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S1 BCM learning rule: Why the results of Fig. 1C are

general

In Fig. 1C, we showed the behavior of the BCM rule plotted against x, the value of the
input activity during MD, and τθ/τw, the speed of homeostatic plasticity relative to Hebbian
plasticity. Here we show that those results are general, independent of assumptions as to
the values of the model parameters.

To see this, we transform the variables of the BCM learning rule (Eqs. 1-2). Let [t] denote
units of time. If x, y, y0 and θ all have units of firing rate or 1/[t], and w is dimensionless,
then for dimensional consistency Eq. 1 should take the form

τw
dw

dt
= kxy(y − θ) (S1)
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where k is a constant with units of [t3]. In Eq. 1, we implicitly worked in units in which
k = 1. Taking the BCM equations to be Eqs. S1 and 2, we define the dimensionless variables
ηx ≡ wx/y0, ϕ ≡ θ/y0, αx ≡ kx2y0τθ/τw, and s ≡ t/τθ. We have indexed ηx and αx by x
because their values will change when the input activity levels x change, as under MD. In
terms of these dimensionless variables we can rewrite the BCM equations as

dηx
ds

= αxηx(ηx − ϕ) (S2)

dϕ

ds
= −ϕ+ η2

x, (S3)

whose unique fixed point is ηx = ϕ = 1. For a fixed x, the stability of the fixed point depends
only on the dimensionless parameter αx, and the behavior of the model more generally is
characterized entirely by αx and the initial values of ηx and ϕ at t = 0.

We assume that the input activity is x0 under normal vision and is reduced by a factor
of f to xMD = fx0, 0 < f < 1, at the onset of MD. We take the initial condition under MD
to be the normal-vision fixed point. This initial condition, ηx0 = ϕ = 1, becomes ηxMD

= f ,
ϕ = 1 under MD. Hence, dynamics of this rule under MD are completely characterized by f
and αxMD

, or equivalently by f and αxMD
/f 2 = αx0 . That is, regardless of the choices of the

parameters x0, y0, k, τθ, and τw, any models with the same f and αx0 will show exactly the
same behaviors of ηx0 and ϕ under normal rearing and of ηxMD

and ϕ under MD.
In Fig. 1C, since we took x0 = 1, the y-axis value x = fx0 was equal to f for that model,

so the y-axis can more generally taken to be f . Since we also took k = 1 and y0 = 1 in
that model, the x-axis value τθ/τw was equal to αx0 for that model, so the x-axis can more
generally taken to be αx0 . The illustrated behaviors depend only on f and αx0 and so these
plots, with the axes taken to be f and αx0 , are identical for any instantiation of the BCM
model regardless of the specific choices of the underlying parameters that give the particular
values of αx0 .

In particular, Fig. 1C illustrates w∗, the value of the synaptic strength w at the first
trough of synaptic weight under MD relative to its initial value at the onset of MD. From
the definition ηxMD

= wfx0/y0 and the fact that f , x0, and y0 are not changing as MD
proceeds, we see that the value at the first trough relative to the initial value is the same
for ηxMD

as it is for w, so the plotted values of w∗ vs. f and αx0 are identical for any
model. Fig. 1C also illustrates the stability or instability of the MD fixed point, which is
determined simply by f and αx0 , and measures the degree of stability by −Reλτθ where λ
is the eigenvalue with largest real part of the BCM equations linearized about the MD fixed
point. This stability measure is based on the following: if λ̃ is the corresponding eigenvalue
of the dimensionless BCM equations, the amplitude of the corresponding eigenvalue develops

in time as eλ̃s = e
λ̃ t
τθ = eλt where the eigenvalue of the original equation is related to that

of the dimensionless equation by λ̃ = λτθ. Thus, the stability index is simply −Re λ̃, which
depends only on f and αx0 .

The BCM rule often includes saturation of Eq. S1 at high y, rather than unlimited,
quadratic-in-y growth of dw

dt
. Therefore it is important to note that our conclusions would

not be affected by incorporating such saturation. First, the stability of the fixed point,
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y = wx = θ = y0, is determined by the local properties of Eq. S1 in the vicinity of the
fixed point, whereas – to allow sufficient LTP – saturation must occur at values of y well
above the fixed-point value. Thus saturation will not affect stability. Next, the value w∗ of
the synaptic strength at the first trough is invariant to the y > θ part of Eq. S1 because,
starting from the baseline fixed point, the synapse never undergoes LTP until it reaches w∗.
Taking these points together, the conclusion of Fig. 1C, that it is impossible to make the
adjustment of θ in the BCM rule slow enough to allow realistic closed-eye depression yet fast
enough to avoid oscillations or instability, would not be altered by incorporating saturation
of Eq. S1 at high y.

S2 Parameter choices for the model that adds stable

Hebbian terms and a homeostatic term; Related to

Fig. 2

We choose parameters of Eqs. 3–4 to reproduce the results of MD in the monocular cortex
(Kaneko et al. 2008b). We choose input activity to be x = 1 before MD (and x < 1
during MD), and set wmax = 1. These choices are arbitrary, setting the scale for the other
parameters. The minimum synaptic strength is set to wmin = 0.6 because LTD experiments
typically depress synapses by ∼30% and, more generally, a few days of MD does not eliminate
all synapses. The timescale for plasticity, τw = 0.3 day, is chosen so that the synaptic
strength reduces to about 70% of the pre-MD value within 3 days of MD in the absence
of homeostatic modulation (that is, if ȳ is held constant). The timescale for averaging the
postsynaptic activity, τȳ = 3 days, is chosen so that homeostatic plasticity significantly
potentiates the synapse after approximately 3 days of MD. Parameters y0 = 0.8 and θ = 0.6
are taken from an appropriate range, within which the results do not significantly change. If
y0 � 1, then homeostatic plasticity cannot be strong enough to provide sufficient homeostatic
potentiation under MD and, at the same time, weak enough to not strongly suppress synaptic
strength during normal rearing, which causes synapses to undergo LTD to saturation in
the normal condition and thus eliminates MD-induced LTD. If y0 > wmax, then Hebbian
and homeostatic plasticity terms are separately zero during normal rearing, which causes
a problem when binocular cortex is considered (see discussion below of “condition 1”). If
θ is too small, no Hebbian depression happens under a reasonable MD condition, and if θ
is too large, the synapse is strongly depressed even under the normal condition. Finally,
the magnitude of homeostatic plasticity γ = 0.23 is chosen so that, after MD and LTD,
homeostatic plasticity returns visual response to about 90% of the pre-MD value as in the
experimental observations. Larger or smaller γ lead to larger or smaller final weight values,
respectively.

While the above discussion suggests that alternative parameters cannot solve the model’s
problems, we cannot fully explore the parameter space of this model. Nonetheless, we can
argue that the conclusions we have reached are general and parameter-independent. These
conclusions are: (1) for some ranges of input the Hebbian and system fixed points will not
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coincide, meaning that the two forms of plasticity are constitutively active but opposed; (2)
where this is true, NMDA blockade should reveal strong weight changes due to homeostatic
plasticity; and (3) when the two fixed points are sufficiently far apart, oscillations and/or
instability should be seen in the vicinity of the system fixed point. Points (2) and (3) follow
from point (1).

The generality of point (1) can be seen from computing the range of input x that allows
a fixed point without constitutive plasticity; for the remaining x, any fixed point will have
constitutive plasticity. To compute the fixed points, we use y = wx and the fact that at
the fixed point y = ȳ, so that, given w at the fixed point, ȳ = wx. Fixed points without
constitutive plasticity will have w = y0/x (the condition for no homeostatic plasticity). The
condition for no Hebbian plasticity is then either

1. wx2 > θ and w ≥ wmax, i.e. y0x > θ and y0 ≥ wmaxx, or θ/y0 < x ≤ y0/wmax.

2. wx2 < θ and w ≤ wmin, i.e. y0x < θ and y0 ≤ wminx, or y0/wmin ≤ x < θ/y0.

3. wx2 = θ, or y0x = θ.

For values of x outside of these ranges – that is, for x > Max(θ/y0, y0/wmin), x <
Min(y0/wmax, θ/y0), or y0/wmax < x < y0/wmin (the latter condition translates to wmin <
w < wmax, i.e. it is true whenever the fixed-point w is strictly inside the Hebbian bounds) –
any fixed point must have constitutive, opposed Hebbian and homeostatic plasticity, i.e. the
system and Hebbian-only fixed points will not coincide. For example, for the parameters we
used in the main text, fixed points will have constitutive plasticity for all values of x except
0.75 ≤ x ≤ 0.8.

Furthermore, both Hebbian and homeostatic plasticity must be constitutively active at
least under the normal rearing condition (x = 1) to reproduce ODP. If x = 1 satisfies
condition 1 or 2, Hebbian plasticity is not active in the normal condition. The summed
synaptic strength is determined by the homeostatic constraint y = y0. Then, if we consider
inputs from two eyes in binocular cortex, any relative strengths of the two eyes – that
is, any ODI – with the given summed synaptic strength will be a fixed point so long as
Hebbian plasticity remains saturated for both eyes. But this causes a problem: so long
as Hebbian plasticity remains inactive. perturbations of the ODI, e.g. due to brief MD,
will never recover but will simply persist, which is against experimental observations. In
addition, if x = 1 satisfies condition 2, there is an additional problem. In this case, Hebbian
depression is already saturated during normal rearing. Hence, MD cannot induce further
Hebbian depression.

S3 Phase-plane analysis of two models of MD in the

monocular cortex; Related to Figs. 2 and 4

Here we use phase-plane analysis to gain an intuition for the reasons that the single-factor
model of Eqs. 3-4, which involved Hebbian and homeostatic terms competing to control
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changes in w, tended to show weight oscillations. We similarly show in phase-plane analysis
why the two-factor model of Eqs. 5-6 does not oscillate, an issue we examine more rigorously
in the next section of the Supplemental Information, in which we analyze the stability and
origin of oscillations of the model of Eqs. 3-4.

We begin with the single-factor model. The differences in stability of Figs. 2A vs. 2B can
be intuitively understood from the phase plane plots of Fig. S1A,B. The arrowed lines show
the direction of change in the variables (w, ȳ) (their time derivatives) for each given value
of (w, ȳ), while line colors indicate the strength of the derivatives, from strongest (blue) to
weakest (red). The fixed point of the dynamics, where both derivatives are zero, is given by
the intersection of the two black lines: the solid black line represents the locus of points for
which dw

dt
= 0 (the w nullcline), while the dashed black line represents the locus for which

dȳ
dt

= 0 (the ȳ nullcline).
The generalized stability of the fixed point, by which we mean whether the fixed point

is approached without significant oscillations, is largely determined by the stability of the
flow in the w direction (with ȳ fixed) at the fixed point: for small perturbations in the w
direction from the fixed point, is the w-component of the flow in the opposite direction of the
perturbation, back toward the fixed point (stable flow in the w direction) or is it in the same
direction of the perturbation, away from the fixed point (unstable flow in the w direction)?
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Figure S1: Phase-plane plots of Eqs. 3-4 for x = 0.5 (A) and x = 0.73 (B). The two axes specify
values of averaged postsynaptic activity ȳ and synaptic weight w, and the lines with arrows show
the direction of change in these two variables from each given point in the plane. The colors of the
lines indicate the strength of the derivatives at each point, proceeding red to yellow to green to
blue from weakest to strongest. (Strength is assayed as the length of the gradient vector dw

dt ŵ+ dȳ
dt

ˆ̄y
where ŵ and ˆ̄y are unit-length vectors pointing along the w-axis and ȳ-axis respectively.) The solid
black line shows the w-nullcline (the locus of points along which dw

dt = 0) and the dashed line shows

the ȳ-nullcline (the locus of points along which dȳ
dt = 0).
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Figure S2: Phase plane analysis of the plasticity model of Eqs. 5-6.

Conventions as in Fig. S1. White regions correspond to regions of very small derivatives.

If the flow is unstable in the w direction, then, because homeostatic plasticity (changes in ȳ)
are slow relative to Hebbian changes, oscillations (or instability) will result: the perturbation
will lead to large changes in w before slow changes in y lead to a reversal in the direction of
changes in w (a crossing of the w nullcline), which in turn leads to a large change in w in the
opposite direction as y slowly changes in the opposite direction, etc. Because the derivative
dw
dt

is positive below the w nullcline and negative above the w nullcline, the flow in the w
direction is unstable if the fixed point is on a positive-sloping portion of the w nullcline, as
in Fig. S1B, while it is stable if the fixed point is on a negative-sloping portion of the w
nullcline, as in Fig. S1A. The w nullcline transitions from negative to positive slope with
increasing w. As x is increased there is a range of x for which the fixed point is found on
the positive-sloping region of the w nullcline, leading to oscillations for slow homeostatic
plasticity.

In contrast, phase-plane analysis of Eqs. 5-6 (Fig. S2) shows that the fixed point always
occurs at one of the two limiting values of ρ, as is clear directly from Eq. 5, and that the
flow in the ρ direction is always stable at these limiting values (as is also clear directly from
Eq. 5).

S4 Stability of the two-factor, single-synapse model of

plasticity; Related to Fig. 4

Here we analytically demonstrate the stability of the fixed point and lack of oscillations in
approaching the fixed point of the two-factor, single-synapse plasticity model of Eqs. 5-6.
Before more generally analyzing stability, we consider the dynamics in the limit of infinitely
slow homeostasis (τH/τρ → ∞). For simplicity, we set τρ = 1 (which just sets the units of
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time), so our equations are

dρ

dt
= (ρmax − ρ)[xy − θ]+ − (ρ− ρmin)[θ − xy]+ (S4)

dH

dt
=

1

τH
H(1− y/y0) (S5)

with w = ρH and y = wx. Analyzing these equations for τH →∞ gives an intuitive picture
of why, even in the limit of extremely slow homeostasis, there are no oscillations and at most
one overshoot of the synaptic weight, as shown in Fig. 5B.

Because of the assumption τH →∞, we can assume that ρ always moves rapidly (relative
to the slow timescale of homeostasis) to a stable fixed point of Eq. S4 for a given value of
H, before H changes appreciably. For each H, these stable fixed points of ρ are given by

ρ(H) =

{
ρmax whenH > θ

ρmaxx2

ρmin whenH < θ
ρminx2

(S6)

(Fig. S3A). Therefore, the synaptic strength converges rapidly to ρ(H)H (Fig. S3B). Note
that ρ = ρmax and ρ = ρmin are both stable fixed points when θ

ρmaxx2
< H < θ

ρminx2
, so in this

case the choice between these two values of ρ depends on history. Nonetheless, there exists
a unique value of H that achieves a particular synaptic strength w = ρ(H)H (Fig. S3B).

The slow change in H can then be described as occuring with ρ always at its stable fixed
point, so that y = wx = ρ(H)Hx. The dynamics of Eq. S5 can then be written

dH

dt
=

1

τH
H[1− ρ(H)Hx/y0] (S7)

Thus, H evolves so that ρ(H)H approaches y0/x (H = 0 is an unstable fixed point). Be-
cause there is only one value of H that achieves this, the final fixed point is unique and
stable. Therefore, even when homeostatic plasticity becomes infinitely slow, there should
be no oscillations of weights, but only at most one rapid transition between ρmax and ρmin,
depending on the initial value of ρ, until synapses converge (described further in legend of
Fig. S3).

Now, we analyze the stability of the fixed point of Eq. S4 for finite τH . Changes in τH do
not change the locations of the fixed points, but could change their stability. However, since
we saw that the fixed points are stable even for τH →∞, and H provides negative feedback,
it would be very surprising if reductions in τ rendered the fixed point unstable, and we will
find that this does not happen.

The fixed point depends on the sign of φ0 ≡ xy0 − θ, and is given by: (i) (ρ,H) =
(ρmax,

y0
ρmaxx

) if φ0 > 0 and (ii) (ρ,H) = (ρmin,
y0

ρminx
) if φ0 < 0. We will prove that the fixed

point is stable and without oscillations in either case. Following standard procedures for

calculating stability, we consider a small perturbation

(
δρ
δH

)
from the fixed point, and

consider the linearized dynamics about the fixed point:

d

dt

(
δρ
δH

)
= J

(
δρ
δH

)
(S8)
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Figure S3: The two-factor model shows at most one overshoot of the synaptic weight before
it converges. (A) When the homeostatic plasticity is much slower than Hebbian plasticity, the
Hebbian component ρ converges rapidly for each H to its maximum value ρmax = 1 (red line) or
minimum value ρmin = 0.6 (blue line). When θ

ρmaxx2
< H < θ

ρminx2
those two values are bistable and

ρ depends on its history. The dashed purple line shows the separatrix (unstable fixed points). (B)
The combination of ρ and H that achieves the homeostatic constraint wx = y0, i.e. ρH = y0/x, is
unique. Under this dynamics, the synaptic weight ρH moves monotonically along whichever stable
branch it starts on toward the stable fixed-point value y0/x; if this value can only be reached on
the other branch, the weight jumps to the other branch (at constant H) when it reaches the end of
the first branch, and then evolves monotonically along the second branch to the fixed point. The
combination of ρ and H changes accordingly along the stable branches in (A). Thus, there is a
monotonic evolution to the fixed point except for possibly one jump between the two branches.

where J is the Jacobian matrix of Eqs. S4-S5 (if rρ and rH are the right-hand sides of Eqs. S4

and S5, respectively, then J =

(
∂rρ
∂ρ

∂rρ
∂H

∂rH
∂ρ

∂rH
∂H

)
), evaluated at the fixed point. The stability

is then determined by the eigenvalues of J . We will find that the eigenvalues are all real,
indicating no oscillatory behavior around the fixed point, and negative, indicating stability.

(i) ρ = ρmax and H = y0
ρmaxx

if φ0 > 0: In this case the Jacobian matrix is

J =

(
−φ0 0
− γy0
ρ2maxx

−γ

)
, (S9)

and the two eigenvalues are −φ0 and −γ, which are both negative and real.

(ii) ρ = ρmin and H = y0
ρminx

if φ0 < 0: In this case the Jacobian matrix is

J =

(
φ0 0
− γy0
ρ2minx

−γ

)
, (S10)
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and the two eigenvalues are φ0 and −γ, which are both negative and real. Hence, the fixed
point is stable and shows no oscillatory behavior around the fixed point in either case.

S5 Mathematical relationship between the two factor

and conventional model; Related to Figs. 2 and 4-6

In order to better understand this rule and to compare it to the previous rule of Eq. 3, we
calculate dw

dt
= H dρ

dt
+ dH

dt
ρ.

S5.1 Single-synapse model

We use Eqs. 5-6 to obtain the following mathematically equivalent formulation of the model:

τρ
dw

dt
= (Hρmax − w)[xy − θ]+ − (w −Hρmin)[θ − xy]+ +

τρ
τH
w

(
1− y

y0

)
(S11)

τH
dH

dt
= H

(
1− y

y0

)
(S12)

Equation S11 has a form similar to Eq. 3 and is expressed as a sum of three terms, which
correspond to the LTP, LTD, and homeostatic terms of Eq. 3 (with the homeostatic learning
speed γ now explicitly represented as τρ

τH
). We will refer to the first two terms as the Hebbian

terms and the third as the homeostatic term. Note that the factor H that scales the maximal
and minimal weights is a postsynaptic-cell-specific factor that is shared across synapses if
multiple synapses are considered, while the constants ρmax and ρmin might vary from synapse
to synapse. The differences between Eq. S11 and Eq. 3 are:

1. The upper and lower limits of the synaptic strength, Hρmax and Hρmin, are not fixed
but are modified by homeostatic plasticity (Eq. S12).

2. The homeostatic term is driven by the instantaneous postsynaptic firing rate as opposed
to the running-average of the postsynaptic firing rate in Eq. 3. Thus, there is no delay
in the homeostatic term; as we have seen, delays can cause oscillations of synaptic
strength.

3. A minor difference is that Eq. S11 uses linear functions (Hρmax−w) and (w−Hρmin),
whereas Eq. 3 uses threshold-linear functions [wmax−w]+ and [w−wmin]+. Thresholding
would not alter the dynamics in Eq. S11 because the synaptic weight under Eqs. S11-
S12 is always restricted to Hρmin ≤ w ≤ Hρmax. This may not be obvious under
Eqs. S11-S12, but is obvious from the equivalent Eqs. 5-6 and the relationship w = ρH.

Thus, our proposed model can equivalently be understood as one in which Hebbian and
slow-but-instantaneous homeostatic plasticity both compete to modify w, but in addition
homeostatic plasticity continually modifies the minimal and maximal weight values. With
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homeostatic modification of limiting weight values, the Hebbian terms in Eq. S11 approach
a stable state of zero plasticity with weights saturated at their limiting values, and this state
remain undisturbed as homeostatic plasticity proceeds until it too reaches zero. For this
reason, Eqs. S11-S12 generically reach a steady state in which there is no constitutive plas-
ticity (i.e., Hebbian and homeostatic plasticity are each separately zero), as is perhaps more
obvious from the equivalent Eqs. 5-6, whereas the seemingly very similar Eq. 3 generically
reaches a steady state in which Hebbian and homeostatic plasticity are each constitutively
active but opposed (i.e. their sum is zero, but the terms individually are not zero).

S5.2 Multi-synapse model

We now use Eqs. 7-9 to compute dw
dt

. We define the step function Θ(x) by Θ(x) = 0, x ≤ 0;
Θ(x) = 1, x > 0. Note that parameters ρmax and ρmin may vary across synapses though we
do not make this explicit here. Then our equations become1

τρ
dwi
dt

= (Hρmax − wi)[φi]+ − (wi −
√
Hρmin)[−φi]+

+Θ (H − 1)
τρ
τh
wi

(
−1 +

1

H
F

(
Hy0

〈y〉

))
(S13)

H = Max(h, 1) (S14)

τh
dh

dt
= −h+ F

(
Hy0

〈y〉

)
(S15)

Equation S13, like Eq. S11, is the sum of an LTP, an LTD, and a homeostatic term.
Equation S13 is more complex than Eq. S11 for two reasons: the H-dependence of ρmin man-
ifests as a

√
H rather than H scaling of the minimum weight (with the understanding that

H ≥ 1, Eq. S14); and the dependence of H on h manifests as the complex homeostatic plas-
ticity term. Despite this complexity, Eq. S13 has the same three properties as we described
above for Eq. S11. Thus, the multi-synapse model can again be equivalently understood
as one in which Hebbian and slow-but-instantaneous homeostatic plasticity both compete
to modify w, but in addition homeostatic plasticity continually modifies the minimal and
maximal weight values. This again leads to a steady state in which Hebbian and homeo-
static plasticity are each separately zero (no constitutive plasticity), for the same reasons
just outlined for the single-synapse model.

S6 Parameter dependency of the simple two factor model;

Related to Fig. 4C

In Fig. 5C, we considered relatively strong deprivation, x = 0.5, applied for 5 days. Here, we
considered a weaker deprivation, x = 0.75, maintained for a long period (Fig. S4A). This led

1We neglect the fact that the homeostatic term in Eq. S13 is also nonzero if H = h = 1 and dh
dt > 0. This

condition holds only for an infinitesimal amount of time and hence contributes negligibly to Eq. S13.
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Figure S4: Simulation results of the two-factor model in the monocular cortex during mild MD.
The conventions are as in Fig. 4C but input is stronger during MD. (A) For intermediate input
activity during MD, the weight was depressed by Hebbian plasticity to the minimum strength,
but in this case the slow homeostatic potentiation during continued MD ultimately brought the
pre- and postsynaptic correlation xy = wx2 above the LTP threshold θ. This induced LTP to the
maximum synaptic value, followed by slow homeostatic decrease of this maximum value. (B) For
large input activity during MD, there was no LTD. The synaptic strength remained at the maximal
value and homeostatic plasticity slowly increased the maximal value to compensate for the slight
loss of input.

to a similar trajectory of initial LTD followed by slow homeostatic scaling up of the weights.
However, when we allowed the deprivation to continue for an extended period, the scaling
brought the synaptic strength across the LTP/LTD threshold. At that point, just as in the
case of recovery in Fig. 5C, rapid LTP increased ρ until it reached its maximal value, after
which homeostatic plasticity slowly reduced the synaptic strength.

Next, we considered still weaker deprivation, x = 0.9 (Fig. S4B). In this case, the decrease
in the input firing rate was small enough that the LTP/LTD threshold was not crossed, so
there was no initial LTD and ρ remained at ρmax. Homeostatic plasticity slowly compensated
for the reduction of the input by potentiating the synapse.

The strongest deprivation robustly yields the behavior we are seeking to explain: fast LTD
followed by slow homeostatic compensation (Fig. 5C). For weaker deprivation, alternative
behaviors are seen. The overshoot of synaptic strength after long periods of intermediate-
strength deprivation (Fig. S4A) depends on homeostasis strengthening synapses sufficiently
to cross the Hebbian LTD/LTP threshold, and this in turn depends on model details. It
would not occur, for example, if an appropriate maximum value were imposed on H. Home-
ostatic strengthening in response to mild deprivation (Fig. S4B) might accurately describe
the homeostatic strengthening of excitatory synapses in response to visual deprivation that
occurs in layer 4 of rat visual cortex before the opening of the critical period for MD-induced
ODP (Maffei et al. 2004). Before the opening of the critical period, visually-driven activity
is likely to be weak relative to spontaneous activity (Toyoizumi et al. 2013), so that the
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effects of deprivation on cortical activity may be relatively weak.

S7 Model modifications for the multi-synapse model;

Related to Figs. 5 and 6

S7.1 Modification of the homeostatic and Hebbian rules

For the multi-synapse plasticity models, we used a more complicated homeostatic rule than
the simpler rule of Eq. 6, and incorporated H-dependence of ρmin into the Hebbian rule, to
try to solve several problems of the simpler rule:

• There is continued ODP towards the open eye during 3-7 days of MD that is TNF-α
dependent (it does not occur in TNF-α KO animals nor in animals in which TNF-α
receptors are blocked) (Kaneko et al. 2008b). To model this effect, we incorporated a
reduction of ρmin with increases of the homeostatic variable H, so that increases of H
allowed further LTD. The dependence on H should be weaker than a 1/H dependence
because, otherwise, homeostatic scaling could not potentiate synapses in a depressed
state.

Other factors could also contribute to TNF-α-dependent ODP, but we restricted to
a single factor for simplicity. These other factors include: (1) a similar increase in
ρmax with increasing H could allow TNF-α-dependent LTP of the open eye; (2) there
could be a minimal, threshold level of pre-post covariance for inducing LTD, so that
LTD stops at an intermediate weight level initially as LTD lowers the covariance, but
resumes as TNF-α-dependent homeostatic plasticity increases the covariance; (3) Bet-
ter representation of the stochasticity of neural activity and plasticity should allow a
broader distribution of synaptic strengths in the normal state. Then, after 3 days of
MD, a larger percentage of open-eye synapses would be in the LTD state than in our
model despite an overall shift toward LTP, and similarly a larger percentage of closed-
eye synapses would be in the LTP state despite a shift toward LTD. Homeostatic
strengthening of response might lead Hebbian plasticity to squeeze these distributions,
adding to TNF-α-dependent LTP of the open eye and LTD of the closed eye. (Note
that factors like stochastic broadening of the synaptic distribution and/or a minimal
covariance threshold for LTD are also necessary to explain why LTP and LTD proto-
cols work, e.g. why in the normal state all synapses are not already saturated at the
potentiated state before the protocol is applied, assuming that individual synapses are
generally saturated (O’Connor et al. 2005, Petersen et al. 1998). Note also that our
model fails to quantitatively account for the strength of decrease in open-eye potenti-
ation induced by NMDA blockade. This could be fixed by factors (1) or (3) above or
by further modifications of the homeostatic rule, but we neglected this for simplicity.)

• In the simple rule, homeostatic plasticity, while slow, was active from the initiation
of MD. As a result, significant homeostatic plasticity had already occurred at the
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time of maximal LTD (evident as the rise of ρminH by day 2 in Fig. 4C). While this
caused no problem for the single-synapse model of monocular cortex studied previ-
ously, in a binocular cortex model this would mean that some potentiation of open-eye
responses would already be visible at that time, unlike experiments (Kaneko et al.
2008b). This might be explained by LTD of the open eye that offsets homeostatic
potentiation, but this is unlikely because no depression of open eye responses is ob-
served in TNF-α knockout mice (Kaneko et al. 2008b). To explain this, we assumed
a more complex homeostatic rule that delays the onset of homeostatic plasticity until
a threshold amount of an underlying factor is accumulated. Other factors we did not
consider, such as necessity of a threshold amount of activity deviation from the set
point before homeostatic plasticity begins, could also or alternatively be involved.

• Stellwagen and Malenka (2006) showed that TNF-α signaling is required for scaling
up of synaptic weights in response to activity blockade, but not for scaling down of
synaptic weights in response to excess activity induced by inhibitory blockade. To
capture this, we modified the rule so that H can increase from a baseline level of 1
(representing scaling up from baseline) but cannot decrease below 1 (meaning that
scaling down from baseline is not achieved by modification of H).

• Homeostatic plasticity does not appear to perfectly compensate for activity changes.
The homeostatic increase seems to be a scaling up of about 30% from the level at day 3,
both in monocular and binocular cortex, which in monocular cortex restores synaptic
weights to near the pre-MD level (Kaneko et al. 2008b); this would not be sufficient to
restore activity to its pre-MD level under continuing MD. To match this, we made the
growth of H a saturating function of the ratio of actual to set-point activity, preventing
full compensation for the activity decrease. This could also be explained by a lack of
activation of homeostatic plasticity by activity deviations from the set point of less
than a threshold amount.

To capture these ideas, we assumed the more complex homeostatic rule of Eqs. 8–9. In
Eq. 9, F (x) (Eq. S16) is a monotonically increasing function that is 0 for x ≤ 1, jumps
from 0 to 1 when x exceeds 1 and then increases roughly linearly with x until it saturates
at around 2. The mathematical form used was

F (x) = [1 + tanh(x− 1)]Θ(x− 1.01) (S16)

where Θ(z) is a step function, Θ(z) = 1 for z ≥ 0, = 0 otherwise. The shape of this function
is illustrated in Fig. S5A. The argument of F is chosen to be Hy0/ 〈y〉 so that, if F did not
saturate (e.g., if F (x) = x), the stable fixed point of homeostatic plasticity, starting from
a condition with y0/ 〈y〉 > 1, would be 〈y〉 = y0. That is, the homeostatic rule restores the
set-point activity for smaller decreases of activity, but saturation prevents full restoration
for larger decreases of activity.
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Figure S5: (A) The nonlinear function F used in Eq. 8 to update h. This function is monotonically
increasing, jumping from 0 to 1 at x ≈ 1 and then smoothly saturating at around 2. (B) The arbor
function A used in the multi-synapse plasticity models for binocular cortex in the expression for
synaptic strength wi = HAiρi. The value of Ai (Eq. S17) is shown vs. index value i, where indices
i = 1, . . . , 310 are from the closed eye (contralateral eye, labeled ‘C’) and i = 311, . . . , 500 are from
the open eye (ipsilateral eye, ‘I’).

S7.2 The arbor function

The axonal arborization function Ai describes the anatomical density of axon branches to
the postsynaptic neuron from a given presynaptic neuron i. The arborization strengths are
given by

Ai ∝
1

1 + exp(3[(zi − 0.5)2/(0.2)2 − 1])
, (S17)

where the overall strengths are normalized according to
∑N

i=1 Ai = 1. The shape of this
function is illustrated in Fig. S5B for the binocular case and in Fig. S6C for the monocular
case.

S8 MD results of the two-factor, multi-input model in

the monocular cortex; Related to Fig. 5

Here we examine the results of MD in monocular cortex for the multi-input model of Eqs. 7-
9 (Fig. S6). MD to the contralateral eye was started at day 0 and the eye was re-opened
at day 7. Initial LTD induced rapid decrease of the Hebbian factors, ρ, and homeostatic
potentiation was induced by the delayed increase of the homeostatic factor H. Homeostatic
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Figure S6: Simulation result in the monocular cortex before, during, and after MD using the
model of Eqs. 7-9. We considered 500 inputs from the contralateral eye, which was closed during
MD. MD was started at day 0 and the closed eye was re-opened at day 7. (A) Synaptic strengths
wi are shown as a function of developmental time. (B) The Hebbian factors ρi. (C) The arbor
function Ai. (D) The normalized visual response (defined as in Fig. 5). (E) The homeostatic factor
H (black) and h (green). (F) The average postsynaptic firing rate 〈y〉.

plasticity was absent for the first few days of MD because it took time for h to reach the
threshold value of 1. After the re-opening of the contralateral eye, the model showed an
overshoot of synaptic strengths (Fig. S6A,D), as in the single-synapse model of monocular
cortex and in the multi-input model of binocular cortex. As in those cases, this behavior
occurred because, after restoring normal visual input, the Hebbian component ρ potentiated
rapidly and the homeostatic factor H more slowly decayed back to its baseline.

S9 Experimental Methods; Related to Figs. 3 and 7

In vivo experiments: C57BL/6 wild type breeders were purchased from Charles River
Laboratories (Hollister, CA) and bred as needed. Animals were maintained in the animal
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facility at University of California San Francisco and used in accordance with protocols
approved by the UCSF institutional Animal Care and Use Committee. Total of 47 C57BL6
male mice were included for the analysis.

Monocular deprivation (MD) was performed by suturing shut the right eyelid (contralat-
eral to the imaged hemisphere) at P25 as described (Kaneko et al. 2008b). The initial day
of imaging was described as day 0 and other days are numbered sequentially from there.
To produce recovery from effects of MD, vision was restored to the closed eye by simply
removing the suture. All mice were kept under standard housing conditions with free access
to food and water between recordings.

NMDA blockade: Two days prior to recording baseline responses, a custom stainless steel
plate for head fixation was attached to the skull with dental acrylic under isoflurane anesthe-
sia as described (Kaneko and Styker, 2014). Animals were given a subcutaneous injection of
carprofen (5 mg/kg) as a post-operative analgesic. The competitive NMDA receptor antag-
onist (R,S)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) (Tocris Bioscience)
was dissolved in saline at a concentration of 1 mg/ml and the drug solution was injected
intraperitoneally at a dose of 15 mg/kg roughly every 24 h, as described (Sato and Stryker
2008). The first injection in each experiment was performed right after the imaging of the
corresponding day. On subsequent days, injections were made around 9AM, and imaging, if
done, occurred 1-6 hours after injection (1 hr for the first mouse imaged, 6 hr for the last
mouse imaged on given day). As expected, baseline response levels were indistinguishable in
CPP and control animals (Fig. S7).

TNF-α blockade: Intracortical infusion of soluble TNF receptor-1 (sTNFR1, R&D Sys-
tems, Inc. Minneapolis, MN) was performed as described (Kaneko et al. 2008b, except that
implantation was done on day 0). Briefly, on day 0, immediately after baseline imaging, we
implanted a cortical cannula that was connected with an Alzet osmotic minipump (model
1002) filled either with vehicle solution (PBS containing 0.1% bovine serum albumin as a
carrier) or 35 mg/ml of sTNFR1. This was followed immediately by eyelid suture. Infusion
continued during days 0-5 of 6-day MD. On day 5, the cannula and minipump were removed
and response magnitudes (MD-5d) were then recorded. On day 6, vision was restored to
the closed eye by simply removing the suture to produce recovery from effects of MD, and
responses were recorded 24 and 48 hours after reopening the closed eye.

Repeated optical imaging of intrinsic signals and quantification of ocular dominance were
performed as described (Kaneko et al. 2008a). Briefly, during recording mice were anes-
thetized with 0.7% isoflurane in oxygen applied via a home-made nose mask, supplemented
with a single intramuscular injection of 20-25 g chlorprothixene. Intrinsic signal images were
obtained with a Dalsa 1M30 CCD camera (Dalsa, Waterloo, Canada) with a 135x50 mm
tandem lens (Nikon Inc., Melville, NY) and red interference filter (610 ± 10 nm). Frames
were acquired at a rate of 30 fps, temporally binned by 4 frames, and stored as 512x512 pixel
images after binning the 1024x1024 camera pixels by 2x2 pixels spatially. The visual stim-
ulus for recording in the binocular zone, presented on a 40x30 cm monitor placed 25 cm in
front of the mouse, consisted of 200-wide bars, which were presented between -50 and 150 on
the stimulus monitor (00 = center of the monitor aligned to center of the mouse) and moved
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Figure S7: The CPP results in Figs. 3B and 7A remain identical when the results are shown in
terms of the absolute amplitude of visual response (∆F/F ∗ 104). Conventions as in Figs. 3B and
7A.

continuously and periodically upward or downward at a speed of 100/sec. The phase and
amplitude of cortical responses at the stimulus frequency were extracted by Fourier analysis
as described (Kalatsky and Stryker, 2003). Ocular dominance index (ODI) was computed
as (R−L)/(R+L), where R and L are the peak response amplitudes through the right eye
and the left eye, respectively, as described (Kaneko et al. 2008a). Response amplitude at
each time point in individual animals was an average of at least 4 measurements.

Statistical analyses: For changes after monocular deprivation or recovery from depriva-
tion, the response magnitude in individual animals was normalized to the baseline magni-
tude, followed by calculating group average and S.E.M. Response magnitudes and ocular
dominance index data were analyzed by a two-way ANOVA to determine the effects of phar-
macological treatments (CPP or sTNFR1) and of manipulations of visual experiences (ND,
MD, or binocular recovery) in Prism 6 (GraphPad Software, CA). For multiple comparisons,
Bonferroni corrections were used.
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