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Transient Changes in Intercellular Protein Variability Identify Sources of
Noise in Gene Expression
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ABSTRACT Protein levels differ considerably between otherwise identical cells, and these differences significantly affect bio-
logical function and phenotype. Previous work implicated various noise mechanisms that drive variability in protein copy
numbers across an isogenic cell population. For example, transcriptional bursting of mRNAs has been shown to be a major
source of noise in the expression of many genes. Additional expression variability, referred to as extrinsic noise, arises from
intercellular variations in mRNA transcription and protein translation rates attributed to cell-to-cell differences in cell size, abun-
dance of ribosomes, etc. We propose a method to determine the magnitude of different noise sources in a given gene of interest.
The method relies on blocking transcription and measuring changes in protein copy number variability over time. Our results
show that this signal has sufficient information to quantify both the extent of extrinsic noise and transcription bursting in gene
expression. Moreover, if the mean mRNA count is known, then the relative contributions of transcription versus translation
rate fluctuations to extrinsic noise can also be determined. In summary, our study provides an easy-to-implement method for
characterizing noisy protein expression that complements existing techniques for studying stochastic dynamics of genetic
circuits.
INTRODUCTION
Genetically identical cells exhibit considerable intercellular
variations in mRNA and protein levels. Many studies over
the last decade have implicated different noise mechanisms
that drive expression variability (Fig. 1) (1–12). These
include the following:

1. Poissonian fluctuations (shot noise) in mRNA and pro-
tein levels;

2. Random switching between different promoter states,
which leads to transcriptional bursting of mRNAs; and

3. Extrinsic noise arising from variations in transcription/
translation rates due to cell-to-cell differences in size,
environment, abundance of ribosomes/RNA polymer-
ases, etc.

Because stochasticity plays important functional roles in
diverse cellular processes (13–20), it is essential to identify
the contributions of different noise sources in a given gene/
promoter of interest.

Two-color reporter assay and mRNA single-molecule
fluorescence in situ hybridization are used for quantifying
extrinsic noise and transcriptional bursting, respectively
(21,22). These techniques are hard to implement, and
mRNA fluorescence in situ hybridization becomes chal-
lenging in the regime of high mRNA concentrations. Recent
work has shown that changes in protein copy number vari-
SubmittedMarch 6, 2014, and accepted for publication September 22, 2014.

*Correspondence: absingh@udel.edu

Editor: Edda Klipp.

� 2014 by the Biophysical Society

0006-3495/14/11/2214/7 $2.00
ability across a cell population (measured via flow cytome-
try) after transcriptional blockage can determine the extent
of transcriptional bursting in a gene (23). This work was
restricted to intrinsic noise in gene expression, and we
extend these results to consider extrinsic noise at the tran-
scriptional and translational stages of gene expression.
Our results show that transient changes in protein noise
levels after perturbation contain signatures to determine
both the extent of extrinsic noise and transcription bursting.
By taking into account the effects of extrinsic noise, this
method provides better estimates of the transcriptional burst
size. Finally, complementing this technique with additional
data (such as independent measurement of the mean mRNA
copy number) can quantify the relative contributions of
transcription versus translation rate fluctuations to extrinsic
noise. We begin by describing a general stochastic gene
expression model with transcriptional bursting, and later
extend it to include extrinsic noise arising from fluctuations
in model parameters.
RESULTS AND DISCUSSION

Stochastic gene expression model formulation

Consider a gene where transcriptional bursts occur at a rate
km, and each burst creates Bm mRNA transcripts with
distribution

ProbabilityfBm ¼ ig ¼ ai;
i˛f0; 1; 2; 3;.g: (1)
http://dx.doi.org/10.1016/j.bpj.2014.09.017
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FIGURE 1 Different sources of noise in gene expression. Transcriptional

bursting of mRNAs generates considerable intercellular variability in pro-

tein level. Additional variability (extrinsic noise) arises from fluctuations

in transcription/translation rates. Total noise in protein level (CV2
p),

measured by the coefficient of variation (CV) squared, is decomposed

into intrinsic and extrinsic noise (see text for details). To see this figure

in color, go online.
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Proteins are produced from each mRNA at a translation
rate kp. Proteins and mRNAs degrade at constant rates gp

and gm, respectively. Let m(t) and p(t) denote the
number of mRNA and protein molecules inside the cell
at time t, respectively. Then, steady-state mean levels are
given by

hmi ¼ kmhBmi
gm

;

hpi ¼ kpkmhBmi
gmgp

;

(2)

where h,i denotes the expected value (24–26). Moreover,

the steady-state mRNA and protein noise levels, measured
by the coefficient of variation (CV) squared (variance/
mean2), have been shown to be

CV2
m ¼ Be

hmi;

CV2
p ¼ Begp

hmi�gp þ gm

�þ 1

hpi;
(3)

respectively (24–26). The first term on the right-hand-
2
side of CVp represents protein noise arising from

underlying fluctuations in mRNA population counts.
The 1/hpi term is the Poissonian noise arising due to
random birth-death of individual protein molecules.
Because the magnitude of noise in mRNA copy number
is controlled by
Be ¼
�
B2
m

�þ hBmi
2hBmi ; (4)

the value Be is used as a metric for quantifying the extent of

transcription bursting. Note Be ¼ 1 for constitutive tran-
scription (Bm ¼ 1 with probability one), and Be >> 1 for
bursty transcription. Extrinsic noise is incorporated next
by assuming km (mRNA burst arrival rate) and kp (protein
translation rate) to be random processes.
Incorporating fluctuations in model parameters

Let zj(t), j ˛ {1,2} denote independent random processes
representing levels of cellular factors Zj (such as transcrip-
tion factors, cell volume, etc.). Fluctuations in zj(t) are
modeled via a bursty birth-death process, where Zj is synthe-
sized in bursts of size Bj, with

Probability
�
Bj ¼ i

� ¼ aji;
i˛f0; 1; 2; 3;.g;
j˛f1; 2g:

(5)

Bursts arrive at constant rate kj, and Zj degrades with rate gj.
2
The steady-state mean, CV , and autocorrelation function of

zj(t) are obtained as �
zj
� ¼ kj

�
Bj

�
gj

;

CV2
zj ¼

D
B2
j

E
þ �Bj

�
2
�
Bj

��
zj
� ;

exp
��gjt

�
;

(6)

respectively (26). A key advantage with this formulation is

that the mean, magnitude, and timescale of fluctuations in
zj(t) can be independently modulated via kj, Bj, and gj.
Extrinsic noise is introduced by modifying the mRNA burst
arrival rate to kmz1(t), and the protein translation rate to
kpz2(t). The overall model, capturing stochastic gene expres-
sion with varying transcription/translation rates, is presented
in Table 1. It comprises different events that fire at exponen-
tially distributed time intervals. Whenever the event occurs,
the population counts are reset based on the second column
of the table. The third column lists the event propensity
functions f(z1, z2, m, p), which determine how often an event
occurs. In particular, the probability that an event will occur
in the next infinitesimal time interval (t,t þ dt] is given by
f(z1, z2, m, p)dt. Next, steady-state statistical moments of
p(t) are derived. Note that the propensity function for the
translation event is nonlinear, which leads to the well-known
problem of moment closure (27). Our recent work has
shown that independence of random processes (for example,
m(t) and z2(t) are independent) can be exploited to solve
moments exactly, despite nonlinear propensity functions
(26). Here we use this technique to compute the steady-state
Biophysical Journal 107(9) 2214–2220



TABLE 1 Different events in the stochastic gene expression

model and the corresponding changes in population counts

when events occur probabilistically

Model events Reset in population count

Propensity function

f(z1, z2, m, p)

Zj production zj(t) / zj(t) þ i kjaji, i ˛ {0,1,.}

Zj degradation zj(t) / zj(t) � 1 gjzj(t)

Transcription m(t) / m(t) þ i kmaiz1(t), i ˛ {0,1,.}

mRNA degradation m(t) / m(t) � 1 gmm(t)

Protein translation p(t) / p(t) þ 1 kpm(t)z2(t)

Protein degradation p(t) / p(t) � 1 gpp(t)

Third column lists the event propensity function that determines how often

an event fires. Random processesm(t) and p(t) denote the number of mRNA

and protein molecules inside the cell at time t, respectively. The values zj(t),

j ˛ {1,2} represent levels of cellular factors zj that affect transcription and

translation rates.

2216 Singh
protein noise level for the above model. Moreover, we study
changes in noise levels in response to transcriptional pertur-
bations and how this signal can be used for inferring under-
lying noise mechanisms.
Quantifying protein noise level

To compute protein copy number CV2 (noise level), differ-
ential equations describing the time evolution of the
different statistical moments of z1(t), z2(t), m(t), and p(t)
are first derived. To derive moment dynamics we use the
result that the time-derivative of the expected value of any
differentiable function 4(z1, z2, m, p) is given by

dh4ðz1; z2;m; pÞi
dt

¼
* X

Events

D4 � f ðz1; z2;m; pÞ
+
; (7)

where D4(z1, z2, m, p) is the change in 4 when an event

occurs and f(z1, z2, m, p) is the event propensity function
(27,28). Using the resets in population counts and propen-
sity functions in Table 1, this corresponds to

dh4ðz1; z2;m; pÞi
dt

¼ hqðz1; z2;m; pÞi; (8)

where the formula for q(z1, z2, m, p) is provided in the Sup-

porting Material (27,28). Moment dynamics is obtained by
choosing 4 to be monomials of the form zi1z

j
2m

kpl. For
example, time evolution of the second-order moment of
the mRNA can be obtained by choosing 4 ¼ m2, in which
case we obtain

dhm2ðtÞi
dt

¼ km
�
B2
m

�hz1ðtÞi þ gmhmðtÞi
þ 2kmhBmihmðtÞzðtÞi � 2gm

�
m2ðtÞ�: (9)

Let m be a 14-dimensional vector containing all the first- and

second-order uncentered moments of the joint stochastic
process {z1(t), z2(t), m(t), p(t)}. Then, the time evolution
of m can be compactly represented as
Biophysical Journal 107(9) 2214–2220
dm

dt
¼ a1 þ A1mþ B1m; (10)

where vector a1 and matrices A1 and B1 depend on model
parameters and
m ¼ ��
z2m

2
�
;
�
z22m
�
; hmz2pi; hz1z2mi

	T
; (11)

is a vector of third-order moments. The nonlinear propensity

function leads to unclosed moment dynamics, i.e., the time
derivative of second-order moments depends on third-order
moments. Fortunately, for this system, including certain
higher-order moments in m closes moment equations. In
particular, the time derivative of the 16-dimensional vector

bm ¼ �
mT ; hz1z2pi; hmz2pi

	T
(12)

is given by
dbm
dt

¼ a2 þ A2mþ B2m
� (13)

for some vector a2 and matrices A2 and B2 and
m� ¼ ��
z2m

2
�
;
�
z22m
�
;
�
z22m

2
�
; hz1z2mi;

�
z1z

2
2m
�	T

: (14)

Recall that stochastic processes z1(t) and z2(t) are indepen-

dent. Moreover, inasmuch as z2(t) affects gene expression
at the translational stage, m(t) and z2(t) are also independent.
Exploiting this independence,

m� ¼ �hz2i�m2
�
;
�
z22
�hmi; �z22��m2

�
; hz1mihz2i; hz1mi

�
z22
�	T
(15)

can be expressed as a function of first- and second-order

moments already present in bm. Thus, Eqs. 13 and 15 form
a closed system of differential equations and its steady-state
analysis reveals the following protein noise:

CV2
p ¼ Be

hmi

 
gp

gp þ gm

þ CV2
z2
gp

gp þ gm þ g2

!
þ 1

hpi; (16a)

CV2 g CV2 g g
�
g þ g þ g

�

þ z2 p

gp þ g2

þ z1 p m p m 1�
gp þ gm

��
gp þ g1

�ðg1 þ gmÞ
; (16b)

CV2 CV2 g g
�
g þ g þ g þ g

�

þ z1 z2 p m p m 1 2�

gp þ gm þ g2

��
gp þ g1 þ g2

�ðg1 þ gmÞ
; (16c)

where the mean mRNA and protein abundances are given by
hmi ¼ kmhBmihz1i
gm

;

hpi ¼ kphz2ihmi
gp

:

(17)
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The above closure technique results in an exact protein noise
level (expressions in Eq. 16) for the stochastic model
described in Table 1. As expected, the expressions in
Eq. 16 reduce to Eq. 3 when CV2

zj
¼ 0 (i.e., no parameters

fluctuations). When the timescale of parameter fluctuations
are much slower than the mRNA and protein turnover rates
(gj << gm, gp),

CV2
p ¼ Be

hmi


1þ CV2

z2

� gp

gp þ gm

þ 1

hpi þ CV2
z1

þ CV2
z2
þ CV2

z1
CV2

z2
:

(18)

As per previous studies (22,29,30), CV2
p is next decom-
posed into extrinsic and intrinsic noise components.
Decomposing protein expression variability into
extrinsic and intrinsic noise

Extrinsic noise (CV2
E) can be interpreted as the expression

variability arising solely due to parameter fluctuations. In
contrast, intrinsic noise (CV2

I ) is the expression variability
that cannot be accounted for by extrinsic noise, and is
defined as

CV2
I ¼ CV2

p � CV2
E; (19)

where CV2
p is the total noise given by the expressions in
Eq. 16. Experimentally, correlation in the expression of
two identical copies of a gene (measured using a two-color
assay) is used to quantify the extrinsic noise component, and
the intrinsic noise is computed through Eq. 19 (22,29,30).
Recent work has shown that CV2

E can be quantified by
computing the steady-state protein CV2 in a deterministic
gene-expression model with corresponding parameter fluc-
tuations (31). Toward that end, we consider the determin-
istic counterpart to the stochastic model,

dmðtÞ
dt

¼ kmhBmiz1ðtÞ � gmmðtÞ; (20a)

dpðtÞ ¼ k z ðtÞmðtÞ � g pðtÞ; (20b)

dt

p 2 p

driven by stochastic processes z1(t) and z2(t) representing

transcription and translation rate fluctuations. Moment
dynamics for the models in Eqs. 20a and 20b is obtained
by choosing 4 to be an appropriate monomial of the form
zi1z

j
2m

kpl in

dh4ðz1; z2;m; pÞi
dt

¼ hdðz1; z2;m; pÞi; (21)

where the formula for d(z1, z2, m, p) is provided in the
2
Supporting Material (32). To determine CVE, we solve

for the steady-state protein CV2 using a procedure identical
to the previous section: time evolution for vector bm
(defined in Eq. 12) is derived using Eq. 21 and closed using
Eq. 15. Steady-state analysis of the resulting closed
moment equations yields the extrinsic noise, which is
subtracted from the total noise to obtain the intrinsic
noise. These computations show that the terms in
Eqs. 16b and 16c make up the extrinsic component of
CV2

p. In the limit gj << gm, gp, the total noise (18) can
be decomposed as

CV2
p ¼ CV2

I þ CV2
E; (22a)

CV2
E ¼ CV2

z1
þ CV2

z2
þ CV2

z1
CV2

z2
; (22b)
CV2 ¼ Be


1þ CV2

� gp þ 1
: (22c)
I hmi z2 gp þ gm hpi

Note that CV2
I is different from the protein noise level

when the transcription and translation rates are constant
(see Golding et al. (3)). This result is consistent with
previous work that has shown that intrinsic expression
noise based on the two-color assay can be different from
the protein noise in the absence of extrinsic parameter
fluctuations, particularly for models with nonlinear propen-
sity functions (30,33). Next, the technique for estimating
CV2

E and the extent of transcriptional bursting (Be) is
presented.
Identification of Be and CV2
E from transient

changes in protein statistical moments

Our method relies on measuring changes in protein mean
and CV2 after blocking transcription at time t ¼ 0. The
method is easy to implement, because drugs such as Actino-
mycin D are routinely used to rapidly and efficiently block
transcription for measuring mRNA stability (34). Given the
large sample sizes of single-cell flow cytometry measure-
ments, mean and CV2 can be measured with high precision
over time. We make the following assumptions on the
mRNA and protein decay rates of the fluorescent protein
used to measure expression levels:

1. The decay rates gp and gm are known and the degradation
reactions follow first-order kinetics. These rates are
easily determined by tracking changes in the mean pro-
tein population counts after blocking transcription and
translation using small-molecule drugs (23). We further
assume that the protein half-life is not significantly larger
than the mRNA half-life.

2. To isolate noise sources in gene expression, one should
choose fluorescent reporters that have half-lives shorter
than the cell-cycle length. This is important to minimize
noise contributions from random cell-division events and
errors incurred in partitioning of molecules between
daughter cells (35,36). Because the timescale of extrinsic
factor fluctuations is typically comparable to the cell-
cycle time, short protein/mRNA half-lives allow us to
Biophysical Journal 107(9) 2214–2220
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assume gj << gm, gp, which simplifies the formulas re-
ported later on.

For mammalian cells that typically have 24-h cell cycle,
an ideal fluorescent reporter that satisfies these assumptions
is d2GFP, a destabilized version of GFP where both the
mRNA and protein have an ~2.5 h half-life (21,23,37).
GFP variants with half-life <10 min can be used for other
organisms with shorter cell-cycle lengths (38). It is impor-
tant to point out that the above constraints on gp and gm
are not on the native protein, but on the reporter used. For
example, when quantifying transcriptional bursting in a pro-
moter of interest, one constructs a cell line with the pro-
moter driving a fluorescent reporter such as d2GFP. In this
case gp and gm corresponds to the mRNA and protein decay
rates of d2GFP. If one uses a native protein tagged with
d2GFP, then the above constraints on gp and gm would be
on the tagged system.

Considering the system is at equilibrium when transcrip-
tion is stopped, and short protein/mRNA half-lives (gj <<
gm, gp), the total noise (CV2

p) and extrinsic noise (CV2
E)

in the protein level at t ¼ 0 is given by Eqs. 22a–22c. Recall
that Eqs. 13 and 15 represent closed moment dynamics of
vector bm. Let bmðNÞ be the steady-state solution of Eqs. 13
and 15. Then, the protein mean and CV2 after transcriptional
blockage is obtained by solving Eqs. 13 and 15 with km ¼ 0
and initial condition bmð0Þ ¼ bmðNÞ. After perturbation, the
mean protein copy numbers decay as

hpðtÞi ¼ hpigpexpð�gmtÞ � gmexp
��gpt

�
gp � gm

; (23)

where hpi is the mean level at t ¼ 0. Moreover, the protein
FIGURE 2 Transient changes in protein copy number variation after

transcription blockage identifies noise mechanisms. Protein noise level

(CV2
p(t)) monotonically increases after mRNA production is blocked.

Shape of CV2
p(t) for different percentages of extrinsic noise (CV2

E/CV
2
p)

and Be (extent of transcriptional bursting) are shown, with higher values

of Be and CV2
E resulting in a lower rate of increase. Low (high) transcrip-

tional bursting corresponds to Be ¼ 2(20). Protein noise levels are normal-
noise level monotonically increases over time (Fig. 2). Anal-
ysis in the software MATHEMATICA (Wolfram Research,
www.wolfram.com/mathematica/) yields the following
transient protein CV2:

CV2
pðtÞ ¼ CV2

E þ
�
CV2

p � CV2
E �

1

hpi


f
�
Be;gp;gm; t

�
þ 1

hpðtÞi;
(24)

where function f(Be, gp, gm, t) increases with t and f(Be, gp,
2 2
ized by their values at t ¼ 0 given by CV2
p(0) ¼ CV2

p. Three cases of

protein (gp) and mRNA (gm) degradation rates are considered: gp ¼ gm
(top); gp ¼ 2 h�1, gm ¼ 0.5 h�1 (middle); and gp ¼ 0.5 h�1, gm ¼ 1 h�1

(bottom). To see this figure in color, go online.
gm, 0) ¼ 1, implying CVp(0) ¼ CVp. Equation 24
reveals that transient changes in the protein noise level
after stopping transcription are dependent on both the
extent of extrinsic noise and the extent of transcriptional
bursting Be (Fig. 2). Because the form of f(Be, gp, gm, t)
is too complicated, we present the function in four different
limits:

lim
Be/N

f
�
Be;gp;gm; t

� ¼ 1þ gmgp

�
exp
�
gpt
�� expðgmtÞ

�2�
gpexp

�
gpt
�� gmexpðgmtÞ

�2;
(25)
Biophysical Journal 107(9) 2214–2220
lim f
�
Be;gp;gm; t

� ¼ 1

gm/gp

þ 4
�
exp
�
gpt
�� 1

�þ gpt
�ðBe � 2Þgpt � 4

�
Be

�
1þ gpt

�2 ;

(26)

http://www.wolfram.com/mathematica/
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� � expðgmtÞ � 1

lim

gp/N
f Be;gp;gm; t ¼ 1þ

Be

;

lim
gm/N

f
�
Be;gp;gm; t

� ¼ 1:

(27)

Combining the second expression in Eq. 27 with Eq. 24
shows that in the limit gm / N (i.e., mRNA half-life is

significantly shorter than the protein half-life),

lim
gm/N

CV2
pðtÞ ¼ CV2

p þ
1

hpðtÞi �
1

hpi; (28)

and contains no information about Be or CV
2
E. Thus fluores-
cent reporters where gm >> gp are not useful for this
method, and reporters such as d2GFP where gm z gp

may be more appropriate. Note Eq. 26, where gm ¼ gp is
relevant for d2GFP. Because CV2

p(t) and hp(t)i are
measured in Eq. 24, gp and gm are known, CV2

E and Be

can be estimated by fitting Eq. 24 to data. For example,
consider gp ¼ gm ¼ 1 h�1 and the total protein noise level
at equilibrium CV2

p ¼ 0.5. If after 2 and 5 h of transcription
blockage, the protein noise level increases by 1.5-fold and
fivefold compared to CV2

p, respectively, then by using
Eqs. 24 and 26, Be z 2 and CV2

E z 0.25. From Eq. 23, after
5 h the mean protein level would decay by 25-fold for gp ¼
gm ¼ 1 h�1.

Recall that in our analysis we modeled fluctuations in the
transcription and translation rates through independent
random processes z1(t) and z2(t), respectively. Our analysis
show that Eq. 24 holds even if z1(t) and z2(t) are dependent,
as long as the timescale of extrinsic parameter fluctuations is
slow compared to the mRNA and protein half-lives (see the
Supporting Material). Thus transient changes in protein
noise levels can be used to estimate both Be and extrinsic
noise even if transcriptional and translational rate fluctua-
tions are correlated. Finally, assuming independence of
z1(t) and z2(t), the relative contributions of CV2

z1
(transcrip-

tion rate fluctuations) and CV2
z2
(translation rate fluctuations)

to extrinsic noise can also be teased out if the mean mRNA
level hmi is known. Assuming Be and CV2

E have been esti-
mated using the above procedure, then using Eqs. 22a–
22c, the extent of parameter fluctuations can be quantified as

CV2
z2

¼
CV2

p � CV2
E �

1

hpi
Be

hmi
gp

gp þ gm

� 1; (29a)

2
CV2

E � CV2
z2
CVz1

¼
1þ CV2

z2

: (29b)

In summary, our proposed method allows characteriza-
tion of both transcription bursting and extrinsic noise in

gene expression from a single experiment. Given additional
information on the average mRNA abundance (using, for
example, quantitative polymerase chain reaction), contribu-
tions of transcription and translation rate fluctuations to
extrinsic noise can also be determined. By taking into
account different sources of errors in singe-cell measure-
ments (such as background autofluorescence and noise in
flow cytometry reading), the proposed technique can be
made robust to measurement noise. A key assumption for
this technique to work is that the time delay between drug
administration and transcriptional blockage is small
compared to the mRNA and protein half-lives. One could
also use synthetic approaches, such as placing the promoter
under the control of a tetracycline-repressible transactivator,
for faster shutdown of transcription (39,40). An added
advantage of this approach is that it only stops transcription
from the promoter of interest and does not create a global
transcription block, as would be in the case of adding
Actinomycin D.
SUPPORTING MATERIAL

Form of Functions, Noise Computation for Correlated Transcription and

Translation Rates are available at http://www.biophysj.org/biophysj/

supplemental/S0006-3495(14)00956-4.
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Form of functions θ(z1, z2,m, p) and δ(z1, z2,m, p)

θ(z1, z2,m, p) =
∞∑
i=0

k1α1i[ϕ(z1 + i, z2,m, p)− ϕ(z1, z2,m, p)]

+ γ1z1[ϕ(z1 − 1, z2,m, p)− ϕ(z1, z2,m, p)]

+

∞∑
i=0

k2α2i[ϕ(z1, z2 + i,m, p)− ϕ(z1, z2,m, p)]

+ γ2z2[ϕ(z1, z2 − 1,m, p)− ϕ(z1, z2,m, p)]

+
∞∑
i=0

kmαiz1[ϕ(z1, z2,m+ i, p)− ϕ(z1, z2,m, p)]

+ γmm[ϕ(z1, z2,m− 1, p)− ϕ(z1, z2,m, p)]

+ kpmz2[ϕ(z1, z2,m, p+ 1)− ϕ(z1, z2,m, p)]

+ γpp[ϕ(z1, z2,m, p− 1)− ϕ(z1, z2,m, p)].

δ(z1, z2,m, p) =
∞∑
i=0

k1α1i[ϕ(z1 + i, z2,m, p)− ϕ(z1, z2,m, p)]

+ γ1z1[ϕ(z1 − 1, z2,m, p)− ϕ(z1, z2,m, p)]

+

∞∑
i=0

k2α2i[ϕ(z1, z2 + i,m, p)− ϕ(z1, z2,m, p)]

+ γ2z2[ϕ(z1, z2 − 1,m, p)− ϕ(z1, z2,m, p)]

+
∂ϕ(z1, z2,m, p)

∂m
(km〈Bm〉z1 − γmm)

+
∂ϕ(z1, z2,m, p)

∂p
(kpz2m− γpp)

1



The case where fluctuations in transcription and

translation rates are dependent

Consider the scenario where time-scale of extrinsic fluctuations is much

slower than the mRNA and protein half lives (γj � γm, γp). In this limit,

we can think of z1 and z2 as two random variables drawn from a static joint

distribution. The mRNA transcription and translation rates are given as

kmz1 and kpz2, respectively. From Eqs. 2 and 3 in the paper, the steady-

state mean protein copy number and its second order uncentered moment

conditioned on z1, z2 are given as

〈p|z1, z2〉 =
kpkm〈Bm〉z1z2

γmγp
(S.1)

〈p2|z1, z2〉 = 〈p|z1, z2〉2 + 〈p|z1, z1〉+
Be〈p|z1, z2〉2γp

〈m|z1, z2〉(γp + γm)
(S.2)

where

〈m|z1, z2〉 =
km〈Bm〉z1

γm
. (S.3)

Unconditioning on z1 and z2 we obtain

〈p〉 =
kpkm〈Bm〉
γmγp

〈z1z2〉 (S.4)

〈p2〉 =

(
kpkm〈Bm〉
γmγp

)2

〈z21z22〉+ 〈p〉+

(
kp
γp

)2 km〈Bm〉
γm

Be〈z1z22〉γp
(γp + γm)

(S.5)

2



which yields

CV 2
p = CV 2

I + CV 2
E (S.6)

CV 2
E =

〈z21z22〉 − 〈z1z2〉2

〈z1z2〉2
(S.7)

CV 2
I =

Be

〈m〉
〈z1z22〉〈z1〉
〈z1z2〉2

γp
γp + γm

+
1

〈p〉
, 〈m〉 =

km〈Bm〉
γp

〈z1〉, (S.8)

where CV 2
p , CV 2

E and CV 2
I represent the total, intrinsic and extrinsic noise

in protein copy numbers.

Next we consider the case of transcription blockage. Using Eq. 24 with

CV 2
E = 0, when mRNA production is stopped the conditioned mean and

second order moment evolve as

〈p(t)|z1, z2〉 = 〈p|z1, z2〉
γp exp(−γmt)− γm exp(−γpt)

γp − γm
(S.9)

〈p2(t)|z1, z2〉 = 〈p|z1, z2〉2 + 〈p|z1, z1〉+
Be〈p(t)|z1, z2〉2γp
〈m|z1, z2〉(γp + γm)

f(Be, γm, γp, t).

(S.10)

Unconditioning as above results in the protein noise level given by (24) in

the paper.
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