

Figure S1. Spotting assay using respiratory substrates for initial and all MA lines. Wt and $\Delta 8$ strains were analyzed on plates containing 2% glucose (Glu), ethanol (EtOH), glycerol (Gly) and lactic acid (Lac), respectively, to analyze the function of mitochondria. Left panel shows the growth of Wt lines and right panel of $\Delta 8$ lines. All MA lines were able to utilize all respiratory substrates excluding the $\Delta 8$ MA line 6, which showed poor growth on glycerol and lactic acid plates.

Table S1. Yeast strains used in this study.

Strain	Designation of Wt and mutant cells	Genotype	Source
BY4741	Wt	MAT a his3 leu2 met15 ura3	ATCC
GY25	Δ3Gpx	MAT a his3 leu2 met15 ura3 Δgpx1:URA3, Δgpx2:HIS3, Δgpx3: KAN	Avery et al., 2001
GY14	Δ5Prx	MATa his3 leu2 met15 ura3 Δtsa1:KAN, Δtsa2:LEU2, Δdot5:MET15, Δahp1:HIS3, Δprx1:URA3	Wong et al., 2004
GY150	Δ6 (all ΔPrx +ΔGpx1)	MATa his3 leu2 met15 ura3 Δgpx3:KAN, URA3, Δtsa1:KAN, Δtsa2:LEU2, Δdot5:MET15, Δahp1:HIS3, Δprx1:URA3	This study
GY29	Δ7 (all ΔPrx+2 ΔGpx1,3)	MATa his3 leu2 met15 ura3 Δgpx1:URA3, Δgpx3:KAN, Δtsa1:KAN, Δtsa2:LEU2, Δdot5:MET15, Δahp1:HIS3, Δprx1:URA3	Fomenko et al., 2011
GY100	Δ8 (all ΔPrx+all ΔGpx)	MATa his3 leu2 met15 ura3 Δtsa1:KAN, Δtsa2:LEU2,Δdot5:MET15, Δahp1:HIS3, Δprx1:URA3, Δgpx2:HYG, Δgpx1:URA3, Δgpx3:KAN	Fomenko et al., 2011
GY151	Δ8 (all ΔPrx+all ΔGpx)	MATa his3 leu2 met15 ura3 Δtsa1:KAN, Δtsa2:LEU2,Δdot5:MET15, Δahp1:HIS3, Δprx1:URA3, Δgpx2:HYG, Δgpx1:NAT, Δgpx3:KAN	This study

Figure S2

Figure S2. Chromosome distribution of mutations in the original $\Delta 8$ strain. A) Number of mutations was normalized according to chromosome length and plotted for each chromosome. B) Distribution of initial mutations (red dots) together with mutations identified after the long- term growth (blue dots) per chromosome shown with replication timing (Koren *et al.* 2010).

Table S2.	Lifespan	analysis	of MA	lines.
-----------	----------	----------	-------	--------

	MA-line	MA-line	Initial	Initial	%	Ranksum
MA-line	Mean	Ν	Mean	Ν	Change	P-Value
1	4.4	20	9.2	20	52.2	0.011
2A	7	20	9.2	20	23.9	0.26
2B	6.9	20	9.2	20	25.0	0.23
3	6.3	20	9.2	20	31.5	0.14
4	4.3	20	9.2	20	53.3	0.011
5	6.4	20	9.2	20	30.4	0.13
6	6.4	20	9.2	20	30.4	0.13
Wt-1	15.8	20	20.7	20	23.7	0.11
Wt-2	16.6	20	20.7	20	19.8	0.13
Wt-3	19.8	20	20.7	20	4.6	0.79

Figure S3. Observed versus expected distances between repeats and mutations in the initial $\Delta 8$ strain. Variable tandem repeats were extracted from Vinces *et al.* 2009 (intergenic repeats) and Verstrepen *et al.* 2005 (intragenic repeats) for our analysis. Blue circles are the observed versus expected distances between mutations in the initial strain and their nearest repeat. The expected distances between mutations and repeats were calculated by averaging over 100 randomized locations of mutations. The diagonal represents equal expected and observed distances. Only repeats of length of 5 bp or more and a repeat number of 3 or more were used for this analysis.

Table S3. Primers used for RNA-seq library preparation.

3' adapter	AppAGATCGGAAGAGCACACGTCT/3ddC/
RT-primer	pGATCGTCGGACTGTAGAACTCTGAACCTGTCGGTGGTCGCCGTATCATT/iSp18/
1	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
PCR forward	AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGACGATC
	CAAGCAGAAGACGGCATACGAGAT <u>CGTGAT</u> GTGACTGGAGTTCAGACGTGTGCTCTT
	CCGATCT
	CAAGCAGAAGACGGCATACGAGATACGAGATCGGTGACTGGAGTTCAGACGTGTGCTCTT
	CCGATCT
	CAAGCAGAAGACGGCATACGAGAT <u>GCCTAA</u> GTGACTGGAGTTCAGACGTGTGCTCTT
	CCGATCT
	CAAGCAGAAGACGGCATACGAGAT TGGTCA GTGACTGGAGTTCAGACGTGTGCTCTT
	CCGATCT
	CAAGCAGAAGACGGCATACGAGAT <u>CACTGT</u> GTGACTGGAGTTCAGACGTGTGCTCTT
PCR reverse	CCGATCT
	CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCAGACGTGTGCTCTT
	CCGATCT
	CAAGCAGAAGACGGCATACGAGAT <u>GATCTG</u> GTGACTGGAGTTCAGACGTGTGCTCTT
(indexed)	CCGATCT
	CAAGCAGAAGACGGCATACGAGAT TCAAGT GTGACTGGAGTTCAGACGTGTGCTCTT
	CCGATCT
	CAAGCAGAAGACGGCATACGAGAT CTGATC GTGACTGGAGTTCAGACGTGTGCTCTT
	CCGATCT
	CAAGCAGAAGACGGCATACGAGAT AAGCTA GTGACTGGAGTTCAGACGTGTGCTCTT
	CCGATCT
	CAAGCAGAAGACGGCATACGAGAT AAGCTA GTGACTGGAGTTCAGACGTGTGCTCTT
	CCGATCT
	CAAGCAGAAGACGGCATACGAGAT TACAAG GTGACTGGAGTTCAGACGTGTGCTCTT
	CCGATCT

Figure S4. Pulse-field gel analysis showing chromosome size comparison between Wt and $\Delta 8$ isolates. PFGE was conducted using a BioRad Contour-clamped homogeneous electric field (CHEF) Mapper XA system and genomic samples were prepared using the CHEF genomic DNA plug kit. Agarose-embedded chromosomal DNA preparation and running conditions were performed according to the kit manual.

Figure S5. List of point mutations and indels in $\Delta 8$ MA lines following the long-term growth experiment. Green shows the presence of mutations with positions for each MA line represented by each column. Red shows the absence of mutations for this position for the indicated MA line. A) Point mutations. B) Deletions. C) Insertions.

Α					MA lines					В						MA	line	s
	Pos	ition	Ref/Alter	A.A. change	Initial	1	2	3		_	Chr	Start	End	Insertion	Initial	1	2	3
	Chr_2	140112	T-C	E-K							Chr_l	206179	206180	С				
	Chr_3	125215	A-G								Chr_9	39373	39374	AA				
	Chr_3	199081	G-A	L							Chr_9	105430	105431	AA				
	Chr_4	1525340	C-A								Chr_14	784124	784125	т				
	Chr_11	666757	G-T								Mito	50784	50785	CC				
	Chr_12	714450	G-C	P-R														
	Chr_15	100064	A-G	K-E														

Figure S6. List of point mutations and indels in Wt MA lines following the long-term growth experiment. Same representation is shown here for Wt MA lines as in Figure S5.

Figure S7. Clustering mutations in the new $\Delta 8$ isolate. Observed versus expected distances between adjacent mutations were analyzed as described in Figure 3B.

Figure S8. Sensitivity of Δ 8 and Wt cells to DNA damage agents. Ten-fold dilution of Wt and Δ 8 cells grown on YPD plates containing 15 µg/ml camptothecin (replication inhibitor), 150 mM hydroxyurea (replication inhibitor), 0.3 µg/ml phleomycine (double strand break inducer) or 15 µg/ml benomyl (microtubule poison).

Files S1-S2 are available for download as Excel files at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.169243/-/DC1.

File S1. List of mutations and indels in the initial $\Delta 8$ strains. Excel spreadsheet shows the position and nucleotide change of point mutations and indels in the $\Delta 8$ strains. If the mutation is in the coding region, gene was indicated on the right of the each position together with amino acid change. Genes without amino acid change indicates silent mutations.

File S2. List of genes and expression values analyzed in Wt and mutant strains. Log 2 value of each gene was clustered and analyzed to yield expression profile.

References

Koren, A., H. J. Tsai, I. Tirosh, L. S. Burrack, N. Barkai *et al*, 2010 Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase. PLoS Genet. **6**: e1001068.

Verstrepen, K. J., A. Jansen, F. Lewitter and G. R. Fink, 2005 Intragenic tandem repeats generate functional variability. Nat. Genet. **37:** 986-990.

Vinces, M. D., M. Legendre, M. Caldara, M. Hagihara and K. J. Verstrepen, 2009 Unstable tandem repeats in promoters confer transcriptional evolvability. Science **324**: 1213-1216.