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I. DATA

The data for the timeseries (available in Ref. [1]) is obtained from the latest version of the google-ngram database [2],
which is an extension of the original data [3] enriched with more books and syntactic annotations. Given two or three
linguistic variants, denoted by q = 1, 2 or 3, we count the total number of occurrences of each variant by nq(t) in
each year t ∈ [1800, 2008] irrespective of its capitalization. From this we estimate the fraction of adopters ρ(t) by the
relative usage of variant ’1’ for the given word (w):

ρw(t) =
nw1 (t)∑
q n

w
q

. (1)

Figures 1 to 4 show S-curves of individual words. We also calculate the average relative usage of one variant as an
average over all tokens of an ensemble of words w = 1, ...,W .

ρavg(t) =

∑
w n

w
1∑

w

∑
q n

w
q

. (2)

The relative frequency of a word in the ensemble of W words, f rel
w (t), is measured as

f rel
w (t) =

∑
q n

w
q (t)∑

w

∑
q n

w
q (t)

. (3)

While the frequency of a word, fw(t), is measured as the weight of all the variants combined divided by the size of
the database (in word tokens):

fw(t) =

∑
q n

w
q (t)

# tokens in the corpus at year t
(4)

We associate an error σρ(t) to each datapoint (t, ρ(t)), which we split into two parts, i.e.

σ2
ρ = σ2

s + σ2
0 (5)

in which σs is due to finite sampling of the data, and σ0 subsumes additional uncertainties from exogenous perturba-
tions. The introduction of the latter is necessary, because only considering the finite-sampling effect does not account
for the observed fluctuations in the frequency of the most common words, which we assume to be stationary.

The effect of finite sampling, σs, is approximated by assuming that n1 and n2 (q = 1, 2) are the outcomes of a
binomial process with n = n1 + n2 samples where variant ’1’ is drawn with probability p = n1/N and variant ’2’ is
drawn with probability 1− p. From this we can calculate the error σs:

σs(t)
2 =

n1(t)n2(t)

(n1(t) + n2(t))
3 . (6)

For the estimation of σ0, which we treat as constant and independent of the sample size n(t) = n1(t)+n2(t) in each
year, we look at the timeseries of the relative frequency of the most frequent word, "the", in the English language.
Assuming that this timeseries is stationary, we estimate σ0, such that 95% of the points of the timeseries lie within
the 95% confidence-interval assuming Gaussian errors according to Eq. (5). This gives σ2

0 = 0.002, which we use in
all cases.
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A. German orthographic reforms

In this section we focus exclusively on the competition between the letters ’ß’ (s-sharp, q = 2) and ’ss’ (q = 1)
encoding the sound for voiceless s in the German orthography. The official set of rules concerning the usage of each
variant changed twice in the orthographic reforms of 1901 and 1996 [4]. We investigate the usage of each variant over
time for W = 2960 words as being affected by the orthographic reform of 1996 [5]. We consider the timeseries of four
representative cases: (i) ρavg(t); and three individual words as the most frequent (ii) word ’dass’, ρdass(t); (iii) verb
’muss’, ρmuss(t); and (iv) noun ’einfluss’, ρeinfluss(t).

B. Russian Names

In this section we focus on two Russian name-suffixes: ’ов’ and ’ев’. The letter ’в’ has been written in Roman script
languages like English (en) and German (de) by ’v’, ’w’ or ’ff’. Here we consider the competition between the letter
’v’ (q = 1) and two others together ’w’+’ff’ (q = 2 and q = 3). We investigate the usage of each variant over time for
W = 50 common Russian names which are listed below. We present the timeseries of six representative cases: (i) the
average over all words, ρavg(t); (ii) the five most used words ρw(t).

a. German: Charkov, Saratov, Romanov, Stroganov, Tambov, Pirogov, Godunov, Katkov, Aksakov, Demidov,
Semenov, Lermontov, Saltykov, Kornilov, Stepanov, Lobanov, Bulgakov, Krylov, Melnikov, Annenkov, Turgenev,
Kostomarov, Filatov, Grekov, Putilov, Titov, Vinogradov, Danilov, Sobolev, Nikiforov, Kamenev, Novikov, Kondakov,
Martynov, Rykov, Melikov, Platonov, Karpov, Lazarev, Balabanov, Krasnov, Nabokov, Dolgorukov, Kirov, Leonov,
Maklakov, Naumov, Frolov, Mitrofanov, Fedotov

b. English: Saratov, Demidov, Pirogov, Tambov, Charkov, Katkov, Kornilov, Lazarev, Novikov, Melikov, Ler-
montov, Aksakov, Godunov, Turgenev, Menshikov, Stepanov, Vinogradov, Semenov, Kutuzov, Lebedev, Suvorov,
Lomonosov, Mendeleev, Lavrov, Melnikov, Lobanov, Annenkov, Volkhov, Balakirev, Lvov, Bazarov, Shuvalov, Grig-
oriev, Titov, Yakov, Nekrasov, Mikhailov, Gorchakov, Morozov, Zubov, Chekhov, Sakharov, Dragomirov, Andreyev,
Danilov, Chirikov, Yermolov, Bulgakov, Vasiliev, Saltykov

To make the lists, the primary list of common Russian names ending ’ов’ and ’ев’ was created according to the
English Wikipedia pages including: List of surnames in Russia, List of Russian-language writers, scientists, composers,
leaders of the Soviet Union and Marshals of the Soviet Union; Also list of cities and towns in Russia was counted in
this list. The words which have been used at least 10 times for more than 100 years (75 years for German data) in this
period were included in the initial list. Furthermore, in order to guarantee that these words are right competitors, we
removed words satisfiying one of the following conditions:

• First letter written mostly by small letters instead of capital letters (
∑2008

t=1800 f
small
w (t)∑2008

t=1800 f
captal
w (t)

≥ 0.01)

• Sudden peak at the late 20 century and before that were rarely used (
∑2000

t=1950 fword(t)

0.99∗
∑2000

t=1850 fword(t)
≥ 1), e.g. Gorbachev.

• Entries in Wikipedia not corresponding to the Russian origin e.g. Rostow which refers to Americans and
Romanow which refers to Polish places

C. Regularization verbs in English

In this section we focus on the regularization of English verbs [6]. In addition to the regular past form of a verb,
which is generated by adding -ed (laugh → laughed), there exists a small number of verbs which are conjugated
irregularly, e.g. burn → burnt. However, all irregular forms coexist with a corresponding regular variant as listed
in Ref. [3]. We investigate the competition between the regular (q = 1) and the irregular (q = 2) form for 281
verbs with a recently attested irregular form [3]. As an example, for the verb ’write’, n1(t) = n(writed, t), and
n2(t) = n(writ, t) + n(written, t) + n(wrote, t), since we have to combine the usage of past participle and preterit to
capture all irregular past forms.

The following filterings were employed. We discarded any verb, where the irregular past form is the same as
the infinitive since it would not be possible to distinguish between a verb that is used as a past form or a present
form, e.g. for the verb ’beat’ the irregular preterit is ’beat’. We condition the counts on those forms that are
identified as verbs by the associated part-of-speech tag (already provided in the data). We then selected the 10
verbs that exhibit the largest relative change | ρ1 − ρ0 |, where ρ0 and ρ1 is the average over the 20 datapoints
in the beginning (t ∈ [1800 − 1819]) and the end (t ∈ [1989 − 2008]) of the timeseries respectively. These verbs
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are: abide (abided/abode), burn (burned/burnt), chide (chided/chid,chidden), cleave (cleaved/clove,cloven), light
(lighted/lit), smell (smelled/smelt), spell (spelled/spilt), spill (spilled/spilt), thrive (thrived/throve,thriven), wake
(waked/woke,waken).

II. SURROGATE DATA

In the following we describe how to apply our notion of endogenous and exogenous influence to several paradigmatic
models of innovation spreading on complex networks.

A. Approximate Master Equation

We formulate the dynamics in the framework of approximate master equations (AME) [7], which describe the
stochastic binary dynamics in an uncorrelated network with a given degree distribution Pk. Nodes can either be
potential adopters (susceptible) or have already adopted the innovation (infected) and are grouped into classes {k,m},
where k denotes the degree and m the number of infected neighbors. The dynamics is specified by the function Fk,m
(Rk,m), the rate at which susceptible (infected) {k,m}-nodes become infected (susceptible). In this work we only
consider monotone dynamics, i.e. Rk,m = 0, which leads to the following system of ordinary differential equations for
the fraction of susceptible {k,m}-nodes, sk,m:

d

dt
sk,m =− Fk,msk,m − C (k −m) sk,m

+ C (k −m+ 1) sk,m−1, (7)

with C = 〈(k −m)Fk,msk,m〉/〈(k −m) sk,m〉 where 〈· 〉 =
∑
k Pk

∑k
m=0. From sk,m(t) we can calculate the timeseries

for the total fraction of infected nodes, ρ(t), according to:

ρ(t) = 1−
∑
k

Pk

k∑
m=0

sk,m. (8)

Assuming that at time t0 a randomly chosen fraction of nodes, ρ(t0) = ρ0, is infected, we get as initial conditions for
sk,m [7]:

sk,m(t0) =

(
k

m

)
ρm0 (1− ρ0)

k−m
(1− ρ0) . (9)

We investigate two special cases of functions Fk,m with two parameters a and b:
Bass-Model: In the Bass-model the probability of becoming infected is proportional to the number of neighbors

that are already infected:

Fk,m = a+ b
m

k
, (10)

Threshold-model: In a threshold-model a node becomes infected with probability 1 if the fraction of infected
neighbors exceeds a certain threshold:

Threshold: Fk,m =

{
a, m/k < 1− b
1, m/k ≥ 1− b . (11)

B. Exogenous and Endogenous Influence

The formulation of the spreading dynamics in the framework of AME allows us to calculate exactly the ’ground
truth’ of the exogenous and endogenous contributions for any given Fk,m. Following the approach in Sec. II, main
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text, we can now calculate exactly the individual contributions:

Gj =
1

N

N∑
i=1

gj (t∗i )

g (t∗i )
,

=
1

N

∑
k

∑
i∈{k}

gj (t∗i ,m
∗
i , k)

g (t∗i ,m
∗
i , k)

,

=
∑
k

Pk

k∑
m=0

∫ ∞
0

gj (t,m, k)

g (t,m, k)
∆k,m (t) dt, (12)

where ∆k,m(t) = Fk,msk,m is the actual fraction of {k,m}-nodes that changed from susceptible to infected at time t.
Noting that the total rate of change is given by g(k,m) = Fk,m, it follows that

Gj =
∑
k

Pk

k∑
m=0

∫ ∞
0

gj (t,m, k) sk,m (t) dt, (13)

Assuming that the exogenous contribution is given by transitions that occur when no neighbor is infected, i.e.
gexo (k,m) = Fk,0, the exogenous and endogenous contribution yields:

Gexo =
∑
k

Pk

k∑
m=0

∫ ∞
0

Fk,0sk,mdt,

Gendo =
∑
k

Pk

k∑
m=0

∫ ∞
0

(Fk,m − Fk,0) sk,mdt. (14)

C. Numerical Implementation

Given a degree-sequence k ∈ [kmin, kmax], a degree-distribution Pk, and one of the Fk,m from Eqs. (10,11), we
can solve the set of differential equations for sk,m numerically according to Eq. (7). We use scipy’s [8] odeint-
implementation to get the timeseries ρ(t) from Eq. (9) and the true exogenous and endogenous influence from Eq. (14)
for a particular trajectory. We set as parameters ρ0 = ρ(t0 = 0) = 10−3 and sample the trajectory ρ(t) at discrete
points t ∈ {t0 + i · dt} for i = 1, . . . , N with dt = 0.01 and ρ(t = Ndt) ≥ 1− ρ0.

III. TIME SERIES ESTIMATORS

In this section we explore three different methods of how to quantitatively assess the endogenous and exogenous
factor in the spreading dynamics of a linguistic variant within the population. We want to restrict ourselves to the
analysis of the timeseries of the total fraction of adopters of the innovation, ρ(t), with ρ ∈ [0, 1] given a set of N
observations D = {ti, ρi σi} with i = 1, . . . , N , where ti is the time, ρi the relative usage of one variant over the other,
and σi the error associated to ρi, for details in the real data, see Sec. I

Our starting point for all three methods is the assumption that the dynamics of the total fraction of adopters, ρ(t),
can be effectively described by a generalized population-dynamics model:

d

dt
ρ̃(t) = [1− ρ̃ (t)] g (ρ̃ (t)) , (15)

which means that the rate of change of ρ̃ is determined by an arbitrary function g(ρ̃) only affecting the fraction of
susceptibles, 1 − ρ̃. Further, we want to account for the fact that the fraction of adopters is bounded by the two
asymptotic values y0 and y1 such that ρ(t→ −∞) = y0 and ρ(t→∞) = y1, which gives for the dynamics

d

dt
ρ̃(t) =

{
[y1 − ρ̃] g (ρ̃) , ρ̃ ∈ [y0, y1]

0, else
. (16)

This rescaling of the asymtoyics is necessary to compare the models (in which y0 = 0 and y1 = 1) to data (in which
typically y0 > 0 and y1 < 1). Additional parameter t0 sets the characteristic timescale, such that ρ̃(t0) = 1

2 (y0 + y1),
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which is equivalent to specifying the initial condition. Assuming a parametrization of g(ρ̃ | θ) by the set of parameters
θ we calculate the Least-Squared-Error, ∆(t0, y0, y1, θ) between data D = {ti, ρi, σi} and the resulting curve ρ̃(t |
t0, y0, y1, θ) from our model

∆(t0, y0, y1, θ) =

N∑
i=1

(
ρi − ρ̃(ti | t0, y0, y1, θ)

σi

)2

. (17)

From this we can infer the most likely parameters (t̂0, ŷ0, ŷ1, θ̂):

(t̂0, ŷ0, ŷ1, θ̂) = argmin
(t0,y0,y1,θ)

∆(t0, y0, y1, θ) (18)

A. Method 1: S- vs Exponential Curve

The simplest version of a purely exogenously (endogenously) driven population dynamics spreading process assumes
g(ρ) = a, (g(ρ) = b(ρ − y0)). We want to determine which curve provide a better description of the data. For this,
we calculate the relative likelihood of each model, which is used in an information-theoretic approach to model
selection [9].

Real Data: With these choices of g(ρ) we can solve Eq. (16) analytically which yields a four-parameter curve for
each case:

ρexo(t | t0, y0, y1, a) =

{
y1 − 1

2 (y1 − y0) e−a(t−t0), t ≥ t∗
y0, t < t∗

, (19)

ρendo(t | t0, y0, y1, b) = y0 +
y1 − y0

1 + e−b(y1−y0)(t−t0)
, (20)

with

t∗ = t0 −
ln 2

a
. (21)

Given our observational data D we can then find the best choice of parameters for each case and calculate the
Least-Square-Error ∆exo(t̂0, ŷ0, ŷ1, â) and ∆endo(t̂0, ŷ0, ŷ1, b̂) according to Eqs. (17,18).

In order to decide which of the two models (endogenous or exogenous) fits the data better, we employ the Bayesian
information criterion (BIC) [10] used in model selection [9, 11] which is given by

BICexo = ∆(t̂0, ŷ0, ŷ1, â) + log(N)Kexo (22)

BICendo = ∆(t̂0, ŷ0, ŷ1, b̂) + log(N)Kendo (23)

where Kexo = Kendo is the number of fitted parameters in each model, and N the number of data points. From this
we can calculate the relative likelihood, Lexo (Lendo), quantifying the evidence of the exogenous (endogenous) model
among the selection of the two models (exogenous and endogenous) for the given data [9]:

Lexo =
e−1/2BICexo

e−1/2BICexo + e−1/2BICendo
(24)

Lendo =
e−1/2BICendo

e−1/2BICexo + e−1/2BICendo
(25)

with Lexo + Lendo = 1.
Surrogate Data: For the surrogate data, see Sec. II, we know that y0 = 0 and y1 = 1 by construction. We further

specify the initial condition for the spreading process, ρ(t = t0) = ρ0, which reduces the above curves to one-parameter
models:

ρexo(t | a) =

{
1− (1− ρ0)e−a(t−t0), t ≥ t∗
0, t < t∗

, (26)

ρendo(t | b) =
1

1 + e−b(t−t0)
(27)

with t∗ = t0 + ln(1− ρ0).
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B. Method 2: Mixed Curve

In this section we want to extend our previous model by assuming that, both, exogenous and endogenous driving
is present in the spreading dynamics simultaneously, i.e. g(ρ) = a+ b (ρ− y0).

Real Data: Solving Eq. (16) yields a 5-parameter curve for ρ:

ρmixed(t | t0, y0, y1, a, b) =

{
−(a−by0)(y1−y0)+y1(2a+b(y1−y0))e[a+b(y1−y0)](t−t0)

b(y1−y0)+(2a+b(y1−y0))e[a+b(y1−y0)](t−t0) , t ≥ t∗
y0, t < t∗

, (28)

with

t∗ = t0 −
ln
(
2 + b

a (y1 − y0)
)

a+ b (y1 − y0)
. (29)

We note that the special case a = 0 yields t∗ → −∞, which means that for all finite t: ρ(t) > y0 and only in the limit
ρ(t→ −∞) = y0. Given the data D we estimate the most likely parameters (t̂0, ŷ0, ŷ1, â, b̂) using Eqs. (17,18).

For the given choice of g(ρ) = a+ (b− y0)ρ we define the exogenous and the endogenous influence as

gexo(ρ) = g(ρ = ŷ0) = â, (30)

gexo(ρ) = g(ρ)− gexo(ρ) = b̂(ρ− ŷ0). (31)

From this we can calculate the total exogenous and endogenous influence in the spreading process as the fraction of
the population that switches at time t, ρ̇(t), weighted by the relative exogenous influence, gexo(ρ)/g(ρ), and relative
endogenous influence, gendo(ρ)/g(ρ), respectively, integrated along the complete trajectory ρ(t)

Gexo =
1

ŷ1 − ŷ0

∫ ∞
−∞

dtρ̇(t)
gexo(ρ(t))

g(ρ(t))
(32)

=
1

ŷ1 − ŷ0

∫ ŷ1

ŷ0

dρ
gexo(ρ)

g(ρ)
(33)

=
1

ŷ1 − ŷ0

∫ ŷ1

ŷ0

dρ
â

â+ b̂ (ρ− ŷ0)
(34)

=
1

ŷ1 − ŷ0

â

b̂
ln

[
â+ b̂ (ŷ1 − ŷ0)

â

]
(35)

and

Gendo =
1

ŷ1 − ŷ0

∫ ∞
−∞

dtρ̇(t)
gendo(ρ(t))

g(ρ(t))
(36)

=
1

ŷ1 − ŷ0

∫ ŷ1

ŷ0

dρ
gendo(ρ)

g(ρ)
(37)

=
1

ŷ1 − ŷ0

∫ ŷ1

ŷ0

dρ
b̂ (ρ− ŷ0)

â+ b̂ (ρ− ŷ0)
(38)

= 1− 1

ŷ1 − ŷ0

â

b̂
ln

[
â+ b̂ (ŷ1 − ŷ0)

â

]
, (39)

in which we choose the prefactor 1/(ŷ1 − ŷ0) such that we have the normalization Gexo +Gendo = 1.
Surrogate Data: For the surrogate data, see Sec. II, we know that y0 = 0 and y1 = 1 by construction. We

further specify the initial condition for the spreading process, ρ(t = t0) = ρ0, which reduces the above curve to a
two-parameter model:

ρmixed(t | a, b) =

{
−a(1−ρ0)+(a+bρ0)e(a+b)(t−t0)

b(1−ρ0)+(a+bρ0)e(a+b)(t−t0) , t ≥ t∗
0, t < t∗

, (40)

with

t∗ = t0 +
1

a+ b
ln
a (1− ρ0)

a+ bρ0
. (41)
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C. Method 3: Nonparametric Curve

In this section we want to infer the exogenous and the endogenous influence non-parametrically not assuming any
specific functional form of g(ρ). The idea is to infer g(ρ) from the timeseries directly according to Eq. (16)

ĝ(ρ) :=
ρ̇(t)

y1 − ρ(t)
. (42)

From this we can infer the exogenous and the endogenous influence along the trajectory ρ:

gexo = ĝ(ρ = y0) (43)

gendo = ĝ(ρ)− ĝ(ρ = y0) (44)

which gives for the total exogenous and endogenous contribution

Gexo =
1

y1 − y0

∫
dρ
gexo

ĝ(ρ)
(45)

Gendo =
1

y1 − y0

∫
dρ
gendo

ĝ(ρ)
(46)

Surrogate Data: For the surrogate data we can infer g(ρ) directly with the timeseries ρ(t) being sampled at a given
resolution in discrete time, t = (ti) with i = 1..N , such that we can approximate the time-derivate of ρ(t) by finite
differences, e.g.

ρ̇(ti) ≈
ρ(ti+1)− ρ(ti)

ti+1 − ti
(47)

for i = 1...N − 1. Assuming that ρ(t) is a monotone function in t, i.e. t = t(ρ), we can express the time derivative as

ρ̇(t)
t=t(ρ)−→ ρ̇(ρ) (48)

such that we can evaluate ĝ(ρ), see Eq. (42), from the timeseries ρ(t) and its derivative ρ̇ via:

ĝ(ρ) :=
ρ̇ [t(ρ)]

1− ρ (49)

Real Data: Real data is only available with a given resolution in t and is subject to fluctuations, therefore the
direct calculation of ρ̇ in Eq. (42) does not lead to meaningful results. Instead, we want to infer g(ρ) indirectly, i.e.
find a particular choice of g(ρ) that yields the best description of the data by solving Eq. (16) for ρ(t) and then
applying Eqs. (17,18). Our approach is to parametrize g(ρ) by means of a natural cubic spline s(ρ) [11]. Therefore,
we divide the support of g(ρ), ρ ∈ [y0, y1], into n intervals of equal length h = y1−y0

n , {[y0 + (i − 1)h, y0 + ih} for
i = 1...n. In each interval i we define a cubic polynomial, such that the resulting curve sn(ρ) is piecewise-polynomial
of order 4 and has continuous derivatives up to order 2. Furthermore, we restrict ourselves to natural cubic splines
which implies that s′′n(ρ = y0) = s′′n(ρ = y1) = 0. The resulting spline sn(ρ) contains n+ 1 parameters θ = (θi) with
i = 1...n+ 1 and two additional parameters (y0, y1) specifying the asymptotic values for ρ(t→ ±∞) which we denote
by sn(ρ | (y0, y1, θ)).

For any given n we can infer ĝn(ρ) = sn(ρ | ŷ0, ŷ1, θ̂) by Eqs. (16,17,18), which requires an extra parameter t0
setting a characteristic time-scale of the change of ρ(t) in time. In total, for a parametrization of g(ρ) by a natural
cubic spline on n intervals, we have K = n + 4 parameters. Finally, the exogenous and the endogenous influence in
the spreading are calculated via Eqs. (43-46).

The crucial step then is to decide which value to choose for n as we have to find a trade-off between the most
accurate description of the data and the problem of overfitting known as model selection [11]. We infer the best model
by means of the Bayesian information criterion (BIC), which penalizes models with additional parameters according
to:

BIC = ∆ + log(N)K, (50)

where ∆ is the Least-Square error of the best fit of a given model according to Eqs. (17,18), K is the number of
parameters estimated, and N is the number of datapoints. Due to computational constraints we restrict ourselves to
the cases n = 1, ...10.
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D. Numerical Implementation

The above mentioned methods require the minimization of the least-square error, see Eq. (18), in the space of
parameters (t0, y0, y1, θ). We find the most likely parameters (t̂0, ŷ0, ŷ1, θ̂) numerically using the ’L-BFGS-B’-algorithm
[12] from scipy’s optimization package [8]. The algorithm allows to impose additional constraints on a parameter x,
such that we ensure that xmin ≤ x̂ ≤ xmax. In our case we choose the following constraints:

1. t0 is unconstrained,

2. 0 ≤ y0, y1 ≤ 1 since these parameters describe the asymptotic values of the fraction of adopters, i.e. ρ(t→ ±∞),

3. 0 ≤ a, b for method 1 and 2 considering positive exogenous and endogenous contributions,

4. 0 ≤ θi for i = 1, . . . , n+ 1 for method 3 in order to guarantee that ĝ(ρ) ≥ 0.

Addressing the issue of local minima, for each timeseries we perform the minimization task 100 times with different
randomly chosen initial conditions in parameter space and select the global minimum.

We calculate the confidence intervals from standard bootstrapping [11], i.e. performing the same analysis for a
number of B surrogate datasets obtained from random sampling with replacement of the original data (here B = 200).

In Fig. 1-4 we show the individual timeseries from the data described in Sec. I, the best fit of the mixed curve,
method 2 from Sec. III B, and the results for assessing the L and the exogenous factor, Gexo, from all three methods,
Sec. III A-III C. Timeseries and fitting script are available in Ref. [1].
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Figure 1: Orthographic Reform of 1901 and 1996. The timeseries show the data (dots), the best fit of method 2 (line) with the
values of its two parameters â and b̂, and the boxplot for the estimation of Gexo (inset) for all three methods: method 1 (left),
method 2 (middle), and method 3 (right) with the result for the full data (red cross) and the 97.5%-, 75%-, 50%-,25%-, and
2.5%- percentiles from bootstrapping (black lines). Timeseries and fitting script are available in Ref. [1].
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â = 0.005

b̂ = 0.119

Verb: ”abide”

0

1

Gexo

1800 1850 1900 1950 2000 2050

t

0.0

0.2

0.4

0.6

0.8

1.0

ρ
(t

)
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â = 0.006

b̂ = 0.024

Verb: ”smell”

0

1

Gexo

1800 1850 1900 1950 2000 2050

t

0.0

0.2

0.4

0.6

0.8

1.0

ρ
(t

)
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Figure 2: Regularization of English Verbs. Description see Fig. 1.
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â = 0.07

b̂ = 0.0

Russian -ov (en): ”demidov”

0

1

Gexo

1800 1850 1900 1950 2000 2050

t

0.0

0.2

0.4

0.6

0.8

1.0

ρ
(t

)
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â = 0.107

b̂ = 0.0

Russian -ov (en): ”tambov”

0

1

Gexo

Figure 3: Transliteration of Russian -ов (en). Description see Fig. 1. For the word "charkov" the best fit is a step function
meaning that there is no local minimum in the Least-Squared-Error, Eq. 17, for finite values of the parameters a, b; therefore,
the numerical estimation of Gexo is omitted.
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Figure 4: Transliteration of Russian -ов (de). Description see Fig. 1. For the word "tambov" the best fit is a step function
meaning that there is no local minimum in the Least-Squared-Error, Eq. 17, for finite values of the parameters a, b; therefore,
the numerical estimation of Gexo is omitted.
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