
Additional file 2

Domains of LD coefficients and boundary conditions for the critical values of each Qp

function

Domains of values for the multiallelic LD coefficients

Let ∆p be the LD coefficient between haplotype hp and allele a1 at the QTL, i.e.
∆p = fQTL

i,hpa1
− fi,hpfa1 (a)

−∆p = fQTL

i,hpa2
− fi,hpfa2 ⇔∆p = fi,hpfa2 − f

QTL

i,hpa2
(b)


fQTL

i,hpa1
= fi,hpfa1 + ∆p (c)

fQTL

i,hpa2
= fi,hpfa2 −∆p (d)

∆p is maximum in (a) and (b) when fQTL

i,hpa1
= fa1 and fQTL

i,hpa2
= 0 respectively. Under these

conditions we also have fi,hp = fQTL

i,hpa1
= fa1 since fi,hp = fQTL

i,hpa1
+ fQTL

i,hpa2
= fa1 + 0. Hence ∆p can be

written as ∆p = fi,hp − f2i,hp
= fi,hp(1 − fi,hp) under these conditions. fi,hp(1 − fi,hp) is identifiable

to the function x 7→ x(1 − x) which takes a maximum value of
1

4
for x =

1

2
. One of the maximum

possible value for ∆p is thus given by
1

4
. In the same manner we can show that one of the minimum

possible value for ∆p is given by −1

4
. Since fQTL

i,hpa1
≥ 0 and fQTL

i,hpa2
≥ 0 we also have ∆p ≥ −fi,hp .fa1

and ∆p ≤ fi,hp .fa2 from (c) and (d) respectively. Hence the complete domain of values for each ∆p

term is given by: ∆p ∈
[
max(−1

4
,−fi,hp .fa1),min(

1

4
, fi,hp .fa2)

]
.

Boundary conditions for the critical value of each Qp function

Each Qp function is given by:

Qp(∆p) = −4∆2
p + Ψ

IBShap
pq ∆p + Φ

IBShap
pq

Differentiating Qp with respect to ∆p gives ∆∗p =
Ψ

IBShap
pq

8
where Ψ

IBShap
pq is given by:

1



Ψ
IBShap
pq = 3(α̃p − αp) +

K∑
q 6=p

(αq − α̃q)

See expression (3), with sPi,hp,hp
= 1 and sPi,hp,hq

= 0, in Additional file 1 for Ψ
IBShap
pq and the

corresponding products of frequencies for αp and α̃p.

Ψ
IBShap
pq = 3(α̃p − αp) +

K∑
q 6=p

(αq − α̃q)

= 3(α̃p − αp) +
K∑
q 6=p

(αq − α̃q) + αp − α̃p − (αp − α̃p)

= 4(α̃p − αp) +

K∑
q=1

(αq − α̃q)

= 4fi,hp(fa2 − fa1) + (fa1 − fa2)

K∑
q=1

fi,hq = (fa1 − fa2)[1− 4fi,hp ]

Hence we have ∆∗p =
(fa1 − fa2)[1− 4fi,hp ]

8
=

(2fa1 − 1)[1− 4fi,hp ]

8
. Let ∆pmin

= max(−1

4
,−fi,hp .fa1)

and ∆pmax = min(
1

4
, fi,hp .fa2). Note that 0 ∈

]
∆pmin

,∆pmax

[
. Hence if ∆∗p ∈

]
∆pmin

,∆pmax

[
and

the magnitude (absolute value) of ∆p increases sufficiently Qp will decrease. Figure 8 gives an example

of a Qp function with ∆∗p ∈
]
∆pmin

,∆pmax

[
.

Figure 8: An example of a Qp function with ∆∗p ∈
]
∆pmin

,∆pmax

[
.
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The only situations for which it is not possible to tell if Qp will decrease, as the magnitude of

∆p increases sufficiently, are given by the following conditions; ∆∗p ≤∆pmin
(e) or ∆∗p ≥∆pmax (f).

In these situations Qp can either decrease or increase if the magnitude of ∆p increases sufficiently.

Figure 9 gives an example of a Qp function with ∆∗p ≤∆pmin
.

Figure 9: An example of a Qp function with ∆∗p ≤∆pmin
.

Conditions (e) and (f) can be written as follows:

(e)



If ∆pmin
= −1

4
then ∆∗p ≤∆pmin

⇔ (2fa1 − 1)[1− 4fi,hp ] ≤ −2

or

If ∆pmin
= −fi,hp .fa1 then ∆∗p ≤∆pmin

⇔
(2fa1 − 1)[1− 4fi,hp ]

fi,hp .fa1
≤ −8

(f)



If ∆pmax =
1

4
then ∆∗p ≥∆pmax ⇔ (2fa1 − 1)[1− 4fi,hp ] ≥ 2

or

If ∆pmax = fi,hp(1− fa1) then ∆∗p ≥∆pmax ⇔
(2fa1 − 1)[1− 4fi,hp ]

fi,hp(1− fa1)
≥ 8
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Let w, t, s and u be the following functions of fa1 and fi,hp ; w(fa1 , fi,hp) = (2fa1−1)[1−4fi,hp ]+2,

t(fa1 , fi,hp) =
(2fa1 − 1)[1− 4fi,hp ]

fi,hp .fa1
+ 8, s(fa1 , fi,hp) = (2fa1 − 1)[1 − 4fi,hp ] − 2 and u(fa1 , fi,hp) =

(2fa1 − 1)[1− 4fi,hp ]

fi,hp(1− fa1)
− 8. Conditions (e) and (f) are the same as searching values of fa1 and fi,hp for

which we have:

(e)



w ≤ 0

or

t ≤ 0

(f)



s ≥ 0

or

u ≥ 0

Figure 10 shows the regions (red colored), for different a1 and hp frequencies, where condition (e)

or (f) is realized. As can be seen in figure 10, the conditions for w, t, s and u are verified when fa1 and

fi,hp are both high or both low, or one of these two frequencies is high and the other one is low. Note

that these frequencies correspond to situations where Qp can still decrease as suggested by figure 11

(see relation between the sum of the squared deviations and D2
i,QTL

).

Moreover these frequencies correspond to situations which are unfavorable for QTL analysis as

low frequencies do not allow for reliable estimation and comparison of contrasts between groups of

individuals. Finally note that LD requires variation of alleles between loci to exist. Hence these high

or low frequencies correspond to situations which are unfavorable for LD mapping of QTL.
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Figure 10: The different regions (red colored) where condition (e) or (f) is realized.

Relation between the sum of the squared deviations and D2
i,QTL

LetD2
i,QTL

= 2
∑K

p=1 ∆2
p be the non-normalized multiallelic measure of LD and SDi,QTL =

∑K
p=1(∆p−

∆∗p)2 be the sum of the squared deviations of the multiallelic LD coefficients from their corresponding

∆∗p critical values. SDi,QTL can be written as a sum of convex Up functions of each LD coefficient, i.e.

SDi,QTL =
K∑
p=1

(∆p −∆∗p)2 =
K∑
p=1

∆2
p − ω∆p + υ =

K∑
p=1

Up(∆p)

where ω = 2∆∗p and υ = ∆∗p
2, and the critical value of each Up function is ∆∗p. Hence there is

an implicit relationship between D2
i,QTL

and SDi,QTL. If the sum of the squared ∆p terms increases

sufficiently (i.e.
D2

i,QTL

2 increases sufficiently) SDi,QTL will increase. The same procedure as the one

used to describe the expected behavior of D2
i,QTL

was repeated for SDi,QTL and
D2

i,QTL

2 on the 889 FLW

regions (see variation of LD subsection in methods). That is both ∆p and ∆∗p were computed at

5



each tested position, in order to compute SDi,QTL and
D2

i,QTL

2 , while screening the 889 regions. Figure

11 shows the profiles of the empirical means of the 889 FLW curves for SDi,QTL and
D2

i,QTL

2 , and the

deviation
(
E[SDi,QTL −

D2
i,QTL

2 ] = E[−ω∆p + υ]
)

between these two profiles. As observed in figure 11,

the profiles for the expected values of SDi,QTL and
D2

i,QTL

2 exhibit similar patterns with a relatively

small increasing deviation, between these two profiles, as the tested position moves toward the QTL.

Note that the profile for the deviation exhibit a similar trend to the profiles for the expected values

of SDi,QTL and
D2

i,QTL

2 .
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Figure 11: Empirical means of the 889 FLW curves, obtained for D2
i,QTL

and SDi,QTL between tested

positions (tested position i = center of 6 marker haplotypes) and a biallelic QTL (red vertical line)

for regions of 81 markers on chromosomes, and the deviation between the mean curves.
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