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Mathematical modeling of glucose-insulin homeostasis

In the fasting state, plasma glucose is primarily utilized by the brain, which relies absolutely on

glucose as its fuel. The glucose consumption is balanced by hepatic glucose production, which

allows the body to maintain a relatively constant glucose concentration 65–105 mg/dl. Insulin also

maintains a relatively constant concentration 5–10 µU/ml. In the mathematical modeling, G0 = 95

mg/dl and I0 = 8 µU/ml are used to be the fasting glucose and insulin concentrations.

Upon a meal ingestion, the plasma glucose concentration rises dramatically, intensifying its

stimulation to the pancreas. Accordingly, the pancreas secretes more insulin and causes a surge

of the plasma insulin concentration. The increased insulin concentration drains glucose from the

blood into individual cells, which cancels out the initial surge of plasma glucose. The decrease

of the glucose concentration is followed by the decrease of the insulin concentration, because the

pancreas becomes less stimulated. Finally, both glucose and insulin return to their baseline levels.

Cells can be roughly divided into two categories according to their dependence on insulin for

glucose uptake. The first category includes neurons whose glucose utilization is insulin independent.

They uptake glucose continuously with a relatively constant rate, which is a factor contributing to

the reduction of plasma glucose and insulin concentrations. The second category includes myocytes

and adipocytes whose glucose utilization depends on insulin.

Because the increase of insulin is caused by the increase of glucose, but the increase of insulin

causes the decrease of glucose and the consequential decrease of insulin, the system is essentially a
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negative feedback one. It is this negative feedback that tightly regulates whole-body glucose-insulin

homeostasis, namely the maintenance of the relative constancy of both concentrations even under

the frequent perturbations from meal ingestion.

In [App1,App2], a mathematical model was developed for the glucose-insulin homeostatic sys-

tem:

dG(t)

dt
= s+m(t)− V

(
I(t)

)
G(t),

dI(t)

dt
= f

(
G(t)

)
− kI(t),

where

t is the time.

G(t) is the glucose concentration in the blood.

I(t) is the insulin concentration in the blood.

s is the glucose source rate supplied by the liver.

m(t) is the rate of glucose supplied by a meal; one has m(t) ≡ 0 during fasting.

k is the degradation rate of insulin.

f(G) is the rate of insulin production by pancreatic beta cells in response to glucose stimulation;

It is a monotonically increasing function of the glucose concentration [App1].

V
(
I
)
is the body’s rate of glucose uptake per unit glucose concentration.

The rate V
(
I
)
marks the major difference among different models. In [App1], V

(
I
)
was assumed

to be a linear function of I. In [App2], V
(
I
)
was initially undefined; but was found to be bistable

should the system have certain optimal properties. In this paper, V
(
I
)
is based on the insulin

clamp data published in [App3,App4], which have been presented in figure 3A in two different sets

of units. For the rate V , both units min−1 and mg·min−1·m−2 are used. The conversion between

the two units is as follows:

V ·G0 =
Ṽ · S
Ω

, (S.1)
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where V and Ṽ correspond to the unit min−1 and mg·min−1·m−2, respectively; G0 = 95 mg·dl−1

is the baseline glucose concentration in the body; S = 1.77 m2 is the subject’s body surface

area [App3]; and Ω is the subject’s blood volume. Because an average adult has 5 to 6 liters of

blood volume, Ω = 5.5 liters is used here. One thus has:

V = 0.00034 · Ṽ . (S.2)

Therefore, 100, 200, 300, 400 mg·min−1·m−2 correspond to 0.034, 0.068 0.102, 0.136 min−1, respec-

tively. For the insulin concentration I, both units log10(µU/ml) and µU/ml are used.

Figure 3A contains three sets of data: green (for normal subjects), red (for obese non-diabetes),

and black (for obese diabetes). For all the cases, V (I) can be divided into two components

V (I) = V0 + U(I), (S.3)

where

V0 = 0.025 min−1, as the baseline in figure 3A, is the rate of insulin independent glucose

uptake. It is also independent of the health state. For normal subjects, obese non-diabetes, and

obese diabetes, V0 is always around 0.025 min−1. This basal glucose uptake is contributed primarily

by the brain, which needs to actively take up glucose with no regard of the insulin concentration

and the health status.

U(I) is the rate of insulin mediated glucose uptake. It ranges from 0 to a maximal rate Umax.

For the normal subjects, Umax = Vmax − V0 = 0.139 − 0.025 = 0.114 min−1. This maximal rate is

non-physiological, however, because the corresponding insulin concentration is about 20000 µU/ml

— a supramaximal value. Under normal conditions, the peak insulin concentration after a regular

meal is about 50 µU/ml (figure 4B), at which the rate of insulin mediated glucose uptake is only

half maximal (figure 3A). The two figures together may suggest that insulin has great potential in

rendering glucose uptake; but the potential is far from being reached under normal conditions.

Table S.1 summarizes all the parameter values used in the mathematical model, including

V0 = 0.025 min−1. These parameter values are based on published works (see the references in

Table S.1) and are thus biologically relevant. Besides the parameter values, the function forms of
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m(t) and f(G) are also presented in Table S.1.

In the main text, two fundamentally different hypotheses are proposed for single-cell insulin

response, which lead to two different interpretations of U(I) — the rate of insulin mediated glucose

uptake.

Table S.1: Parameters and special functions in the model

Parameter/function Value Unit Remark

G0 95 mg·dl−1 Baseline glucose level should be in the range

of 65–105 [App5]

I0 8 µU·ml−1 Baseline insulin level should be in the range

of 5–10 [App6]

V0 0.025 min−1 Basal (insulin independent) rate of glucose

utilization [App3,App4]

s 2.375 mg·dl−1·min−1 Determined by the relation s/V0 = G0

k 0.3 min−1 [App7,App8]

Gh 141.4 mg·dl−1 Obtained from Gh = α0.5 and α = 20000 [App9,App1]

n 6 n > 4 is required to generate dynamics close to

clinical data in [App10,App11]

fmax 28.5 µU·ml−1·min−1 Determined by the relation fmax = kI0(1 + (Gh/G0)
n)

τ1, τ2, τ3 15, 30, 100 min To mimic the glucose intake pattern in [App11]

M 12.0 mg·dl−1·min−1 The peak rate of exogenous glucose supply.

The choice renders the dynamics close to the data in [App10]

f (G) = fmax(G/Gh)n

1+(G/Gh)n
µU·ml−1·min−1 Rate of insulin production by the pancreas

m (t) = M(t/τ1)
b

1+(t/τ1)
b mg·dl−1·min−1 Rate of glucose supplied by meal for 0 ≤ t < τ2

m (t) = M·exp(c(τ3−t))
1+exp(c(τ3−t))

mg·dl−1·min−1 Rate of glucose supplied by meal for τ2 ≤ t < ∞
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The graded response view

Figure S.1 is a schematic diagram of the graded response view, where four example cells are il-

lustrated with their response curves placed to the left, which from top down are more and more

sensitive to insulin. Despite their individuality, these response curves are all graded, qualitatively

the same as each other and as the whole-body dose response, which is just simple accumulations

of single-cell responses:

U(I) =
∑
k

uk(I), (S.4)

where k numbers the cells. The graded response view provides the simplest and most intuitive

explanation of the graded whole-body dose-response. Indeed, if an individual response uk(I) is

graded, then the whole-body response U(I), according to equation S.4, is certainly graded.

Moreover, the whole-body dose-response U(I) must exhibit exact reversal, i.e.,

U+(I) = U−(I), (S.5)

where the superscript +(−) signifies the increase (decrease) of insulin. Indeed, if individual cells

exhibit the graded response, they must also exhibit exact reversal (u+k (I) = u−k (I)). One then has

U+(I) =
∑
k

u+k (I) =
∑
k

u−k (I) = U−(I), (S.6)

namely an exact reversal of the whole-body response. In other words, if the whole-body response

does not exhibit exact reversal, then the graded response view must be wrong. As I have explained

in the main text, the exact reversal of the whole-body response is contradictory to a frequently ob-

served phenomenon known as reactive hypoglycemia. This fact will be demonstrated by numerical

simulations below.

Under the graded response view, the numerical computation is relatively easy, because V (I) is

exactly the green curve in figure 3A. By using this V (I) and the parameter values in Table S.1,

equations 1 and 2 are integrated to yield simulated glucose and insulin dynamics (figure 5). The
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Figure S.1: The graded response view. Under this view, a cell’s rate of glucose uptake increases gradually as
the insulin concentration increases. Four example cells are shown, which from top down are more and more sensitive
to insulin. But the responses are all graded. The green and red bars represent the plasma glucose and insulin
concentrations, respectively. (A) When the plasma insulin concentration is low, the cells absorb glucose with lower
rates. (B) When the plasma insulin concentration is high, the cells absorb glucose with higher rates, indicated by the
thicker green arrows.

simulation starts at t = 0 when the meal ingestion begins and ends at t = T when homeostasis

has been restored. In this paper T = 1200 min is used. Because the glucose level G(t) is always

above the baseline G0, an undershoot does not occur during the simulation, let alone reactive

hypoglycemia. In the following, I use the quantity G(T )/G0 − 1 as an indicator of hypoglycemia.

If the quantity is smaller than 0, then an undershoot occurs.

To see how representative this observation is, the simulation is repeated 104 times, each with a

new set of parameter values. For every round of simulation, the value of every parameter is drawn

randomly from a uniform distribution centering on the standard value (i.e., the value in Table S.1)

with ±40% variation. That is, every parameter value is generated with equal probability between

1 − 40% and 1 + 40% of its standard value. With this set of parameter values, equations 1 and 2
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are solved numerically. The quantity G(T )/G0 − 1 is then computed. For all the 104 simulations,

the quantity is always found to be positive, i.e., reactive hypoglycemia never occurs. Figure S.2A

shows the histogram of these 104 values of G(T )/G0 − 1. One sees that the histogram is strictly to

the right of the longitudinal axis.

Now, one sees the problem of the graded response view. Under this view, the whole-body dose-

response V (I) must be a simple curve that exhibits exact reversal. But this V (I) is unable to even

generate an undershoot of the glucose dynamics; and reactive hypoglycemia would certainly never

occur because it corresponds to a large undershoot. Because reactive hypoglycemia is a frequently

observed phenomenon, the graded response view may well be wrong, even though it is simple and

intuitively appealing.

Figure S.2: Histograms of the quantity G(T )/G0 − 1. (A) is obtained under the graded response view. (B, C,
D) are obtained under the adjustable threshold hypothesis with different levels of hysteresis.
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The adjustable threshold hypothesis

According to this hypothesis, a typical cell exhibits all-or-none and hysteretic reversal when re-

sponding to insulin (the third row of figure 6). The all-or-none property does not retain at the

whole-body level, because cellular heterogeneity smoothes out individual all-or-none. In the second

row of figure 6, cells with larger Ion values are placed to the right of those with smaller Ion values;

and a Gaussian distribution is assumed. On the other hand, the whole-body response does inherit

the property of hysteretic reversal. The same insulin concentration can elicit both a relatively low

rate of glucose uptake (V + (I): the forward branch of V (I)) and a relatively high rate of glucose

uptake (V − (I): the reverse branch of V (I)). As a consequence, insulin becomes more “power-

ful” during its fall — a rather counterintuitive conclusion. Nevertheless, it can explain reactive

hypoglycemia, a recurring phenomenon that remains elusive. The reverse branch of V (I) implies

that glucose uptake can still be relatively high when the insulin level has been low. Due to the

parallelism between insulin and glucose levels, this implies that glucose uptake can still be relative

high when the glucose level has been low, which leads to hypoglycemia.

In this event, normal subjects’ insulin clamp data (the green dots (Ij , Vj) in figure 3A) only

correspond to V + (I). According to the adjustable threshold hypothesis, Vj is proportional to the

number of cells activated by the rising insulin (i.e., those cells whose Ion values are smaller than Ij).

Therefore, if the cells’ distribution is taken to be Gaussian with mean µ and standard deviation σ,

then the dose-response curve is a cumulative Gaussian function

V + (I) = V0 +
Vmax − V0

2

(
1 + erf

(
I − µ√

2σ

))
, (S.7)

where V0 = 0.025 min−1. By using µ = 1.68, σ = 0.34, Vmax = 0.139 min−1 in equation S.7, a

curve V + (I) is generated that fits well with the green dots. The curve is colored in green in figure

3A. The corresponding Gaussian distribution (µ = 1.68, σ = 0.34) is illustrated as the green curve

in figure 3B.

I use numerical simulations to test the adjustable threshold hypothesis. Because the reverse

branch V − (I) is not given, I take an agent-based approach, namely take individual cells into the
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model. A system of N = 105 cells is first created in silico, with their Ion values specified by the

Gaussian distribution (1.68, 0.34) (the green curve in figure 3B). For each cell, a number x is drawn

from the Gaussian distribution (1.68, 0.34); and the value 10x is assigned to the cell as its Ion value

in the unit µU/ml. For the Ioff values, I assume all the N = 105 cells have the same ∆I value.

That is, if a cell’s Ion is 10x for some x, then its Ioff is 10x −∆I.

In equations 1 and 2, one still has

V (I) = V0 +
∑
k

uk(I), (S.8)

the same as the last section. The difference lies in the fact that uk(I) is now bistable (see figure

2B). By omitting the subscript k, u(I) has the following expression:

u (I (t)) =



0 0 < I (t) ≤ Ioff

u (I (t−)) Ioff < I (t) ≤ Ion

umax I (t) > Ion

, (S.9)

where t is the present moment, t− is a time infinitesimally prior to t, Ion represents the cell’s

switch-on threshold, Ioff represents the cell’s switch-off threshold, umax is the cell’s maximal rate of

glucose uptake. When the insulin concentration is smaller than Ioff, the cell’s glucose uptake rate

is certainly 0. When the insulin concentration is larger than Ion, the cell’s glucose uptake rate is

certainly the maximal value umax. When the insulin concentration is between Ioff and Ion, then the

rate adheres to the current value, which can be either 0 or umax.

The simulation requires the assignment of the parameter umax. Notice that N · umax is the rate

of glucose uptake when all the cells have been activated, which corresponds to Umax = Vmax−V0 =

0.114 min−1 in the insulin clamp data:

N · umax = Umax.
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Because N = 105 is used, one has umax = 1.14× 10−6. In fact, one can use other N values as long

as they are sufficiently large and as long as umax = Umax/N is adjusted. According to my trials,

the simulations are almost the same as long as N > 103.

The simulation goes as follows. With the initial values t = 0, G(0) = G0, and I(0) = I0,

equations 1 and 2 are integrated. In every time step, the body’s rate of glucose uptake is determined

by equations S.8 and S.9, which take into account every cell’s contribution. The simulation stops

when t = T is reached. The black curve in figure 4C is the simulated G(t) when ∆I = 5 µU/ml is

used. The red curve in figure 4C is the simulated G(t) when ∆I = 10 µU/ml is used.

For both cases, the glucose level stabilized to a value below the baseline G0, indicative of poten-

tial hypoglycemia. The larger ∆I, the larger the undershoot, and more severe the hypoglycemia.

To determine the conclusion’s sensitivity to the parameters, the simulation is repeated 104 times

for the case ∆I = 5. Each simulation is based on a new set of parameter values. Figure S.2C

shows the histogram of the quantity G(T )/G0 − 1, which is strictly to the left of the longitudinal

axis, indicating that the quantity is always negative, i.e., the occurence of reactive hypoglycemia

is 104/104. The same phenomenon is observed for the case ∆I = 10 (figure S.2D). For the case

∆I = 0, it is expected that the histogram (figure S.2B) should be similar to that under the graded

response view (figure S.2A), which is indeed the case. The key observation is that hysteresis is

strictly correlated with reactive hypoglycemia, suggesting that the adjustable threshold hypothesis

is correct.
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