cases, the RMSD was computed considering backbone atoms using g_rmsd from GROMACS tools. 
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Figure S2. A. Illustrative dimer structures corresponding to GDP-open (green), GDP-closed (cyan), GTP (blue) and 
PC (wheat) monomer-to-monomer interfaces. B. Alignment of the GDP-open, GDP-closed and PC dimers with the 
GTP dimer. 
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Figure S3. Definitions of bending and twisting angles. The relative orientation of each pair of monomers was 
monitored throughout the final 100 ns of the trajectories following a described methodology (1, 2). In brief, the 
coordinate frame was defined by aligning the z axis along the monomers’ centers of mass, fixing the x axis along the 
direction of bending and defining an orthogonal y axis. For comparative proposes, the main bending angle θ1was set to 
lie in the maximal bending direction of the GTP filament. Rotations around the axes of the coordinate frame defined 
the bending and twisting angles that could be individually tracked for each monomer-monomer pair in the filaments, as 
depicted. To measure the angles, two consecutive monomers were first aligned with respect to the straight reference by 
superposing the bottom monomers. The corresponding bending angles are tracked by calculating the sequential 
rotations to align the coordinate reference frames of the top monomers.  The bending angles θ1 and θ2 were defined by 
rotations around the Y axis (blue) and the X axis (green), respectively and the twist (Φ) was defined by the rotation 
around the Z axis (red).  Note that this view is roughly equivalent to tubulin viewed from the inside of a microtubule. 
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Figure S4. Time evolution of the main bending angle θ1 for the four central interfaces of filament calculated as 
described in Fig. S3. Notice that the GDP-filament converges to heterogeneous filament formed by open (~6 degrees) 
and closed (~-6 degrees) interfaces.  In contrast, the monomer association remains closed during all the simulations for 
GTP and GDP-bound filaments  
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Figure S5. Average monomer conformations from the final 100 ns of the trajectories were aligned via a 
maximum-likelihood superimposition criterion using THESEUS (3) for the GDP filament (green), the GTP 
filament (blue), the PC filament (wheat) and an isolated GDP FtsZ monomer (gray). (A) Average RMSD 
per residue obtained from the superimposition. (B) Corresponding ensemble overlaps.  
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Figure S6. Contact plots of the monomer-monomer interfaces. Two residues were considered to be in contact if they 
had at least one pair of atoms separated by less than 4 Å. Contacts were calculated for the four central monomer 
interfaces throughout the final 100 ns of the simulations. The numbers in the axes are residue positions. The intensity 
of each band reflects the percentage of simulation time during which the contact was present. Dark blue regions 
correspond to contacts that were present throughout the entire simulation time. The relative differences between GDP 
and GTP contact patterns are detailed in the main text. In comparison to the simulations with bound GDP, the presence 
of PC stabilized the contacts of the top monomer’s T7 loop with the bottom monomer’s H2 and H1 helices and those 
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formed by H2-H8, and impeded the contacts of bottom H5 helix observed with other filaments. As shown by the 
crystal structure (4-6), the benzamide moiety makes the major contribution to the binding. During our simulations, the 
amide group formed stable H-bonds with Val207 (T7) and Asn263 (H8) and, in a more transient fashion, with Gly205 
and Leu209. The thiazolopyridine part of the ligand interacted with the H7 helix (residues Gly193, Gly192 and 
Glu196) and with the C-terminal domain (residues Met226 and Ile228). Interestingly, the presence of PC impeded the 
contacts with the H5 helix disrupting the stable H-bonds of Asp-213 with Lys142 and Arg143 that were observed in 
the other filaments. By contrast, more stable contacts of the H2 helix with the T7 loop and the H8 helix were present; 
for example, the binding of Asp210 (T7) to the T3-loop glycine cluster observed in other cases was replaced by an 
interaction with Gln48 (H2). 
 
 
 
 
 

 
 
Figure S7. Detailed view of the GTP-filament interface. Among the elements of the Mg2+ coordination shell, the 
strongest interactions corresponded to the Asn208 from the T7 loop and to the β and γ phosphates (orange). The 
magnesium interactions held the binding pocket closed and stabilized the GTP nucleotide in a position suitable for 
hydrolysis. In this case, the carbonyl group of Asp210 is located at the correct hydrogen-bonding distance to polarize 
one of the water molecules (green) coordinated with the magnesium (pink). 
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Figure S8. Contact surfaces and interface contact plots of the monomer-monomer interface for FtsZ filament 
simulations with a bound Ca2+ ion (see Fig. 3 and SI Fig. S6 for corresponding results without Ca2+ ). In comparison to 
the simulations without calcium, there was an apparent increase in the inter-monomer contact near H2. As observed in 
the crystal structure, Ca2+ formed a coordination center with two water molecules inside the T7 loop. In our 
simulations, we found that the carbonyl groups of Leu200, Val203, Ser204, Asn280 and Asp210 were all located at 
compatible coordinating distances, but the Ca2+ ion interacted more closely with the latter two residues. Other 
important interactions were detected with either Asp46 or Gln48 at the H2 helix of the bottom subunit. 
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Movies 

 

FtsZ_Movie 1. MD simulation trajectories of GDP-, GTP- and PC-bound filaments.  

 

FtsZ_Movie 2. Animation of the transition among GTP, GDP-closed and GDP-open states. A 

feasible pathway was generated among the illustrative dimers extracted from the corresponding 

MD filament simulations. As in Fig. 1, the blue color represents GTP, cyan represents GDP-closed 

dimers, and green represents GDP-open dimers. The transitions were obtained using the normal-

mode analysis in internal coordinates suite iMOD (7). Notice that the orientations of movie 1 (Fig. 

1A) and movie 2 (Fig. 1B) are related by a rotation of 45 degrees around the axis of the filament. 

 

FtsZ_Movie 3. MD simulation of the activation switch. The conformational change observed with 

a single SaFtsZ monomer during the transition from the open-cleft to the closed-cleft 

conformations. The movie includes the first 35 ns of the simulation. 
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