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KEYS FROM SEPARABLE GAUSSIAN STATES

Here we provide a simple example of device-dependent QKD protocol which is based on the distribution of a
bipartite Gaussian state which is mixed and separable (not in a tensor-product, therefore having non-zero discord).
We show that the key rates can be positive despite no entanglement being present. The reader not familiar with the
formalism of bosonic systems and Gaussian states can find these concepts in Ref. [1], whose notation is here adopted
(} = 2 and unit vacuum noise).

Let us consider a continuous variable QKD protocol where Alice prepares two bosonic modes, A and a, in a separable
Gaussian state ρAa, with zero mean and covariance matrix (CM)

VAa =
(

µI G
G µI

)
, (1)

where µ ≥ 1 and G is a diagonal correlation block which can be in one of the following forms

G =
(

g
g

)
:= gI, G =

(
g
−g

)
:= gZ. (2)

Here the parameter g must satisfy |g| ≤ µ−1, so that VAa is both physical and separable [2]. Apart from the singular
case g = 0, this symmetric Gaussian state has always non-zero discord, i.e., D(A|a) = D(a|A) > 0 [3].

Mode a is sent through the channel, where Eve performs a collective Gaussian attack, whose most general description
can be found in Ref [4]. Assuming random permutations (so that quantum de Finetti applies), this is the most powerful
attack against Gaussian protocols [1]. One of the canonical forms of this attack is the so-called ‘entangling cloner’
attack [1], where Eve uses a beam splitter with transmissivity τ to mix the incoming mode a with one mode e of an
EPR state ρeE′ with CM

VeE′ =
(

ωI
√

ω2 − 1Z√
ω2 − 1Z ωI

)
:= V(ω), (3)

where ω ≥ 1. One output mode B is sent to Bob, while the other output mode E is stored in a quantum memory
together with the retained mode E′. Such memory will be coherently detected at the end of the protocol.

In order to extract two correlated (complex) variables, X and Y , Alice and Bob heterodyne their local modes A
and B. (Note that other protocols involving homodyne detection for one of the parties or even two homodynes may
be considered as well.) One can easily check that Alice remotely prepares thermal states on mode a. In fact, by
heterodyning mode A, the other mode a is collapsed in a Gaussian state ρa|X with CM Va|X = (1 + ε)I, where

ε := µ− 1− g2

µ + 1
≥ 0 (4)

quantifies the thermalization above the coherent state. This conditional thermal state is randomly displaced in the
phase space according to a bivariate Gaussian distribution with variance µ − 1 − ε (so that the average input state
on mode a is thermal with the correct CM µI).

At the output of the channel, Bob’s average state is thermal with CM νBI, where

νB := τµ + (1− τ)ω. (5)

By propagating the conditional thermal state ρa|X , we also get Bob’s conditional state ρB|X , which is randomly
displaced and has CM νB|XI, where

νB|X := τ(1 + ε) + (1− τ)ω = νB − τg2

µ + 1
. (6)
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Therefore, we can easily compute Alice and Bob’s mutual information, which is equal to

I(X,Y ) = log2

νB + 1
νB|X + 1

. (7)

The next step is the calculation of Eve’s Holevo information on Alice’s and Bob’s variables. We derive the global
state of Alice, Bob and Eve, which is pure Gaussian with zero mean and CM

VABEE′ =




µI
√

τG −√1− τG 0√
τG νBI γI δZ

−√1− τG γI νEI κZ
0 δZ κZ ωI


 , (8)

where 0 is the 2× 2 zero matrix, and

νE := τω + (1− τ)µ, (9)

γ :=
√

τ(1− τ)(ω − µ), (10)

δ :=
√

1− τ
√

ω2 − 1, (11)

κ :=
√

τ(ω2 − 1). (12)

From this global CM, we extract Eve’s reduced CM VEE′ := VE describing the two output modes E = EE′ of the
entangling cloner. This reduced CM has symplectic spectrum [1]

ν±E =

√
α2 + 4β ± α

2
, (13)

where

α := (1− τ)(µ− ω), (14)
β := τ + (1− τ)µω. (15)

The von Neumann entropy of Eve’s average state is then given by

S(E) = h(ν+
E ) + h(ν−E ), (16)

where

h(x) :=
x + 1

2
log2

x + 1
2

− x− 1
2

log2

x− 1
2

. (17)

By transforming the global CM under heterodyne detection [1], we compute Eve’s conditional CMs. First, we derive
Eve’s CM conditioned to Bob’s detection

VE|Y = VE − 1
νB + 1

(
γ2I γδZ
γδZ δ2I

)
, (18)

which has symplectic spectrum

ν−E|Y = 1, ν+
E|Y =

µ + β

1 + µτ + (1− τ)ω
. (19)

Then, Eve’s CM conditioned to Alice’s detection is

VE|X = VE − (1− τ)g2

µ + 1

(
I 0
0 0

)
, (20)

and has symplectic spectrum

ν±E|X =

√
θ2 + 4(µ + 1)φ± θ

2(µ + 1)
, (21)
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where

θ := (1− τ)g2 − (µ + 1)α, (22)

φ := (µ + 1)β − (1− τ)ωg2. (23)

From the previous conditional spectra, we compute Eve’s conditional entropies

S(E|X) = h(ν+
E|X) + h(ν−E|X), S(E|Y ) = h(ν+

E|Y ), (24)

and, therefore, we can derive the two Holevo quantities I(E, X) = S(E) − S(E|X) and I(E, Y ) = S(E) − S(E|Y ).
By subtracting these from Alice and Bob’s mutual information I(X,Y ), we finally get the two key rates in direct and
reverse reconciliation, i.e., K(Y |X) and K(X|Y ).

It is easy to check the existence of wide range of parameters for which these two rates are strictly positive, so that
Alice and Bob can extract a secret key despite the absence of entanglement (at the input state ρAa and, therefore,
also at the output state ρAB). As an example, we may consider the maximum correlation value g = µ − 1 for the
separable Gaussian state ρAa, and we may take the large modulation limit µ → +∞, as typical in continuous variable
QKD. In this case, we get the following asymptotical expression for Alice and Bob’s mutual information

I(X,Y ) → log2

τµ

1 + 3τ + (1− τ)ω
+ O(µ−1), (25)

and the following asymptotical spectra

ν−E → (1− τ)µ + τω + O(µ−1), (26)

ν+
E → ω + O(µ−1), (27)

ν+
E|Y → 1 + (1− τ)ω

τ
+ O(µ−1), (28)

ν±E|X → ξ± + O(µ−1), (29)

where

ξ± :=

√
(ω + 3)2 + τ2(ω − 3)2 − 2τ(ω2 + 7)

2
± (1− τ)(ω − 3)

2
. (30)

Then, using the expansion h(x) ' log2(ex/2) + O(1/x) for large x, we can write the two asymptotical rates

K(Y |X) = R(τ, ω) + h(ξ+) + h(ξ−), (31)

K(X|Y ) = R(τ, ω) + h

[
1 + (1− τ)ω

τ

]
, (32)

where we have introduced the common term

R(τ, ω) := log2

2τ

e(1− τ)[1 + 3τ + (1− τ)ω]
− h(ω). (33)

As we can see from Fig. 1, there are wide regions of positivity for these rates.
In particular, for a pure loss channel (ω = 1), the previous asymptotical rates simplify to the following

K(Y |X) = log2

τ

e(1− τ2)
+ h(3− 2τ), (34)

which is positive for any τ > 0.693, and

K(X|Y ) = log2

τ

e(1− τ2)
+ h

(
2
τ
− 1

)
, (35)

which is positive for any τ > 0.532.
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FIG. 1: Left panel. Rate K(Y |X) in direct reconciliation, as a function of channel transmissivity τ and thermal variance ω. K
is positive in the white area, while it is zero in the black area. Right panel. Rate K(X|Y ) in reverse reconciliation, as function
of τ and ω. White area (K > 0) is wider at low ω.

DISCORD BOUND CAN BE TIGHT

Here we discuss a typical scenario where the optimal backward rate K(J) of an ideal QKD protocol is exactly equal
to the output discord D(B|A) shared by Alice and Bob. This happens in continuous variable QKD, where reverse
reconciliation is extremely important for its ability to beat the 3dB loss-limit affecting direct reconciliation [1]. (Other
possible strategies include postselection [5, 6] and two-way quantum communication [7]).

Consider an ideal QKD protocol which is based on the distribution of an EPR state ρAa, with CM VAa = V(µ)
defined according to Eq. (3) with µ ≥ 1. By performing a rank-1 Gaussian POVM on mode A, Alice remotely prepares
an ensemble of Gaussianly-modulated pure Gaussian states on the other mode a. For instance, heterodyne prepares
coherent states, while homodyne prepares squeezed states. On average, mode a is described by a thermal state with
CM µI.

Suppose that signal mode a is subject to a pure-loss channel. This means that Eve is using a beam splitter of
transmissivity τ mixing the signal mode with a vacuum mode e. At the output of the beam splitter, mode B is
detected by Bob, while mode E is stored in a quantum memory coherently detected by Eve (this is a collective
entangling cloner attack with ω = 1).

Since the average state of mode a is thermal and mode e is in the vacuum, no entanglement can be present between
the two output ports B and E of the beam splitter. This implies that their entanglement of formation must be zero
Ef (B, E) = 0 and, therefore, the optimal backward rate K(J) must be equal to the discord D(B|A) of the Gaussian
state ρAB . Since this output state has CM

VAB =
(

µI
√

τ(µ2 − 1)Z√
τ(µ2 − 1)Z (τµ + 1− τ)I

)
, (36)

its discord is easy to compute and is equal to [8]

D(B|A) = h(µ)− h[τ + (1− τ)µ]. (37)

For large modulation (µ → +∞), we have the asymptotic expression

K(J) = D(B|A) = log2

(
1

1− τ

)
, (38)

which is positive for any 0 < τ < 1. One can check that this rate can be achieved by heterodyne detections at Bob’s
side (and coherent detection at Alice’s side).
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