Supporting Information

Proton Transfer in the K-Channel Analogue of B-Type Cytochrome c Oxidase from Thermus thermophilus

Anna Lena Woelke, Anke Wagner, Gegham Galstyan, Tim Meyer, Ernst-Walter Knapp* Institute of Chemistry and Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany

* corresponding author: E W Knapp, knapp@chemie.fu-berlin.de

Table of content:

Figure S1: RMSD of CcO backbone atoms	S 2
Figure S2: RMSD of CcO of all protein atoms	S2
Figure S3: RMSD of CcO of K-channel analogue residues	S 3
Figure S4: Hydrogen-bonding distances between polar oxygen atoms in the K-channel	
analogue	S4
Figure S5: Hydrogen-bonding distances between polar oxygen atoms at the entrance of the	e K-
channel analogue	S5
Figure S6: Hydrogen-bonding distances between polar oxygen atoms in the middle of the	K-
channel analogue	S6
Table S1: Protonation states of the histidines at pH=7 in CcO	S 7
Table S2: Geometry-optimized coordinates and atomic charges for the BNC cofactors	S 8
References	S12

Figure S1: Root mean square deviation (RMSD) of CcO backbone atoms relative to the crystal structure PDB-id 3S8F [2] obtained by MD simulations for all simulations performed (for simulation details see Table I in main manuscript).

Figure S2: Root mean square deviation (RMSD) of CcO of all protein atoms relative to the crystal structure PDB-id 3S8F [2] obtained by MD simulations for all simulations performed (for simulation details see Table I in main manuscript).

Figure S3: Root mean square deviation (RMSD) of CcO of K-channel analogue residues. MD simulation frames were aligned on the backbone atoms of the crystal structure (PDB-id 3S8F [2]). Then, RMSDs were measured for all atoms of the K-channel analogue residues (Tyr237, Ser309, Tyr244, Thr312, Tyr248, Thr315, Glu15B).

Figure S4: Hydrogen-bonding distances between polar oxygen atoms in the K-channel analogue. Distances between oxygen atoms were recorded for the 100 ns MD trajectory in (A) P_R state and (B) with Tyr237H (for simulation details see Table I, no. 1+2 in main manuscript).

Figure S5: Hydrogen-bonding distances between polar oxygen atoms at the entrance of the K-channel analogue. Distances between oxygen atoms were recorded for the 100 ns MD trajectory with deprotonated Glu15B in (A) P_R state and (B) with Tyr237H (for simulation details see Table I, no. 5+6 in main manuscript).

Figure S6: Hydrogen-bonding distances between polar oxygen atoms in the middle of the K-channel analogue. Distances between oxygen atoms were recorded for the 100 ns MD trajectory with (A) deprotonated Tyr244 and protonated Tyr237 and (B) in P_R state (for simulation details see Table I, no. 3+1 in main manuscript).

Table S1: Protonation states of the histidines at pH=7 in CcO (PDB-id 2GSM).

The different protonation states of histidine are called HSP, HSD and HSE in the CHARMM[1] program.

AA	72 (A)	142 (A)	233 (A)	282 (A)	283 (A)	298 (A)	376 (A)	384 (A)	386 (A)
HisType	HSD	HSE	HSE	HSD	HSD	HSE	HSP	HSD	HSD
440 (A)	462 (A)	552 (A)	5 (B)	8 (B)	40 (B)	114 (B)	117 (B)	157 (B)	
HSD	HSE	HSD	HSE	HSD	HSE	HSE	HSE	HSE	

Table S2: Geometry-optimized coordinates and atomic charges for the BNC cofactors. a) CuA in oxidized state (used for all calculations)

Cu1 -30.3270214596 148.9184511061 13.7615419482 0.311997 Cu2 -28.4194902574 147.0332691630 14.5574729498 0.311997 H3 -25.2084464886 148.7142486770 14.3672519247 0.132877 N4 -26.4180447344 147.0350061074 13.7613730923 -0.213947 C5 -25.2792104960 147.8039855783 13.7948458658 0.024317 C6 -26.3104004498 145.9874156863 13.0149433953 0.097385 H7 -27.0472576587 145.2276439342 12.8076710978 0.104494 N8 -25.0273624388 146.0202440434 12.5116533800 -0.193361 C9 -24.3662249887 147.1531184579 12.9921076707 -0.208905 H10 -23.3478442625 147.3702223383 12.7093699160 0.196572 C11 -30.6264341984 149.2368093769 16.9497028022 -0.005121 H12 -30.4054167205 148.7254743565 17.8889034834 0.051160 H13 -31.5650897477 148.8611676073 16.5406165089 0.051160 S14 -29.2290393107 148.9763774079 15.7792855141 -0.310848 N15 -29.0538688961 152.3462818304 14.3272468683 -0.905063 H16 -29.1249085687 151.3658659433 14.5726316043 0.331005 C17 -28.6592991126 152.5455030526 12.9512767613 0.210796 H18 -28.7145301876 153.6090198907 12.6975313624 0.052321 H19 -27.6134786516 152.2410036342 12.8189304878 0.028775 C20 -29.5141552252 151.6904314385 11.9991776517 0.415545 O21 -29.5435779802 150.4575644807 12.1093223297 -0.425493 N22 -30.4223645331 152.3424376739 11.2262762183 -0.713060 H23 -30.3115998988 153.3212532065 11.0056001449 0.340823 H24 -30.9970633615 151.7859976103 10.6064085380 0.378953 C25 -28.7727473311 147.3833845238 11.2819231234 0.101646 H26 -28.3851671725 146.5076054906 10.7559089054 0.022120 H27 -27.9553689119 148.0159583505 11.6245714914 0.022120 S28 -29.8141884519 146.8154649626 12.6947431327 -0.352773 H29 -33.2808170799 147.8994134365 12.8801623517 0.131131 N30 -32.2897306953 149.6188265009 13.7066361207 -0.147998 C31 -33.3333857278 148.9529431160 13.1069528429 -0.031274 C32 -32.6434209137 150.9186094890 13.8600279503 -0.018683 H33 -31.9863883607 151.7192103060 14.1609385453 0.133179 N34 -33.8670035199 151.0708698156 13.3622134927 -0.158875 C35 -34.3319449733 149.8509296044 12.8869753737 -0.154431 H36 -35.3179097335 149.7535293719 12.4594951925 0.177053 C37 -28.8008645918 144.5433665465 17.5359531210 -0.094367 H38 -29.8338392323 144.8572342928 17.3734838364 0.092250 H39 -28.5264599668 144.7327389645 18.5758743440 0.092250 S40 -27.7683885608 145.5455451624 16.4155875678 -0.220580 C41 -26.0783119079 145.0085812476 16.8369832484 -0.222799 H42 -25.4015144887 145.6254723219 16.2425678160 0.123502 H43 -25.8812513278 145.1873340764 17.8960677150 0.123502 H44 -25.9205965198 143.9567008975 16.5879251985 0.123502 H45 -24.6123510469 145.3410336601 11.8886099439 0.319269 H46 -34.4022407918 151.9283429563 13.3556921216 0.320702 H47 -29.7656802426 152.9419634016 14.7208235833 0.389642 H48 -30.6985977966 150.3070776053 17.1522811330 0.051160 H49 -29 3996092214 147 9516399790 10 5936179505 0 022120 H50 -28.7102417113 143.4791274433 17.3070069628 0.092250

b) heme a in oxidized state (used for all calculations)

 H1
 1.0239320577
 -1.3183000967
 38.9398941612
 0.181210

 C2
 1.4909700298
 -2.1324224093
 38.4082267686
 -0.126252

 N3
 2.4668918501
 -2.9237006327
 39.000844501
 -0.204047

 C4
 1.2861378809
 -2.6540293935
 37.1656361891
 -0.136193

 C5
 2.8746383679
 -3.862337411
 38.1188188228
 -0.004414

 N6
 2.1887508740
 -3.7038229060
 37.0079671504
 0.023538

 H7
 3.3010617514
 -7.6716097547
 31.0262020711
 0.183593

 C8
 2.8189386081
 -7.0847620378
 31.7920567270
 -0.118088

 N9
 1.4768473618
 -6.7487184046
 31.7139378525
 -0.212660

 C10
 3.2757388779
 -6.5531276053
 32.9675072483
 -0.203911

 C11
 1.1211226057
 -6.0245334916
 32.7849481888
 -0.007644

 N2
 2.1757196738
 -5.8833510427
 33.5439998740
 0.091744

 C13
 -1.2033153115
 -3.8952969679
 34.7482843924
 -0.333782

 C14
 1.0683498935
 -7.736033829
 36.8568703076

C16	3.2880141988	-2.3070323447	33.4493402981	-0.167627
C17	-0.8764851168	-5.1961099437	35,3457753388	0.199004
C19	1 8222222516	6 2856272242	25 4278607022	0 227048
C10	-1.8233223310	-0.2630272242	55.4578007025	-0.327948
C19	-1.2429350809	-7.2886238244	36.0795785368	0.222301
C20	0.1202440891	-6.9210944822	36.2681782075	0.065534
C21	-1 8264598055	-8 6265806947	36 4280023243	-0 360348
1122	2 9620955560	6 2001025017	25 1422657407	0.172004
П22	-2.8029855500	-0.2001055017	55.1455057427	0.178094
C23	2.4403890906	-7.4095341963	36.9145825438	0.122940
C24	3.4545716847	-8.2428732404	37.5502690519	0.057027
C25	4 6855252720	-7 6285874638	37 4710702589	-0.005936
Cae	1 1177010007	6 4252747661	26 6207624112	0.006625
C20	4.41//01902/	-0.4232747001	30.029/024112	0.090023
C27	3.1206281311	-9.45200/5595	38.3799785215	-0.295983
C28	5.9908924779	-8.0940867938	37.9343020613	-0.101349
C29	6.2508615605	-8.6390349075	39.1317923800	-0.319434
C20	5 2027201525	4 6800804726	25 1270870572	0.028920
C30	5.2927591525	-4.0009094730	33.12/06/93/2	0.028820
C31	6.190258/286	-3./6802/5644	34.804598/395	0.102032
C32	5.6135142001	-2.9276240257	33.7719798447	0.054588
C33	4 2854766480	-3.1099013493	34.0684863600	0.039909
C24	7 6914172627	2 0479419006	24.0622157120	0 202515
C34	/.00141/202/	-3.9476416000	34.9032137130	-0.302313
C35	6.1880366110	-1.8085038431	33.0423/48568	-0.13/651
C36	7.4852979481	-1.5995773340	32.7586685527	-0.301693
C37	1.9841093651	-2.4706336464	33.6606378982	0.134036
C38	0.0606371805	1 /6/18/8160	33 21/8602074	0.086746
C38	0.9090371805	-1.4041040109	33.2148092074	0.080740
C39	-0.2914101054	-1.9201908563	33.6367409301	-0.324167
C40	-0.0831411170	-3.1818975699	34.2985367627	0.238467
C41	1.2140368575	-0.3478005172	32.2433300212	-0.292696
H/2	-1 2466043426	-1 4523509067	33 / 3521/0027	0.176273
1172	0.4400572205	-1.+525505007	25 (500050045	0.170275
N43	0.44885/3285	-5.6/81516584	35.6588858845	-0.276989
N44	3.0986426869	-6.3168742427	36.4000216410	-0.276989
N45	3.9187898095	-4.2543203730	34.8720651383	-0.276989
N46	1 2361344097	-3 3832150463	34 2856998002	-0 276989
E-47	1.2301344077	4.9471102659	25 2012100502	0.270909
Fe4/	2.1/5108/94/	-4.84/1192038	55.5015198502	0.425000
H48	3.6397265093	-4.5970138349	38.3053640219	0.165195
H49	0.6146164615	-2.3374821273	36.3912458139	0.159761
H50	2 8430697625	-2 7919136913	39 9280966895	0 328887
LI51	4 2467451855	6 5 5 7 2 1 1 / 9 5 9	22 4200010250	0.208620
П31	4.2407431833	-0.33/3114636	55.4500010250	0.208030
H52	0.13551226/4	-5.62849/8918	32.9649365663	0.154493
H53	0.8633838827	-7.0028468966	30.9525158105	0.331262
H54	0.7600638035	-8.6704523913	37.3064450892	0.149311
H55	3 5870562216	1 4550726303	32 8553204127	0.123760
H35	5.5670502210	-1.4559720505	32.0333294127	0.123709
H56	6.5144645763	-5.9699224250	36.54/48629/3	0.159482
H57	-2.2148318142	-3.5576469344	34.5826922848	0.198560
H58	7.7878610479	-0.7104617433	32.2147749139	0.147502
H59	8 2731175650	-2 2929914264	33 0225151671	0 159937
1157	6.2751175050 5.495720070C	1.0(15((1010	22 (21((02(07	0.137737
H00	5.485/200/06	-1.0015001919	32.0810002097	0.140246
H61	7.2570469372	-8.9496295613	39.3957844083	0.151779
H62	5.4862963802	-8.7680336755	39.8914043546	0.161680
H63	6 8266151829	-7 9505769088	37 2503030047	0 123733
1165	4.0100225071	10.0629624727	29 5405962650	0.000044
п04	4.0100555071	-10.0058024727	38.3493803039	0.098044
H65	2.7327612910	-9.1636237884	39.3650/48215	0.098044
H66	2.3689667545	-10.0915887293	37.9047498233	0.098044
H67	8.1660145356	-2.9956206190	35,2032700204	0.100690
H69	7 938/012620	-1 6471407700	35 762163/222	0 100690
1100	0.1210202170	4 2220521775	24.0202515050	0.100090
H69	8.1319283170	-4.3239521776	34.0382515860	0.100690
H70	-1.7381775272	-8.8385647174	37.4993707519	0.116140
H71	-2.8878358844	-8.6613100376	36.1705969314	0.116140
H72	-1 3216482278	-9 4381362872	35 8919764633	0 116140
1172	0.2002400074	0.0000550005	22.0702/20.402	0.101266
п/3	0.30034090/6	0.2208552205	52.0703620493	0.101366
H74	1.9848331649	0.3546700968	32.5842350113	0.101366
H75	1.5444352287	-0.7431634898	31.2747706025	0.101366

c) heme a3 in state Fe(IV)=O (used for all calculations)

H38-5.6190862081 -37.167502994920.56131718260.157824N39-6.8442915675 -36.109573072421.9895348831-0.207126H40-7.6268375641 -36.739469778722.07900021530.316613C41-5.7335756117 -36.290998021821.1794846745-0.138747C42-6.7010807601 -34.923880310222.62595829680.126215H43-7.4049957889 -34.511621150423.33208086680.105198N44-5.5503090507 -34.358844522322.2633277446-0.335061C45-4.9452440472 -35.188314834921.36429056340.009826H46-3.994428009 -34.914910112620.91903099400.086811H470.2104785816 -34.912577194223.43286575430.160168

Fe48	-4.5184204499 -32.6416521663	22.8989580956	0.562061
N49	-2.8648006690 -33.7281769651	23.5761712994	-0.176399
N50	-5.3538540863 -32.7407635446	24.8568666373	-0.150605
N51	-5.9981861510 -31.3041549976	22.3726331576	-0.128398
N52	-3.5098871971 -32.2565793661	21.1056674638	-0.143865
C53	-1.7169820310 -33.9358358875	22.8478186742	0.206583
C54	-0.7880789194 -34.5975744229	23.7155774277	-0.290598
C55	-1.3746727485 -34.7646064123	24.9451906915	-0.063552
C56	-2 6944957702 -34 2251146125	24 8564708510	0 141559
C57	-4 8681833255 -33 5332831366	25 8795556988	0.067069
C58	-5 8658039558 -33 5129892003	26 9273318970	0 103347
C59	-6 9007876164 -32 7165331703	26 5310038895	-0 244257
C60	-6 5700017633 -32 2272437564	25 1999903716	0.123513
C61	-7.0682504703 -30.9200853988	23.1543873432	-0.017331
C62	-7 8484796438 -29 9605157689	22.1545075452	0.121088
C63	-7 25680/5052 -29 7793826608	21 2031/39710	-0.017751
C64	6 0701782061 30 6262827056	21.2031437710	0.044102
C65	-3.9463843793 -31.4023295552	20 1319859056	0.044172
C66	2 0222565032 31 3503061606	10 11/0617013	0.167070
C00	1 8071720724 32 1550626221	19.1140017013	0.385701
C69	2 2764200620 22 7262818211	20.7607046240	0.222621
C60	1 5084520622 22 5086724404	20.7097040249	0.232031
U70	0.5642672621 22.0142228441	21.0945942150	0.140180
П/0	-0.3042073021 -33.9143238441	21.0043043130	0.140169
U72	-3.0337084319 -34.2007007253	23.8090993714	-0.212130
П/2	-5.5008055714 -54.7215007505	20.//3461/03/	0.134643
U73	-/.3508851258 -31.3/9/29022/	24.4232413008	-0.170412
П/4 С75	-8.2313383223 -31.0123430434	24.8990344773	0.136341
U76	-5.1/2/804438 -50./559081051	20.128/022195	-0.1/3241
H/0	-5.3804094412 -50.1408408745	19.2390427284	0.125300
U//	-0.7203503779 -35.3821099890	20.0908300320	0.401299
П/0	0.220394/0/1 -55.911/259022	23.6401069046	-0.020240
C ²⁰	-1.1045958401 -55.5280859790	27.2558809020	-0.434305
C00	-3.7314236001 -34.2379373433	28.2293129919	-0.51/550
H81	-4./243013303 -34.3/49234/99	28.42/10//05/	0.104881
H82	-0.3742225501 -55.1014415140	28.2337424518	0.078587
H83	-6.0742325566 -33.6439578606	29.0778891479	0.111/25
C84	-9.0845923040 -29.2873417000	22.9300720215	-0.2/8931
H85	-9.1282162297 -28.2434647254	22.6031/0161/	0.098/24
H86	-9.1166819348 -29.295613/384	24.0230636382	0.0//3/1
H8/	-9.9993/55422 -29./844369/28	22.582420/18/	0.082/33
C88	-7.6499638239 -28.9027824467	20.100/983288	-0.083917
H89	-6.83/8605/6/ -28.5861/452/3	19.4469330884	0.121/26
C90	-8.8/3035930/ -28.41/4290989	19.8345425230	-0.378785
H91	-9.0308815006 -27.7465306164	18.9954392673	0.146703
H92	-9.7565007008 -28.7127535234	20.3888194855	0.158767
C93	-2.9973778799 -30.5271309401	17.8598757756	-0.300927
H94	-3.0532303148 -29.4538695223	18.0792403279	0.095647
H95	-3.8803334318 -30.7804087529	17.2598835186	0.078603
H96	-2.1151961718 -30.6908857339	17.2343759044	0.097210
C97	-8.0998014255 -32.3290711967	27.3565826724	0.319502
H98	-7.9081735958 -32.5670307831	28.4131962024	-0.016557
099	-8.4723804561 -30.9546555075	27.2234886252	-0.613663
H100	-7.6842528621 -30.4249545479	27.4062866800	0.391412
H101	-8.9966290949 -32.8820456318	27.0496103428	0.034867
H102	-0.9698969828 -32.3452916349	18.9777700864	0.176710
O104	-3.7173545313 -31.3470686937	23.4935894406	-0.352657

d) CuB in PR state with Cu(II)-OH Tyr237-O- (used for Tyr237 deprotonated)

H1	-0.8264348977 -26.9346109600	26.1064242774	0.114395
N2	-2.2615098291 -28.5572664326	25.9604539222	-0.272336
C3	-1.8463080878 -27.2596556179	26.2418658027	-0.150851
C4	-3.5420971306 -28.6758556889	26.2606412562	0.239017
H5	-4.2047558321 -29.5248796211	26.1757183499	0.073658
N6	-4.0075359556 -27.4746763060	26.6779303239	0.018397
C7	-2.9594099957 -26.5594534038	26.6421526776	-0.139733
H8	-3.0851688944 -25.5565598424	27.0152909734	0.104747
H9	-7.4669767381 -24.5607221949	25.8510568872	0.096415
C10	-7.1688404465 -25.5584168702	26.1647318218	-0.355662
C11	-8.1455072571 -26.5516344439	26.3458615786	-0.025632
H12	-9.1974766433 -26.3140259532	26.2026918731	0.065093
C13	-7.7482593517 -27.8206578078	26.7208140444	-0.352689

H14	-8.4567905795 -28.6277836644	26.8823833952 0.101035
C15	-6.3642335389 -28.1607556020	26.8967965953 0.468574
016	-5.9999644106 -29.3344808020	27.2440125686 -0.663003
C17	-5.8139427879 -25.8303667570	26.3081465185 -0.047149
H18	-5.0892850961 -25.0611900854	26.0485474013 0.091091
C19	-5.3883832049 -27.1014775020	26.7276621459 -0.156292
H20	0.7852770016 -33.3204222733	28.4027251972 0.151168
N21	-0.7357574042 -31.8060817970	28.5174237514 -0.138017
H22	-0.9905625006 -31.8829941978	29.4918222852 0.276540
C23	0.2228504796 -32.5635976410	27.8780136765 -0.274163
C24	-1.3050648697 -30.9706270807	27.6300361874 0.122950
H25	-2.0769605107 -30.2493471192	27.8480220333 0.070911
N26	-0.7548904222 -31.1951466430	26.4312355829 -0.347171
C27	0.2014882313 -32.1910163383	26.5710586696 0.066167
H28	0.7862817376 -32.5415473094	25.7365729296 0.093837
H29	3.7200734096 -31.2644666827	23.6833759693 0.099653
N30	1.9002902498 -31.5525148359	22.5596236380 -0.247127
H31	2.2419632600 - 32.1739304486	21.8404850570 0.274181
C32	2.6731337940 -31.0195297081	23.5882368589 -0.084616
C33	0.6629101046 -31.0570231261	22.6444618907 0.048863
H34	-0.1651386774 -31.2846729282	21.9914555394 0.153108
N35	0.6137614190 -30.2121193382	23.6871710819 -0.100284
C36	1.8581144913 -30.1821177181	24.2830129771 -0.176187
H37	2.0642151958 - 29.5799968425	25.1542071162 0.134585
Cu103	3 -1.0845506669 -29.8341269628	24.8938509096 0.345165
O106	-1.7536237560 -29.0975303164	23.2951111386 -1.015467
H107	-2.0035987608 -28.1759530489	23.4461681401 0.336828

e) CuB in PR state with Cu(II)-OH Tyr237-OH (used for Tyr237 protonated)

H1 -	-0.8903030011 -26.9122738263 26.1209729916 0.163635
N2	-2.2944940036 -28.5611061666 25.9699135968 -0.278232
C3	-1.9042401272 -27.2567284765 26.2489171452 -0.090344
C4	-3.5629998273 -28.7017951339 26.2571793843 0.114349
H5	-4.1555995250 -29.5928522102 26.1474667632 0.102382
N6	-4.0697007471 -27.5087776324 26.6699145053 0.115890
C7	-3.0311687802 -26.5748483892 26.6373482137 -0.178669
H8	-3.1643250919 -25.5708792226 27.0043431557 0.178374
H9	-7.4289088137 -24.4878232579 25.8404578774 0.143010
C10	-7.1677891328 -25.4920844851 26.1555426415 -0.156157
C11	-8.1532012886 -26.4580572992 26.3452393144 -0.046268
H12	-9.2010846602 -26.2104477308 26.2097203661 0.132988
C13	-7.7974924142 -27.7498716023 26.7265000525 -0.251665
H14	-8.5623231913 -28.5071009605 26.8828991695 0.148767
C15	-6.4586858996 -28.1008086512 26.8894203036 0.255685
016	-6.0817660469 -29.3642035986 27.2643312960 -0.514649
C17	-5.8258681756 -25.8433330865 26.3050153643 -0.130014
H18	-5.0605022373 -25.1208508519 26.0473666949 0.142600
C19	-5.4570884075 -27.1219376779 26.7247512580 0.007477
H20	0.8816957634 -33.3136059777 28.3882102465 0.182608
N21	-0.6722779252 -31.8329388865 28.5058845328 -0.159156
H22	-0.9231420263 -31.9243597913 29.4806466206 0.319914
C23	0.3037379213 -32.5667058229 27.8661568171 -0.148849
C24	-1.2572878384 -31.0061882653 27.6199517629 0.065660
H25	-2.0434563230 -30.3068276519 27.8476507982 0.128051
N26	-0.6989880281 -31.2141920885 26.4215024389 -0.275759
C27	0.2781578347 -32.1892493218 26.5585397689 -0.003117
H28	0.8732574990 -32.5246893992 25.7253295240 0.111948
H29	3.7403608534 -31.2684578974 23.6634306582 0.154390
N30	1.9002898232 -31.5594265318 22.5739080537 -0.191458
H31	2.2255561008 -32.1901799057 21.8541887948 0.316181
C32	2.6929735597 -31.0204729792 23.5826282592 -0.074571
C33	0.6673097257 -31.0564169619 22.6763088870 0.081909
H34	-0.1710067264 -31.2888561002 22.0381824965 0.176658
N35	0.6401165951 -30.2000763563 23.7120840579 -0.220788
C36	1.8964372889 -30.1715901007 24.2847790246 -0.096136
H37	2.1260542437 -29.5638892556 25.1459890337 0.152475
Cu10	03 -1.0521976077 -29.8551141939 24.8881634956 0.593722
0106	5 -1.7456079573 -29.1113523064 23.3121095522 -0.760961
H107	7 -2.0223354844 -28.1942349722 23.4410356975 0.367948
H41	-6.8166525527 -29.9729106423 27.1083927072 0.420178

References

- 1. Brooks, B.R., et al., *CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations.* J. Comput. Chem., 1983. **4**(2): p. 187-217.
- 2. Tiefenbrunn, T., et al., *High Resolution Structure of the ba3 Cytochrome c Oxidase from Thermus thermophilus in a Lipidic Environment*. PLoS One, 2011. **6**(7): p. e22348.