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Supplemental Fig. S1. Con�rmation of the ΔglcB deletion strain.
The ΔglcB strain was checked for glcB deletion by PCR analysis using oligonucleotides 136 and 137 �anking the glcB gene (supplemental Table 
S1).  Lane 1: M. smegmatis ΔglcB strain (expected band size: 1,565 bp).  Lane 2: Molecular weight markers.  Lanes 3-6: DNA fragments of sizes 
3,112 bp, 3,375 bp, 2,903 bp, 3,058 bp.  Lane 7: M. smegmatis wild-type strain (expected band size: 3,731 bp).                                                       z 
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Supplemental Fig. S2. Con�rmation of the Δgcl and ΔglcBΔgcl deletion strains.
(A) PCR con�rmation of Δgcl and ΔglcB Δgcl deletion strains.  Oligonucleotide sequences are indicated in supplemental Table S1.  Lanes 1, 8, 9, 
13: Molecular weight marker.  Lanes 2, 3, 4: M. smegmatis Δgcl strain PCR reactions I, II, III.  Lanes 5, 6, 7: M. smegmatis wild-type strain PCR 
reactions I, II, III.  Lanes 10, 11, 12: M. smegmatis ΔglcB Δgcl strains PCR reactions I, II, III.  Lanes 14, 15: M. smegmatis wild-type strain PCR 
reactions I, II.                                                                                                                         n
(B) Southern blot con�rmation of gcl deletion in Δgcl and ΔglcB Δgcl strains.  Restriction endonuclease sites PstI (P) and EcoRI (E) are marked 
with the corresponding sizes for wild-type and gene deletion strains.  Probe is indicated by the black oval.  Lanes 1, 4: wild-type genomic DNA 
cut with EcoRI (lane 1) or PstI (lane 4).  Lanes 2, 5: Δgcl genomic DNA cut with EcoRI (lane 2) or PstI (lane 5).  Lanes 3, 6: ΔglcB Δgcl genomic DNA
cut with EcoRI (lane 3) or PstI (lane 6).                                                                c
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Supplemental Fig. S3. Venn diagram showing proteins identi�ed in four experimental repeats.
The Venn diagram was drawn with the help of VENNY tool (http://bioinfogp.cnb.csic.es/tools/venny/index.html).  A total of 2,570 proteins 
were identi�ed in all four experimental repeats and an additional 333 (=70+191+29+43) were identi�ed in at least three out of the four repeats.



A. B.

Supplemental Fig. S4. Functional classi�cation of identi�ed and di�erentially abundant M. smegmatis proteins.
Proteins were classi�ed according to their JCVI annotations (http://cmr.jcvi.org).  (A) Proteins that were di�erentially abundant in acetate-grown 
versus glucose-grown cells.  (B) Proteins that were di�erentially abundant in propionate-grown versus glucose-grown cells.  Black and grey 
shading indicates proteins showing higher and lower abundance, respectively.                                                            k

Di�erential abundance in Acetate/Glucose: 107 Di�erential abundance in Propionate/Glucose: 125
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Supplemental Fig. S5. Con�rmation of representative proteins showing increased abundance during growth on acetate or propionate 
as the sole carbon source.                                                                                                                                           d  
Size fractionation was performed by SDS-PAGE analysis on 4-12% NuPAGE gels using MES running bu�er (Invitrogen) 
accordingly to manufacturer's instructions.  The gels were stained with Coomassie Brilliant Blue R-250.                                      c           
(A) M. smegmatis whole-cell lysates were prepared from cells grown on glucose (G), acetate (A), or propionate (P) as the sole carbon source and 5 
µg of each lysate was separated on a SDS-PAGE gel.  Proteins showing di�erential abundance are indicated by an arrow.                                                        d 
(B) Low-resolution 2D-PAGE analysis of whole-cell lysates (100 µg each) from cells grown on glucose, acetate, or propionate as the carbon source.  
The lysates were separated in the �rst dimension on a pH 4-7 gradient and then in the second dimension on a denaturing SDS-PAGE gel.  Protein 
spots showing di�erential abundance are marked and the mass spectrometric identi�cation results are indicated.                                                 k                                                                                                       
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Supplemental Fig. S6. Immunoblot validation of Icl1 and Icd proteins in whole-cell lysates.                                                        d
M. smegmatis whole-cell lysates were prepared from cells grown on glucose (G), acetate (A), or propionate (P) as the sole carbon source.  5 µg 
of each lysate was separated on a SDS-PAGE gel, transferred to a nitrocellulose membrane, and probed with GroEL+FLAG antibody to detect 
FLAG-tagged Icl1 (A) and GroEL+HA antibody to detect HA-tagged Icd (B).  Size fractionation was performed by SDS-PAGE analysis on 4-12% 
NuPAGE gels using MES running bu�er accordingly to the manufacturer's instructions (Invitrogen).  Proteins were transferred onto nitrocellu-
lose membranes using the iBlot system (Invitrogen). Membranes were blocked with 5% milk and then probed with speci�c primary antibodies 
(FLAG tag, Clone M2, Sigma; HA tag, Clone 16B12, Covance; GroEL2, IT-70). All antibodies were used at a dilution of 1:1,000 except for 
anti-GroEL2 (1:5,000).  The secondary antibody was HRP-conjugated anti-mouse antibody (DakoCytomation).  The target band was 
colorimetrically detected using the Opti-4CN kit (Bio-Rad).  The IT-70 antibody was obtained through the NIH Biodefense and Emerging 
Infections Research Resources Repository, NIAID, NIH: monoclonal anti-Mycobacterium tuberculosis GroEL2 (Gene Rv0440), Clone IT-70 
(DCA4), NR-13657.                                                                                                                   d
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Supplemental Fig. S8. Scatter plot depicting di�erential abundance of proteins in cells grown on glucose, acetate, or propionate as 
the sole carbon source.
Each dot represents the summed peptide intensities for a particular protein.  Protein abundances are indicated on the y-axes and their relative 
increase or decrease in acetate/glucose (A) and propionate/glucose (B) ratios are indicated on the x-axes.  Proteins in red have SignB values < 
0.05 and are considered di�erentially abundant.  Proteins showing no change in abundance are represented as blue dots.  For clarity, only 
proteins of interest are shown.                                                                                                                                                                    d
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Supplemental Fig. S9. Pathways involved in 
acetate assimilation.  Highlighting indicates 
gluconeogenic pathway (orange), pentose 
phosphate pathway (blue), glycerate pathway 
(green), and tricarboxylic acid cycle and glyoxyl-
ate shunt (grey).  Enzyme accession numbers 
without the "MSMEG_" pre�x are adjacent to 
arrows indicating their associated reactions.  
Proteins showing higher abundance in acetate 
are in red, proteins showing lower abundance in 
acetate are in blue, and proteins showing no 
change are in black. Only proteins identi�ed in 
our proteomic analysis are indicated.  Metabolic 
pathways are drawn according to KEGG pathway 
maps.  HOA, 2-Hydroxy-3-oxo-adipitate; HLA, 
5-Hydroxy levulinate.              n                                        
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Supplemental Fig. S10. Path-
ways involved in propionate 
assimilation.  Highlighting indi-
cates gluconeogenic pathway 
(orange), pentose phosphate 
pathway (blue), methylcitrate and 
methylmalonate pathways (pink), 
tricarboxylic acid cycle and glyox-
ylate shunt (grey).  Enzyme acces-
sion numbers without the 
"MSMEG_" pre�x are adjacent to 
arrows indicating their associated 
reactions.  Proteins showing 
higher abundance in propionate 
are in red, proteins showing lower 
abundance in propionate are in 
blue, and proteins showing no 
change are in black.  Only proteins 
identi�ed in our proteomic analy-
sis are indicated. Metabolic path-
ways are drawn according to KEGG 
pathway maps.                     x
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