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PRIMUS: Rapid Reconstruction of Pedigrees
from Genome-wide Estimates of Identity by Descent

Jeffrey Staples,! Dandi Qiao,%3 Michael H. Cho,%* Edwin K. Silverman,2+ University of Washington
Center for Mendelian Genomics,! Deborah A. Nickerson,'* and Jennifer E. Below5*

Understanding and correctly utilizing relatedness among samples is essential for genetic analysis; however, managing sample records
and pedigrees can often be error prone and incomplete. Data sets ascertained by random sampling often harbor cryptic relatedness
that can be leveraged in genetic analyses for maximizing power. We have developed a method that uses genome-wide estimates
of pairwise identity by descent to identify families and quickly reconstruct and score all possible pedigrees that fit the genetic data by
using up to third-degree relatives, and we have included it in the software package PRIMUS (Pedigree Reconstruction and Identification
of the Maximally Unrelated Set). Here, we validate its performance on simulated, clinical, and HapMap pedigrees. Among these samples,
we demonstrate that PRIMUS can verify reported pedigree structures and identify cryptic relationships. Finally, we show that PRIMUS
reconstructed pedigrees, all of which were previously unknown, for 203 families from a cohort collected in Starr County, TX (1,890

samples).
Introduction

Following the transmission of variants through a genealogy
is at the foundation of modern genetics. Today, investiga-
tors continue to use pedigrees to determine the heritability
and genetic models for traits and disorders, and knowing
the exact pedigree structure allows them to correctly iden-
tify the genetic mode of disease inheritance and utilize
powerful genetic-analysis tools that require, or benefit
from, the true pedigree structure. Such tools include link-
age,' family-based association,” pedigree-aware imputa-
tion, pedigree-aware phasing, Mendelian error checking,
heritability, and pVAAST (Pedigree Variant Annotation,
Analysis, and Search Tool).” In many instances, knowing
the pedigree that is consistent with the generated genetic
data is crucial to solving the disease.®”” Additionally, the
collection of samples from a limited geographical region
for a genetic analysis might introduce biases toward unin-
tentionally obtaining samples of unknown relatedness
for which a previously unknown pedigree could be recon-
structed and used. As a result, large case-control consortia
can harbor cryptic relatedness,® which can bias the analysis
unless the cryptic relatedness is removed or investigators
use a method that models a kinship matrix.” However, a
substantial increase in power can be obtained if the true
pedigree structures are known.’

Given the benefits of family-based studies in genetic
research, an enormous amount of effort is spent collecting
and maintaining accurate sample records and correspond-
ing pedigrees. However, despite the best efforts of investi-
gators, pedigree and sample errors are still quite common
and require careful examination so that reductions in
power to detect linkage can be avoided.'® The rate of non-

paternities in studies has been reported to be between 0.8%
and 30% (median = 3.7%; n = 17),'! and other reports
have shown more conservative estimates at around 1%-
1.5%.'*'? Even at the conservative rate of 1%, a pedigree
with six children has a 6% chance of being incorrect as a
result of a nonpaternity error, and the pedigree error rate
will be much higher after other common errors, such as
sample swaps, duplicate samples, contamination, and
other relationship discrepancies, are accounted for. The
standard practice for checking and correcting pedigrees
and relationships within genetic data sets is to use pairwise
prediction programs,'*'® such as RELPAIR'® and PREST
(Pedigree Relationship Statistical Test),”’ to verify that
the level of relatedness between every pair of individuals
falls close to the expected level of relatedness from the
reported pedigree.”'*%

Although using pairwise estimates to check relationships
in pedigrees is sometimes sufficient, there are four major
drawbacks that we illustrate in this manuscript. First, pair-
wise checking will not catch pedigree errors if there are mul-
tiple pedigree structures that fit the genetic data and if the
reported pedigree structure is among the incorrect possibil-
ities. Second, pairwise relationship checking does not pro-
vide, or even suggest, the correct pedigree in the case of
inconsistency between the data and the reported pedigree.
Instead, these methods flag inconsistent relationships for
theinvestigator toreview by hand. Third, pairwise inconsis-
tencies between genotyped samples are often resolved by
the removal of the inconsistent sample(s), which can result
in the unnecessary loss of samples or in accepting an
incorrect pedigree as true. Fourth and finally, manually
reconstructing an unknown pedigree with pairwise rela-
tionship comparisons requires arduous, error-prone labor.
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Table 1. Expected Mean IBD Proportions for the Outbred Familial
Relationship Categories

Familial Relationship IBDO IBD1 IBD2
Parental 0 1 0
Full-sibling 0.25 0.5 0.25
Half-sibling, avuncular, and grandparental 0.5 0.5 0
First-cousin, great-grandparental, great- 0.75 0.25 0
avuncular, and half-avuncular

Distantly related varies  varies 0
Unrelated (includes relationships beyond 1 0 0

the third degree)

IBDO, IBD1, and IBD2 are the genome proportions shared on 0, 1, and 2
chromosomes, respectively, between two individuals. Many relationships share
the same expected mean IBD proportions; however, for full-sibling, second-
degree, and third-degree relationships, a variance around the expected
mean is due to the random nature of recombination events. Genotyping and
other technical errors can contribute to this variance.

Previous attempts have been made to address this issue.
For example, Pemberton et al.”’ manually reconstructed
cryptic HapMap3 pedigrees, but the authors encountered
inconsistencies they could not resolve by hand.

A possible solution to the drawbacks of checking pedi-
grees by pairwise comparisons is to use the genetic data
to reconstruct the corresponding pedigree structure.
Ideally, pedigree reconstruction would not only identify
any inconsistencies in a pedigree but also automatically
provide the correct pedigree. Pedigree-reconstruction
methods exist, but the reason they are not the standard
for checking pedigrees in genetics studies is that existing
methods have limited uses. Current approaches are limited
in the number of genetic variants that can be used, > are
heavily biased in the presence of linkage disequilibrium
between markers,”® cannot reconstruct half-sibling rela-
tionships,®**° or cannot reconstruct a pedigree if it is con-
nected by individuals for whom no genotype data are
available.?°~*? Even the most recent methods—COP (Con-
structing Outbred Pedigrees) and CIP (Constructing Inbred
Pedigrees),”* IPED (Inheritance Path-based Pedigree Recon-
struction)** and IPED2, and PREPARE (Partitioning of Rel-
atives)*°*—assume that all genotyped individuals are in the
same generation, requiring a priori knowledge of the rela-
tive generations of the samples or the pedigree structure.
Using the age of individuals is not adequate; for example,
it is not uncommon to have an uncle or aunt younger
than a niece or nephew. The most recent methods are
good at reconstructing a small niche of pedigrees struc-
tures, but few pedigree structures typical of human genetic
studies fall into this niche. Indeed, these are not capable of
reconstructing many basic and common pedigree struc-
tures (e.g., trios).

We have developed a pedigree-reconstruction method
without many of the limitations of previous pedigree-
reconstruction programs and have incorporated it into
a software package known as Pedigree Reconstruction and
Identification of the Maximally Unrelated Set (PRIMUS).*’

Our method utilizes the power of SNP arrays or next-gener-
ation sequence data to evaluate genome-wide identity-by-
descent (IBD) estimates generated by programs such as
PLINK'* or KING (Kinship-Based Inference for Genome-
wide Association Studies).'® Our method assigns relation-
ships by using the expected mean and variance for each
relationship class and leverages all pairwise relationships
within a family (as well as genetically determined sex) to
reconstruct the possible pedigree structures in a manner
consistent with the observed pairwise sharing. We de-
signed PRIMUS to improve on previous methods in several
ways—PRIMUS (1) automatically reconstructs multigener-
ational pedigrees with genotyped samples in any genera-
tion, (2) reconstructs pedigrees by using all individuals
connected to a pedigree at a level of third-degree relatives
or closer, (3) requires no prior knowledge of the pedigree
structure, (4) allows for missing (i.e., nongenotyped)
individuals in the pedigree, (5) appropriately incorporates
half siblings, (6) allows for, but does not require, additional
information such as sex and age of samples to improve
reconstruction, and (7) inputs and outputs common file
formats to improve usability.

In this report, we validate the performance of PRIMUS
on thousands of simulated pedigrees. We also demonstrate
its ability to reconstruct clinical pedigrees and HapMap3
pedigrees and to find previously unknown relationships
in a large population-based study from Starr County, TX,
illustrating that PRIMUS can (1) reconstruct, validate,
and correct reported pedigrees, (2) incorporate cryptic
relatedness into known pedigrees, and (3) find and recon-
struct previously unknown pedigrees that can exist within
large genetic data sets.

Material and Methods

Simulated Pedigrees

We generated simulated pedigrees for the training and initial
testing of PRIMUS by using a broad range of known pedigrees
that contained different structures, sizes, genotypes, and combina-
tions of missing data among the individuals. In all, thousands of
pedigrees were generated for three classes of pedigree structures:

1. Size-12 pedigree: a 12-person pedigree that contains all rela-
tionships from Table 1 (Figure S1, available online).

2. Uniform pedigree: a variable-sized pedigree with no half-sib-
ling relationships and in which each pair of parents is ex-
pected to have three children. However, so that the desired
pedigree sizes can be obtained, there could be a single pair of
parents with as few as one child or as many as four children
(Figure S2).

3. Half-sibling pedigree: identical to the uniform pedigree
except that there is a 30% chance that one person from
each pair of parents has two children with another individ-
ual (Figure S2).

For both the uniform and the half-sibling pedigrees, we simulated
complete pedigrees of sizes ranging from 5 to 400 individuals. For
each pedigree, we created different genotypes for 100 versions of
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the pedigree structures by using the method applied by Morrison*®
(see Web Resources): we randomly selected founder haplotypes with
~1,000,000 SNPs from among the unrelated HapMap3 CEU (Utah
residents with ancestry from northern and western Europe from
the CEPH collection) samples, and we simulated recombination as
a homogeneous Poisson process by disregarding the centromere
and using the approximation 1 Mb = 1 cM. We compared the true
IBD proportions to those calculated by PLINK for IBD estimates
generated from 6,000 and 1,000,000 SNPs (Figure S3). The correla-
tion between the estimates and the true values was r* = 0.999
with pedigrees of size 10 and 1> = 0.974 with pedigrees of size 400.
IBD estimates generated from as few as 6,000 SNPs were still remark-
ably accurate (Table S1), and they improved as the number of SNPs
increased. We also tested the accuracy of IBD estimates calculated
with the overlap of the approximately 1,000,000 HapMap3 SNP
set and commonly used SNP panels and found high accuracy levels
(Table S1). Unless otherwise stated, the complete ~1,000,000-SNP
sets were used for the simulations.

We also simulated data missingness in each of the uniform and
half-sibling pedigrees. To accomplish this, we created ten addi-
tional versions of each pedigree by iteratively masking genetic
data for a single sample until we had masked up to ten missing
individuals. Data were eligible for masking if the individual had
children and if his or her masking did not create a gap larger
than a third-degree relationship. Eligible samples were masked at
random, creating unique combinations of missing sample data
for each pedigree.

IBD Estimates

PRIMUS takes input from any program that provides estimates of
the proportions of the genome shared identically by descent on
zero, one, and two chromosomes (IBDO, IBD1, IBD2, respectively).
We note that calculating accurate relationships and estimating
pairwise IBD is a nontrivial problem and one that has been tackled
by a number of methodologies.'*'®*°**! IBD proportions pre-
sented here were calculated with the method-of-moments estima-
tion implemented in PLINK.'* Although it is not required for
simulated pedigrees, some pedigrees might require careful analysis
of admixture in the samples. In these cases, we applied the
approaches recommended by Morrison®® to remove ancestry-
informative SNPs that could otherwise bias IBD estimates. The
code used for calculating IBD estimates is available for download
with the PRIMUS package (Web Resources).

Family-Network Identification

PRIMUS first groups the samples into family networks (or groups) on
the basis of the estimated pairwise coefficient of relatedness (two
times the kinship coefficient).’” An individual is only added to a
family network if the sample is related to at least one other person
in the network given a user-defined minimum coefficient of related-
ness. For example, 0.1875, the midpoint between the mean ex-
pected IBD proportion for second- and third-degree relatives, is a
threshold that will capture connections between most second-
degree relatives or closer. The pedigree reconstruction is then per-
formed independently on each family network within the data set.

Familial-Relationship Prediction Using a
Kernel-Density-Estimation Function

PRIMUS uses six relationship categories to reconstruct pedigrees
on the basis of the expected mean IBDO, IBD1, and IBD2 estimates
shown in Table 1; however, distantly related and unrelated sam-

ples are handled as the same class during reconstruction. Both
biological factors (i.e., recombination events, population substruc-
ture, historic inbreeding) and technical factors (i.e., density and
distribution of the genotyped markers) contribute to variation
around these means.

Given the IBDO, IBD1, and IBD2 estimates for a pair of individ-
uals, PRIMUS predicts the corresponding relationship category
by using a trained kernel density estimation (KDE; see Web
Resources) for each of six familial relationship categories. We
used the scipy.stats.gaussian_kde function (see SciPy in the Web
Resources) with two training features: genome-wide estimates of
IBDO and IBD1. The training IBDO and IBD1 estimates were
selected from the IBD estimates generated with 6,000 SNPs for
the 1,000 size-12 simulated pedigrees. We chose to use the lower
number of SNPs so that the KDE could better handle the technical
noise that comes with estimating IBD. We selected parent-
offspring (PO), full-sibling (FS), second-degree, third-degree,
distantly related, and unrelated relationships from each of the
1,000 simulated pedigrees and used them to train the respective
KDEs. We used these simulated IBD proportions to train a KDE
function for each of the six familial relationship categories.

Because bandwidth selection influences the trained KDE, we
tested each KDE with different values for the coefficient factor
used in calculating the kernel covariance matrices (Figure S4).
These empirical tests allowed us to select the coefficient that best
optimized reconstruction performance for the KDE of each rela-
tionship category. For the overlapping KDE distributions, we
selected the smallest bandwidth that had no false-negative predic-
tions of our test data set at a likelihood cutoff of 0.01 or lower. We
selected the largest bandwidths possible for PO and FS relation-
ships without overlap of the density distributions with other
relationship categories. This minimizes the false-positive calls for
these predictions. Figure S5 shows a density plot for the KDE of
each relationship category, which is consistent with previous
reports of genome-wide IBD proportions.**

PRIMUS uses the trained kernels to predict the familial relation-
ship category for each pairwise relationship. For a set of IBDO,
IBD1, and IBD2 proportions, PRIMUS queries each kernel for the
density at the IBDO and IBD1 values and stores the density for
each familial category in a vector. Then PRIMUS normalizes the
vector by dividing each density by the sum of all densities, produc-
ing a vector of the likelihoods corresponding to each familial
category. This relationship-likelihood vector is used during both
reconstruction and ranking of possible pedigrees.

Pedigree-Reconstruction Algorithm
For each family network, PRIMUS uses the relationship-likelihood
vectors of all pairwise relationships to reconstruct all possible ped-
igrees, which is subject to the restrictions that (1) only relatives up
to the third degree are considered and (2) the likelihood of each
relationship class considered must exceed a minimum likelihood
threshold (initial default of 0.3). We chose 0.3 as a good initial
likelihood threshold on the basis of the relationship predictions
of the uniform size-400 pedigrees (see Figure S4 for details).
Reconstruction is an iterative process of identifying a pairwise
relationship that is within the family network but that has not
yet been incorporated into the pedigree, fitting that relationship
into the pedigree, and testing that all of the relationships gener-
ated by adding the individual are compatible with the relation-
ship-likelihood vectors and sex data for all of the samples. If the
addition of a relationship is incompatible with the relationship-
likelihood vectors or if two individuals of the same sex have
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offspring, the pedigree is rejected and removed from the set of
possible pedigrees. The reconstruction continues until all pairwise
relationships from the family network are represented in each
possible pedigree or until there are no possible pedigrees left for
reconstruction.

PRIMUS reconstructs in three phases. Phase 1 uses PO and FS
relationships. These two types of relationships are the most
accurately predicted because PO relationships have no biological
variance around the expected proportion of sharing, and FS rela-
tionships are the only nonconsanguineous relationships with
IBD2 greater than 0. Phase 1 creates a backbone on which the
more distant relationships are built. It adds a PO relationship be-
tween individuals A and B to the pedigree by creating a version
of the pedigree in which A is the parent of B and another version
in which B is the parent of A. Missing individuals are added as
necessary so that each individual in the family network has zero
or two parents. In phase 2, PRIMUS reconstructs second-degree
(half-sibling, avuncular, and grandparental) relationships. The al-
gorithm tests all possible rearrangements for each second-degree
relationship within the pedigree and adds missing individuals to
connect portions of the pedigree as necessary. Phase 3 is identical
to phase 2, except that it considers third-degree (first-cousin, half-
avuncular, great-avuncular, and great-grandparental) relation-
ships. Because PRIMUS always checks every possible way that a
sample can be added to the pedigree and eliminates pedigrees
that do not fit, it is effectively exploring the entire search space
of possible pedigrees. At present, PRIMUS does not reconstruct
complex relationships (e.g., half sibling plus first cousin or double
first cousins), consanguineous relationships, or relationships more
distant than third-degree relatives. If one of these relationships is
present in the data set, PRIMUS will match it to one of the relation-
ship categories in Table 1 and fit the relationship into the pedigree
accordingly.

Automatically Adjusting the Likelihood Threshold

If PRIMUS reaches the end of reconstruction and has zero possible
pedigrees remaining, then it will automatically lower the likeli-
hood threshold from the default of 0.3 to 0.2 and will rerun, allow-
ing PRIMUS to consider additional possible pairwise relationships
with likelihoods between 0.2 and 0.3. PRIMUS will continue to
gradually drop the likelihood threshold until it produces a possible
pedigree or it reaches a threshold below 0.01. If no possible pedi-
grees result from reconstruction after the threshold is lowered
below 0.01, then PRIMUS stops reconstruction. For further details,
see Figure S4.

Pedigree Scoring

For many families, there is only one possible pedigree that fits the
data and the true pedigree. However, as a result of the unknown
directionality of some relationships and missing data for individ-
uals, PRIMUS can reconstruct more than one possible pedigree—
including the true pedigree—that fits the genetic data. We attempt
to increase the chances that the true pedigree is near the top of the
list by ranking the possible pedigrees according to the relation-
ship-likelihood vectors to obtain a pedigree score.

PRIMUS will rank the pedigrees according to a pedigree score it
calculates by summing the log of the likelihood value of each rela-
tionship in the pedigree. For example, if a pedigree has only two
individuals, and they have a 0.6 likelihood of being second-degree
relatives and a 0.4 likelihood of being third-degree relatives, then
all pedigrees in which they are second-degree relatives will be

ranked higher than pedigrees in which they are third-degree rela-
tives. Additionally, if the ages of individuals are provided, then
PRIMUS will flag and rank all pedigrees in which the ages are
inconsistent (e.g., a child is older than a parent).

PRIMUS Results and Output

PRIMUS uses Cranefoot*® (Web Resources) to provide an image of
each pedigree and provides the corresponding PLINK-formatted
FAM file. Summary results, as well as a list of the possible relation-
ships for each pair of related individuals (similar to Table S5),
are provided for each family network and the entire data set. See
the PRIMUS documentation for a complete list and description
of output files and formats (Web Resources).

Pedigree-Checking Program

PRIMUS also has the ability to check that a reported pedigree is
among the produced reconstructed pedigrees. The user provides
the reported pedigree in the form of a PLINK FAM or PED file,
and PRIMUS compares it to each of the reconstructed pedigrees
to see whether there is a match. In the case that the reconstruction
includes additional samples that are not part of the reported
pedigree, PRIMUS will find the match and report that there are
additional genotyped samples included in the pedigree.

Reconstructing Authentic Pedigrees

We tested the ability of PRIMUS to reconstruct several different
pedigrees by using real genetic data. IBD estimates were obtained
from genotypes generated with a HumanCytoSNP-12 BeadChip
for all available pedigrees obtained by the University of Washing-
ton Center for Mendelian Genomics (UW CMG), with the excep-
tion of 49 pedigrees for which only exome sequencing data were
generated (see the Boston Early-Onset Chronic Obstructive
Pulmonary Disease [EOCOPD] Study samples in the Web Re-
sources). UW CMG studies were approved by the institutional
review boards of the University of Washington, and informed
consent was obtained from participants or their parents. The
Boston EOCOPD Study participants provided written informed
consent, and the Partners HealthCare Human Research Commit-
tee approved the study.

IBD estimates for HapMap3 were generated with HapMap3
release 2 data (Web Resources). We used PLINK to calculate all
IBD estimates by using SNPs with a minor allele frequency > 1%
and a call rate > 90%. We used PRIMUS to identify the maximum
unrelated set for each HapMap3 population and used the allele fre-
quencies from the unrelated samples for the IBD analysis of their
own respective populations.

The Starr County Health Studies’ Genetics of Diabetes Study is
composed of 1,890 affected individuals and representative control
samples from a systematic survey conducted in Starr County from
2002 to 2006.** However, the types of relationships and potential
families in the study are unknown. IBD estimates for the Starr
County samples were generated from genotypes called from the
Affymetrix Genome-Wide SNP Array 6.0.** We used PLINK to
calculate all IBD estimates by using SNPs with a minor allele fre-
quency > 1% and a call rate > 90%. We used PRIMUS?*’ to identify
the maximum unrelated set for the Starr County data and used
the allele frequencies from the unrelated samples for the IBD esti-
mations. The Starr County Health Studies’ participants provided
written informed consent, and the institutional review boards
of the University of Texas Health Science Center at Houston
approved the study.
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Figure 1. A Summary of the PRIMUS
Reconstructions for 1,000 Simulated
Pedigrees

All simulated uniform size-20 (A) and uni-
form size-40 (B) pedigrees with up to 20%
missing samples were reconstructed with
PRIMUS. We ran 100 simulations for each
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scoring” means that PRIMUS output con-
tained more than one possible pedigree
and that the true pedigree was tied with
one or more other pedigrees for the high-
est-scoring pedigree; “among scored” indi-
cates that the true pedigree was not the
highest-scoring pedigree but was among
the pedigrees generated by PRIMUS; “par-
tial reconstruction” means that the com-
plete reconstruction resulted in too many

possible pedigrees, ran out of memory, or took longer than 36 hr to run, and as a result only a partial reconstruction using first-degree
relationships was generated; and “missing” indicates that PRIMUS reconstructed one or more possible pedigrees but that the true

pedigree was not among them.

Exome Sequencing Data and Corresponding Pedigrees
The Boston EOCOPD Study45 (see Web Resources) is an extended
pedigree study of genetic susceptibility to EOCOPD. All available
first-degree relatives (siblings, parents, and children), older sec-
ond-degree relatives (half siblings, aunts, uncles, and grandpar-
ents), and other relatives diagnosed with EOCOPD were invited
to participate in the study. For this project, 351 subjects from 49
pedigrees were sequenced at the UW CMG.

Exome sequencing was performed with NimbleGen v.2 in-
solution hybrid capture and Illumina HiSeq 2000 sequencing,*°
sequences were aligned to the human reference genome (UCSC
Genome Browser hg19),*” and single-nucleotide and insertion-
deletion variants were called with the Genome Analysis Tool-
kit.*® We used VCFtools*’ to select only PASS SNPs with a
minimum and maximum depth of 8x and 300X, respectively,
and converted them to PLINK'*-formatted PED and MAP files.
We then calculated IBD estimates in PLINK by using the 56,516
SNPs with a minor allele frequency > 1% and a call rate > 90%.
We used a coefficient-of-relatedness cutoff of 0.1 to calculate
SNP allele frequencies for the IBD analysis from 81 of the 351
exome-sequenced samples that made up the maximum unrelated
set as calculated by PRIMUS.?’

Results

Reconstructing Simulated Pedigrees

To test and evaluate the performance of PRIMUS on a
broad range of known pedigrees, we simulated uniform
and half-sibling pedigree structures of varying sizes,
different numbers of markers, and varying combinations
of masked data for individuals in the pedigrees (see Mate-
rial and Methods for details). Figure 1 shows the simulation
results for reconstruction of size-20 and size-40 uniform

pedigrees with <20% missing samples. PRIMUS recon-
structed the true pedigree as the only pedigree or the high-
est-scoring pedigree in 89% of the simulations. For another
5.6% of these simulations, the true pedigree was tied with
one other pedigree for the highest-scoring pedigree. Only
2.5% of these simulations failed to run to completion
as a result of too many possible pedigrees (>100,000),
too long of a runtime (>36 hr), or using too much memory
(e.g., exceeding 12 Gb). PRIMUS then reran these incom-
plete reconstructions with a relatedness cutoff of 0.375 to
generate partial reconstructions for each. A partially recon-
structed pedigree typically consists of two to six pieces of
the larger pedigree in which the individuals are connected
by first-degree relationships. It would require connecting
these pieces with second- and third-degree relationships
to achieve a complete reconstruction of the true pedigree.

Across all of the uniform and half-sibling simulated
pedigrees of size 5-50 (~10,000 pedigrees), PRIMUS recon-
structed the true pedigree as the highest-scoring or tied-for-
highest-scoring pedigree in 88.7% of the simulations
(Table S2; Figure S6). Only 6.3% of all simulations led to
partial reconstructions, and PRIMUS completed, but did
not reconstruct, the true pedigree in only 0.5% of the
simulations. We found that if PRIMUS outputs a single
possible pedigree, then that pedigree is the true pedigree
in 99.83% of the simulations.

Two trends were seen within the simulation results with
respect to the size of the pedigree being reconstructed and
the proportion of individuals without genetic data. First,
PRIMUS identified the true pedigree as the most likely
pedigree in 94.9% of the simulations of pedigrees up to
size 20 and up to 20% missing sample data and identified
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Figure 2. A UW CMG Pedigree Correctly Reconstructed by
PRIMUS in 9 s

PRIMUS used chip-based genotype data to verify this clinically
ascertained pedigree, which included the presence of five individ-
uals for whom no genetic data were available (individuals marked
with diagonal lines) and a cycle that occurred because individual
III-3 had children with both III-2 and III-4.

the highest-scoring or tied-for-highest-scoring pedigree in
99.4% of the simulations. As the proportion of individuals
without genetic data increased to 50%, the true pedigree
was more often tied for the highest-scoring pedigree rather
than being the highest-scoring pedigree, as expected.
Frequently, additional information, such as age, will help
rule out many of the tied pedigrees to identify the true
pedigree structure.

Second, even with size-50 pedigrees and 20% missing
samples, more often than not PRIMUS identified the cor-
rect pedigree as the single most likely pedigree. These re-
sults can be further improved with greater computational
capabilities; PRIMUS tends to produce partial reconstruc-
tions as the size of the pedigree increases. For example,
compared to size-20 pedigrees with 50% missing samples,
size-50 pedigrees with 20% missing samples require more
run time (>36 hr) and memory (>12 Gb) to traverse the
entire space of possible pedigrees.

Very few simulations completed reconstruction yet failed
to find the true pedigree among the possible pedigrees
(~0.5%), and their occurrence was not linked to pedigree
size or the number of missing samples. This occurs when
the initial likelihood threshold is set higher than the likeli-
hood calculated by the KDE for one or more of the relation-
ships in the true pedigree. Running PRIMUS with an initial
likelihood threshold of 0.01 would include the true pedi-
gree among the reconstructed pedigrees. As expected, we
found that PRIMUS runtime tends to increase exponen-
tially with pedigree size and the amount of missing sample
data (Figure S7). Pedigrees up to size 20 and 20% missing
samples reconstruct in a matter of seconds.

Confirming and Correcting Clinically Ascertained
Pedigrees

To demonstrate the ability of PRIMUS to verify the genetic
information for clinical pedigrees, we reconstructed and
confirmed or corrected more than 100 pedigrees submitted

A O__%

O%Ttl@:bg%

/] =no genetic data

Figure 3. Two Reported EOCOPD Study Pedigrees Verified by
PRIMUS

(A) This pedigree was the only pedigree generated from PRIMUS.
(B) This pedigree was tied with five other pedigrees for the highest-
scoring pedigree.

to the UW CMG. The genetic information used by PRIMUS
can be either chip-based (Figure 2) or sequence-based (Fig-
ures 3 and 4) technologies. Genome-wide IBD estimates for
the samples in the pedigree in Figure 2 were generated with
genotypes from the HumanCytoSNP BeadChip for each
nonmissing sample. PRIMUS used these IBD estimates for
all pairs of samples to reconstruct the possible pedigree.
Only one pedigree fit the data, and it matched the clini-
cally provided pedigree, supporting our hypothesis that it
is the correct pedigree. This reconstruction took 9 s on a
2.3 GHz Intel Core i7 processor. Importantly, PRIMUS
also introduced the five missing individuals necessary to
connect the final pedigree and correctly identified in the
pedigree a cycle that occurred because individual III-3
had children with the two cousins III-2 and I11-4 (Figure 2).

Using variant data obtained from exome sequencing
generated by the UW CMG, PRIMUS validated 49 pedi-
grees consisting of 351 individuals ascertained through a
proband with severe EOCOPD. The pedigrees range from
size 4 with 50% missing samples to size 23 with 35%
missing samples. PRIMUS confirmed that 43 of the pedi-
grees matched the reported pedigrees collected in the
study. Among the remaining six pedigrees, PRIMUS found
and corrected five nonpaternity errors, one sample swap,
and one duplicate sample. These findings were consistent
with the corrections independently made by the Boston
EOCOPD Study investigators, who compared estimates of
IBDs obtained by PLINK with theoretical IBDs obtained
with the kinship2 package (Web Resources). Table S4 sum-
marizes the EOCOPD reconstruction and includes size, the
number of possible pedigrees, and where the true pedigree
ranked in the possible pedigrees.
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Figure 3 shows two reported EOCOPD Study pedigrees
that were verified by PRIMUS. The pedigree depicted in
Figure 3A was the only pedigree generated by PRIMUS,
and the pedigree in Figure 3B was among the highest-
scoring pedigrees. Figure 4 shows two of the reported
pedigrees (Figures 4A and 4C) that were corrected with
PRIMUS (Figures 4B and 4D). The pedigree in Figure 4A
had a nonpaternity error, so individuals A and B are actu-
ally half siblings rather than full siblings (Figure 4B). For
the reported pedigree in Figure 4C, PRIMUS not only cor-
rected a nonpaternity error, revealing that individual B is
a half sibling of individuals C and D, but also identified
a sample swap that caused individual A’s DNA to be re-
placed with DNA from another individual in the data set.
This corrected pedigree was the only pedigree generated
by PRIMUS for these samples.

Reconstructing and Incorporating Cryptic

Relatedness

To evaluate whether PRIMUS could incorporate cryptic
relationships into known pedigrees, we reconstructed ped-
igrees by using HapMap3 data.”” Although the HapMap
samples were collected to contain trios, duos, and unre-
lated individuals, cryptic relatedness among these sam-
ples is well established.®'?*? For example, the ten-person
pedigree from individuals of Mexican Ancestry in
Los Angeles (MXL; Figure S8) has been manually recon-
structed with pairwise relationship predictions by several
groups.ls’z()’”

We used PRIMUS to automatically reconstruct all pedi-
grees within each HapMap3 population, and PRIMUS
reconstructed cryptic pedigrees in 9 of the 11 populations
(Table S5). PRIMUS confirmed the relationships reported
by the HapMap Consortium and the cryptic first- through
third-degree relationships reported by Pemberton et al.*’
and Kyriazopoulou-Panagiotopoulou et al.'” (Table S5).
However, because PRIMUS uses all pairwise relationships

Figure 4. Two of the Six EOCOPD Study
Pedigrees Corrected by PRIMUS
The reported pedigrees are depicted above

—
2

(A and C), and the corrected pedigrees are
shown below (B and D). Reported pedigree
A has a nonpaternity error, so individuals
1I-2 and II-3 are actually half siblings rather
than full siblings in the correct pedigree B.
Pedigree B was the top-ranked pedigree in
the PRIMUS output. Reported pedigree C

‘ contains not only a nonpaternity error

O—@
2

1 I
1 2 3 4 1.
1I (5
11
1 2 3 4 1 5 3 7
111
1 2 3

that caused individual III-1 to be incor-
rectly reported as a full sibling of I1I-2 and
III-3 but also a sample swap that caused
individual II-3’s DNA to be swapped for
DNA of an individual from an entirely
different pedigree. Corrected pedigree
D was the only pedigree generated by
PRIMUS. The investigators have indepen-
dently confirmed the corrected pedigrees.

up to third-degree relatives to reconstruct the entire pedi-
gree, it can consider each relationship in the context of
all others. This enabled our approach to correct one misspe-
cified first-degree and two second-degree relationships
reported by Pemberton et al. In addition to making these
corrections, PRIMUS was able to increase the specificity of
13 second- and third-degree relationship predictions. For
example, Pemberton et al. reported that MKK (Maasai in Ki-
nyawa, Kenya) individuals NA21312 and NA21370 had an
unknown relationships status, but PRIMUS identified them
as half siblings. For this pair of individuals, PRIMUS elimi-
nated all other second-degree relationships by using the
context of the other pairwise relationships in the pedigree.

PRIMUS also identified 85 previously unreported'*>** po-
tential third-degree relationships among the HapMap3
samples (Table S5). Although we cannot be certain that
these relationships are precise, our results provide strong
evidence that relationships do exist and are an improve-
ment over the common assumption that these samples
are unrelated. We have made all reconstructed HapMap3
pedigrees available for download on the PRIMUS website
(see Web Resources).

Reconstruction of Previously Unknown Pedigrees
from Starr County

We used the Starr County Health Study to demonstrate
the ability of PRIMUS to reconstruct previously unknown
pedigrees from a large genetic data set. We calculated IBD
estimates among all 1,890 samples by using genotypes
obtained from the individuals (Affymetrix Genome-Wide
SNP Array 6.0**). PRIMUS used these estimates to group
458 samples into 203 family networks of two or more sam-
ples. Using only these genetic data, PRIMUS reconstructed
a single possible pedigree for 120 of these families in less
than 4 min, and according to our simulation results,
we expect that ~99.83% of these are the true pedigrees.
When ages are provided to PRIMUS, it flags pedigrees
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Figure 5. Relationship-Prediction Accuracies for Simulated
Pedigrees with RELPAIR or PRIMUS

For this comparison, we used half-sibling size-20 pedigrees with
0%-40% missing samples to test pairwise relationship-prediction
accuracy. For PRIMUS, we tested whether the relationships in
the highest-ranked pedigree matched the true simulated relation-
ships. For RELPAIR, we used the method employed by Pemberton
et al.?’ to obtain the prediction and compared that to the true
simulated relationship. A second-degree relationship prediction
is correct if the predicted relationship type matches the true rela-
tionship type. A third-degree relationship prediction is correct if
the predicted relationship degree matches the true relationship
degree. A distantly and unrelated prediction is correct if the true
relationship is more than a third-degree relationship.

that are impossible given the ages of the samples (e.g.,
when a parent is younger than a child). Using the age in-
formation collected for the Starr County Heart Study data
set, PRIMUS ruled out these incorrect pedigrees and identi-
fied a single possible pedigree for an additional 73 families
for a total of 193 pedigrees ranging in size from two to five
individuals.

Comparing PRIMUS to Competing Methods

We compared the results of PRIMUS to those generated
by RELPAIR, a program commonly used to check relation-
ships in genetic data. Using the method employed by
Pemberton et al.,?’ we compared the accuracy of the pair-
wise predictions of RELPAIR to the accuracy of the pairwise
relationships in the top-ranked reconstructed pedigree
produced by PRIMUS (Figure 5; Table S3). Both methods
had 100% accuracy when distinguishing between first-
degree relationships; however, PRIMUS outperformed
RELPAIR when second-degree relationships were consid-
ered. Although RELPAIR made the distinction between
the first- and second-degree relationships, it labeled all
third-degree relationships as cousins. PRIMUS distin-

guished between the four third-degree relationships and
also gave directionality to the relationship (e.g., individual
II-5 is the great-grandfather of individual V-1 in Figure 2).
Therefore, to make a fair comparison between the ability
of PRIMUS and RELPAIR to predict third-degree relation-
ships, we compared only the degree of the relationship pre-
dicted by PRIMUS to the “cousin” prediction of RELPAIR.
PRIMUS outperformed RELPAIR when classifying third-
degree and unrelated relationships (Figure 5; Table S3).

We also compared PRIMUS to the latest pedigree-recon-
struction programs, PREPARE and IPED2 (see Web Re-
sources). Of the 9,717 simulated pedigrees of size 10-50,
only 43 pedigrees had all genotyped samples in a single
generation, and all of these pedigrees had at least one
half-sibling relationship. Therefore, PREPARE and IPED2
could only attempt to correctly reconstruct <0.5% of the
simulated pedigrees; PRIMUS correctly reconstructed
9,008 of the 9,717 (92.7%) simulated pedigrees. Figure S9
shows PRIMUS reconstructions for additional simple, com-
mon pedigree structures that PREPARE and IPED2 could
not completely reconstruct.

Additionally, neither PREPARE nor IPED2 could
completely reconstruct any of the real data presented in
this manuscript because all of these pedigrees have geno-
typed samples from multiple generations. PREPARE and
IPED2 provided a partial reconstruction by dropping
samples from higher generations and using only extant
individuals, as the PREPARE authors did with the MXL
pedigree (Figure 14 from Shem-Tov and Halperin;**
Figure S8). In order to reconstruct relationships, PREPARE
requires a priori information about which individuals
are in the same generation prior to reconstruction and
cannot connect these pairwise relationships into a single,
multigenerational pedigree. PRIMUS completely recon-
structed these pedigrees (e.g., Figure S8). PREPARE and
IPED2 provide limited utility to check reported pedigree
structures and to reconstruct previously unknown pedi-
grees de novo.

Discussion

PRIMUS is designed to reconstruct nonconsanguineous
pedigrees of arbitrary size and structure from pairwise esti-
mates of IBD for samples of up to third-degree relatives.
It can also reconstruct some consanguineous pedigrees
with children whose parents are third-degree relatives
(Figure S10). PRIMUS provides major advancements in re-
constructing, testing, and correcting pedigrees. Although
pairwise predictions provided by commonly applied pro-
grams such as RELPAIR and PREST can test whether two in-
dividuals are related at the expected degree of relatedness,
they are much weaker at distinguishing between relation-
ship types within the same degree of relatedness (e.g.,
avuncular versus grandparental) and cannot provide infor-
mation of the directionality of a relationship (i.e., individ-
ual A is the grandparent of B). As a result, they are not able
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to detect all pedigree inconsistencies or suggest corrections
to pedigrees. Additionally, using pairwise relationships to
check pedigrees can result in the unnecessary loss of data
(Figure S11) or in accepting an incorrect pedigree as true
(Figure S12).

PRIMUS improves on the pairwise predictions by using
all the pairwise relationships to reconstruct the pedigree.
The context of all the pairwise relationships in the family
improves the prediction accuracy of each relationship
pair. We have shown that the reconstructed pedigrees
obtained by PRIMUS were more accurate than those
obtained with RELPAIR (Figure 5; Table S3). In the case
of HapMap3, PRIMUS corrected and improved several of
the pairwise relationship predictions made by RELPAIR
and CARROT (Classification of Relationships with Rota-
tions)'® (Table S5).

PRIMUS is also a major step forward in comparison to
existing pedigree-reconstruction programs given that the
existing methods require a small number of markers,
completely genotyped pedigrees, no half siblings, and/or
that all genotyped samples be in the same generation.
For these reasons, no other pedigree-reconstruction pro-
gram we tested is capable of reconstructing the variety of
pedigrees—which represent some of the most common
pedigrees found in human genetic studies—we illustrate
in this paper.

Importantly, pedigree reconstruction by PRIMUS depends
on the quality of the IBD estimates, which are influenced by
several factors, including the number of genetic markers,
population substructure,'® admixture,’” and reference mi-
nor allele frequencies.”' For best results, users should obtain
high-quality IBD estimates before reconstructing pedigrees
with PRIMUS. IBD estimates can be obtained by PRIMUS
or by another program (PLINK,'* KING,® or REAP [Related-
ness Estimation in Admixed Populations]*®) that uses the
appropriate allele frequencies for the ancestry of the samples
and accounts for potential admixture and population sub-
structure among the data.

We designed PRIMUS to reconstruct up to third-degree
relationships for several reasons. First, the distance be-
tween the expected mean genome-wide IBD proportions
for more distant relationships (e.g., fourth and fifth de-
grees) is small, and the variation around these means is
large. Therefore, the overlap between the distributions of
these distant relationships precludes highly accurate rela-
tionship assignments of any relationship beyond the third
degree. Second, as the relationship distance increases
beyond the third degree, the number of possible relation-
ships increases rapidly (Table S6), and pedigree reconstruc-
tion quickly becomes computationally challenging. For
more distant relationships, it is possible to apply programs
such as Beagle*' and ERSA (Estimation of Recent Shared
Ancestry)'® to connect the PRIMUS-obtained subpedigrees
that are distantly related to one another, and we are incor-
porating this feature in a future release of PRIMUS.
Additionally, programs such as RELPAIR'’ could improve
the pairwise relationship prediction because they model

recombination events to distinguish between second-de-
gree relationships. The improved relationship predictions
could then be used to improve the scoring of possible
pedigrees.

We have identified two limitations of PRIMUS and their
corresponding remedies. First, because of computational
restraints, PRIMUS was unable to complete the reconstruc-
tion of 6.3% of simulations with third-degree relatives or
closer. The vast majority of these pedigrees had >30 indi-
viduals with >20% missing sample data. Investigators
can still greatly benefit from partial reconstructions of
these pedigrees. Users can obtain a partial reconstruction,
as we did, by using a higher relatedness threshold to recon-
struct with just first- or second-degree relationships.
Second, for a very small proportion (~0.5%) of the simula-
tions, PRIMUS did not output the true pedigree among
the results because the initial likelihood threshold
was set too high. Yet, by lowering the initial likelihood
threshold used for predicting familial relationships,
PRIMUS was able to reconstruct each of these pedigree
structures. Therefore, for a very small percentage of pedi-
grees run on PRIMUS, it might be necessary to depart
from the default initial likelihood threshold to obtain a
reported pedigree.

PRIMUS provides an immediate benefit to the genetics
community in two ways: pedigree verification and pedi-
gree discovery. Because PRIMUS computationally verifies
reported pedigrees by using genotype data and identifies
and corrects inconsistencies, PRIMUS saves a significant
amount of time and effort that would otherwise be spent
on manual verification of pedigrees. This is especially
beneficial when large, complex pedigrees—similar to the
Boston EOCOPD Study pedigrees—are being studied.
For example, PRIMUS has identified and corrected non-
paternities, underrelated samples, samples swaps, dupli-
cate samples, and unexpected consanguinity in clinical
pedigrees (Figure 4; Figure S$10). In many cases, such
corrections can result in a correction of the genetic
model and assumptions used for downstream analysis,
improving the chances of finding the genetic cause of
the disease.

Moreover, PRIMUS can reconstruct previously unknown
pedigrees by using only genetic data, as demonstrated
in the HapMap3 and Starr County data sets. Although,
PRIMUS cannot guarantee that these pedigrees are the
true pedigrees, the pedigrees can be treated as a hypothesis
to be confirmed with supporting independent evidence.
This application of PRIMUS is particularly useful in large-
scale genetic studies where substantial cryptic relatedness
might exist. In the case of the Starr County data, we can
now use powerful family-based analyses that leverage the
information contained in nearly 200 previously unknown
pedigrees.

Incomplete understanding of relatedness structures
(i.e., pedigrees) within genetic data can result in a vast
array of analytic problems, from dramatically biased effects
of rare variants to complete power loss in pedigree-based
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methods. With the introduction of PRIMUS, we hope to
address many of the limitations of prior pedigree-recon-
struction frameworks and pairwise comparison algorithms
in a fast, tractable, and easy-to-use algorithm, enabling in-
vestigators to better assess the information present within
their data.

Supplemental Data

Supplemental Data include 12 figures and 6 tables and can be
found with this article online at http://dx.doi.org/10.1016/j.
ajhg.2014.10.005.
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Web Resources
The URLs for data presented herein are as follows:

Boston Early-Onset COPD Study, http://bostoncopd.org

CraneFoot, http://www.finndiane.fi/software/cranefoot/

International HapMap Project, http://hapmap.ncbi.nlm.nih.gov

IPED2, http://www.cs.ucla.edu/~danhe/Software/IPED2.html

kinship2, http://cran.r-project.org/package=Kkinship2

PRIMUS, http://primus.gs.washington.edu

PRIMUS simulations, the link to the code used for generating sim-
ulations, and the reconstructed HapMap3 pedigrees, http://
sourceforge.net/projects/primus-beta/files/

SciPy, http://www.scipy.org

References

1. Santorico, S.A., and Edwards, K.L. (2014). Challenges of link-
age analysis in the era of whole-genome sequencing. Genet.
Epidemiol. 38 (Suppl 1), S92-596.

2. Ott, J., Kamatani, Y., and Lathrop, M. (2011). Family-based
designs for genome-wide association studies. Nat. Rev. Genet.
12, 465-474.

10.

11.

12.

13.

14.

15.

16.

. Hu, H., Roach, J.C., Coon, H., Guthery, S.L., Voelkerding, K.V.,

Margraf, R.L., Durtschi, J.D., Tavtigian, S.V., Shankaracharya,
Wu, W, et al. (2014). A unified test of linkage analysis and
rare-variant association for analysis of pedigree sequence
data. Nat. Biotechnol. 32, 663-669.

. McMillin, M.J., Below, ]J.E., Shively, K.M., Beck, A.E., Gilder-

sleeve, H.I.,, Pinner, ]., Gogola, G.R., Hecht, ]J.T.,, Grange,
D.K., Harris, D.J., et al.; University of Washington Center for
Mendelian Genomics (2013). Mutations in ECEL1 cause distal
arthrogryposis type 5D. Am. J. Hum. Genet. 92, 150-156.

. Below, J.E., Earl, D.L., Shively, KM., McMillin, M.J., Smith,

J.D., Turner, E.H., Stephan, M.J., Al-Gazali, L.I., Hertecant,
J.L., Chitayat, D., et al.; University of Washington Center for
Mendelian Genomics (2013). Whole-genome analysis reveals
that mutations in inositol polyphosphate phosphatase-like 1
cause opsismodysplasia. Am. J. Hum. Genet. 92, 137-143.

. Li, B., Krakow, D., Nickerson, D.A., Bamshad, M.]J., Chang, Y.,

Lachman, R.S., Yilmaz, A., Kayserili, H., and Cohn, D.H;
University of Washington Center for Mendelian Genomics
(2014). Opsismodysplasia resulting from an insertion muta-
tion in the SH2 domain, which destabilizes INPPL1. Am. J.
Med. Genet. A. 1644, 2407-2411.

. Makaryan, V., Rosenthal, E.A., Bolyard, A.A., Kelley, M.L.,

Below, J.E., Bamshad, M.]., Bofferding, K.M., Smith, J.D.,
Buckingham, K., Boxer, L.A., et al.; UW Center for Mendelian
Genomics (2014). TCIRG1-associated congenital neutropenia.
Hum. Mutat. 35, 824-827.

. Voight, B.E, and Pritchard, J.K. (2005). Confounding from

cryptic relatedness in case-control association studies. PLoS
Genet. 1, e32.

. Day-Williams, A.G., Blangero, J., Dyer, T.D., Lange, K., and

Sobel, E.M. (2011). Linkage analysis without defined pedi-
grees. Genet. Epidemiol. 35, 360-370.

Boehnke, M., and Cox, N.J. (1997). Accurate inference of
relationships in sib-pair linkage studies. Am. J. Hum. Genet.
61, 423-429.

Bellis, M.A., Hughes, K., Hughes, S., and Ashton, J.R. (2005).
Measuring paternal discrepancy and its public health conse-
quences. J. Epidemiol. Community Health 59, 749-754.
Kerr, S.M., Campbell, A., Murphy, L., Hayward, C., Jackson, C.,
Wain, L.V., Tobin, M.D., Dominiczak, A., Morris, A., Smith,
B.H., and Porteous, D.J. (2013). Pedigree and genotyping
quality analyses of over 10,000 DNA samples from the
Generation Scotland: Scottish Family Health Study. BMC
Med. Genet. 14, 38.

Wolf, M., Musch, J., Enczmann, J., and Fischer, J. (2012).
Estimating the prevalence of nonpaternity in Germany.
Hum. Nat. 23, 208-217.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira,
M.A., Bender, D., Maller, J., Sklar, P., de Bakker, PI., Daly,
M.J., and Sham, P.C. (2007). PLINK: a tool set for whole-
genome association and population-based linkage analyses.
Am. J. Hum. Genet. 81, 559-575.
Kyriazopoulou-Panagiotopoulou, S., Kashef Haghighi, D.,
Aerni, S.J., Sundquist, A., Bercovici, S., and Batzoglou, S.
(2011). Reconstruction of genealogical relationships with
applications to Phase III of HapMap. Bioinformatics 27,
i333-i341.

Manichaikul, A., Mychaleckyj, J.C., Rich, S.S., Daly, K., Sale,
M., and Chen, W.M. (2010). Robust relationship inference
in genome-wide association studies. Bioinformatics 26,
2867-2873.

562 The American Journal of Human Genetics 95, 553-564, November 6, 2014


http://dx.doi.org/10.1016/j.ajhg.2014.10.005
http://dx.doi.org/10.1016/j.ajhg.2014.10.005
http://bostoncopd.org
http://www.finndiane.fi/software/cranefoot/
http://hapmap.ncbi.nlm.nih.gov
http://www.cs.ucla.edu/%7Edanhe/Software/IPED2.html
http://cran.r-project.org/package=kinship2
http://cran.r-project.org/package=kinship2
http://primus.gs.washington.edu
http://sourceforge.net/projects/primus-beta/files/
http://sourceforge.net/projects/primus-beta/files/
http://www.scipy.org

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Abecasis, G.R., Cherny, S.S., Cookson, W.O.C., and Cardon,
L.R. (2001). GRR: graphical representation of relationship er-
rors. Bioinformatics 17, 742-743.

Huff, C.D., Witherspoon, D.J., Simonson, T.S., Xing, J.C.,
Watkins, W.S., Zhang, Y.H., Tuohy, T.M., Neklason, D.W.,
Burt, R.W., Guthery, S.L., et al. (2011). Maximum-likelihood
estimation of recent shared ancestry (ERSA). Genome Res.
21, 768-774.

Epstein, M.P., Duren, W.L., and Boehnke, M. (2000). Improved
inference of relationship for pairs of individuals. Am. J. Hum.
Genet. 67, 1219-1231.

Sun, L., Wilder, K., and McPeek, M.S. (2002). Enhanced pedi-
gree error detection. Hum. Hered. 54, 99-110.

Nijmeijer, J.S., Arias-Vasquez, A., Rommelse, N.N., Altink,
M.E., Buschgens, C.J., Fliers, E.A., Franke, B., Minderaa, R.B.,
Sergeant, J.A., Buitelaar, J.K., et al. (2014). Quantitative linkage
for autism spectrum disorders symptoms in attention-deficit/
hyperactivity disorder: significant locus on chromosome
7q11. J. Autism Dev. Disord. 44, 1671-1680.

Chen, C.T,, Liu, C.T., Chen, G.K., Andrews, J.S., Arnold, A.M.,
Dreyfus, J., Franceschini, N., Garcia, M.E., Kerr, K.E, Li, G.,
et al. (2014). Meta-analysis of loci associated with age at
natural menopause in African-American women. Hum. Mol.
Genet. 23, 3327-3342.

Lange, L.A., Hu, Y., Zhang, H., Xue, C., Schmidt, E.M., Tang,
Z.Z., Bizon, C., Lange, E.M., Smith, J.D., Turner, E.H., et al.;
NHLBI Grand Opportunity Exome Sequencing Project
(2014). Whole-exome sequencing identifies rare and low-
frequency coding variants associated with LDL cholesterol.
Am. J. Hum. Genet. 94, 233-245.

Bella, J.N., Cole, S.A., Laston, S., Almasy, L., Comuzzie, A., Lee,
E.T., Best, L.G., Fabsitz, R.R.,, Howard, B.V., Maccluer, J.W.,
et al. (2013). Genome-wide linkage analysis of carotid artery
lumen diameter: the strong heart family study. Int. J. Cardiol.
168, 3902-3908.

Bizon, C., Spiegel, M., Chasse, S.A., Gizer, I.R,, Li, Y., Malc, E.P.,,
Mieczkowski, P.A., Sailsbery, J.K., Wang, X., Ehlers, C.L., and
Wilhelmsen, K.C. (2014). Variant calling in low-coverage
whole genome sequencing of a Native American population
sample. BMC Genomics 15, 85.

Quillen, E.E., Chen, X.D., Almasy, L., Yang, F., He, H., Li, X.,
Wang, X.Y.,, Liu, T.Q., Hao, W., Deng, HW,, et al. (2014).
ALDH?2 is associated to alcohol dependence and is the major
genetic determinant of “daily maximum drinks” in a GWAS
study of an isolated rural chinese sample. Am. J. Med. Genet.
B. Neuropsychiatr. Genet. 165B, 103-110.

Zhu, Y., Voruganti, V.S., Lin, J., Matsuguchi, T., Blackburn, E.,
Best, L.G., Lee, E.T., MacCluer, J.W., Cole, S.A., and Zhao, ]J.
(2013). QTL mapping of leukocyte telomere length in Amer-
ican Indians: the Strong Heart Family Study. Aging (Albany,
N.Y. Online) 5, 704-716.

Nolan, D., Kraus, W.E., Hauser, E., Li, Y.J., Thompson, D.K.,
Johnson, J., Chen, H.C., Nelson, S., Haynes, C., Gregory,
S.G., et al. (2013). Genome-wide linkage analysis of cardiovas-
cular disease biomarkers in a large, multigenerational family.
PLoS ONE 8, e71779.

Pemberton, T.J., Wang, C., Li, ].Z., and Rosenberg, N.A. (2010).
Inference of unexpected genetic relatedness among individ-
uals in HapMap Phase III. Am. J. Hum. Genet. 87, 457-464.
Riester, M., Stadler, P.E,, and Klemm, K. (2009). FRANz: recon-
struction of wild multi-generation pedigrees. Bioinformatics
25, 2134-2139.

31.

32.

33.

34.

33.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Hadfield, ].D., Richardson, D.S., and Burke, T. (2006). Towards
unbiased parentage assignment: combining genetic, behav-
ioural and spatial data in a Bayesian framework. Mol. Ecol.
15, 3715-3730.

Marshall, T.C., Slate, J., Kruuk, L.E.B., and Pemberton,
JM. (1998). Statistical confidence for likelihood-based
paternity inference in natural populations. Mol. Ecol. 7,
639-6535.

Cussens, ]., Bartlett, M., Jones, E.M., and Sheehan, N.A.
(2013). Maximum likelihood pedigree reconstruction using
integer linear programming. Genet. Epidemiol. 37, 69-83.
He, D., Wang, Z., Han, B., Parida, L., and Eskin, E. (2013).
IPED: inheritance path-based pedigree reconstruction algo-
rithm using genotype data. J. Comput. Biol. 20, 780-791.
Kirkpatrick, B., Li, S.C., Karp, R.M., and Halperin, E. (2011).
Pedigree reconstruction using identity by descent. J. Comput.
Biol. 18, 1481-1493.

Shem-Tov, D., and Halperin, E. (2014). Historical pedigree
reconstruction from extant populations using PArtitioning
of RElatives (PREPARE). PLoS Comput. Biol. 10, e1003610.
Staples, J., Nickerson, D.A., and Below, J.E. (2013). Utilizing
graph theory to select the largest set of unrelated individuals
for genetic analysis. Genet. Epidemiol. 37, 136-141.
Morrison, J. (2013). Characterization and correction of error
in genome-wide IBD estimation for samples with population
structure. Genet. Epidemiol. 37, 635-641.

Thornton, T., Tang, H., Hoffmann, T.J., Ochs-Balcom, H.M.,
Caan, BJ., and Risch, N. (2012). Estimating kinship in
admixed populations. Am. J. Hum. Genet. 91, 122-138.
Abecasis, G.R., Cherny, S.S., Cookson, W.O., and Cardon, L.R.
(2002). Merlin—rapid analysis of dense genetic maps using
sparse gene flow trees. Nat. Genet. 30, 97-101.

Browning, B.L., and Browning, S.R. (2011). A fast, powerful
method for detecting identity by descent. Am. J. Hum. Genet.
88, 173-182.

Hill, W.G., and Weir, B.S. (2011). Variation in actual relation-
ship as a consequence of Mendelian sampling and linkage.
Genet. Res. 93, 47-64.

Maikinen, V.P.,, Parkkonen, M., Wessman, M., Groop, P.H.,
Kanninen, T., and Kaski, K. (2005). High-throughput pedigree
drawing. Eur. J. Hum. Genet. 13, 987-989.

Below, J.E., Gamazon, E.R., Morrison, J.V., Konkashbaev, A.,
Pluzhnikov, A., McKeigue, P.M., Parra, E.J., Elbein, S.C., Hall-
man, D.M., Nicolae, D.L., et al. (2011). Genome-wide associa-
tion and meta-analysis in populations from Starr County,
Texas, and Mexico City identify type 2 diabetes susceptibility
loci and enrichment for expression quantitative trait loci in
top signals. Diabetologia 54, 2047-2055.

Silverman, E.K., Chapman, H.A., Drazen, J.M., Weiss, S.T.,
Rosner, B., Campbell, E.J., O’'Donnell, W]., Reilly, ].J., Ginns,
L., Mentzer, S., et al. (1998). Genetic epidemiology of severe,
early-onset chronic obstructive pulmonary disease. Risk to
relatives for airflow obstruction and chronic bronchitis. Am.
J. Respir. Crit. Care Med. 157, 1770-1778.

Fu, W,, O’Connor, T.D., Jun, G., Kang, H.M., Abecasis, G., Leal,
S.M., Gabriel, S., Rieder, M.]., Altshuler, D., Shendure, J., et al.;
NHLBI Exome Sequencing Project (2013). Analysis of 6,515
exomes reveals the recent origin of most human protein-
coding variants. Nature 493, 216-220.

Li, H., and Durbin, R. (2009). Fast and accurate short read
alignment with Burrows-Wheeler transform. Bioinformatics
25,1754-1760.

The American Journal of Human Genetics 95, 553-564, November 6, 2014 563



48. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis,

49.

K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly,
M., and DePristo, M.A. (2010). The Genome Analysis Toolkit:
a MapReduce framework for analyzing next-generation DNA
sequencing data. Genome Res. 20, 1297-1303.

Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E.,
DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry,
S.T., et al.; 1000 Genomes Project Analysis Group (2011). The
variant call format and VCFtools. Bioinformatics 27,2156-2158.

50. Altshuler, D.M., Gibbs, R.A., Peltonen, L., Altshuler, D.M.,

51.

Gibbs, R.A., Peltonen, L., Dermitzakis, E., Schaffner, S.F, Yu,
E, Peltonen, L., et al.; International HapMap 3 Consortium
(2010). Integrating common and rare genetic variation in
diverse human populations. Nature 467, 52-58.

Cross, D.S., Ivacic, L.C., Stefanski, E.L., and McCarty, C.A.
(2010). Population based allele frequencies of disease associ-
ated polymorphisms in the Personalized Medicine Research
Project. BMC Genet. 11, 51.

564 The American Journal of Human Genetics 95, 553-564, November 6, 2014



The American Journal of Human Genetics, Volume 95
Supplemental Data

PRIMUS: Rapid Reconstruction of Pedigrees

from Genome-Wide Estimates of Identity by Descent

Jeffrey Staples, Dandi Qiao, Michael H. Cho, Edwin K. Silverman, University of
Washington Center for Mendelian Genomics, Deborah A. Nickerson, and Jennifer E.
Below



Figure S1. Schematic of a simulated 12-person pedigree. This pedigree contains all types of familial
relationships shown in Table 1. We randomly assigned HapMap3 CEU haplotypes to each of the
founders and then simulated recombination events to propagate these genotypes to the children.
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Figure S2. Examples of simulated pedigrees of size 20. A) Uniform size-20 pedigree with five samples
for whom the genetic data was removed. The missing individuals simulated the real world case where
you cannot get good genotypes from an individual either due to lack of consent, poor DNA quality,
contamination, or absence of the individual. All of the remaining individuals are genotyped and are
included in the pedigree and the reconstruction. B) Halfsib size-20 pedigree without any missing
individuals.
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Figure S3. Comparison of the true IBD1 value to the PLINK IBD1 estimates for relationship sampled
from 1000 size-12 pedigrees. Each graph shows the comparison of 6K SNPs and 1 million SNPs to the
true IBD value. Each plot shows a different relationship category. IBD estimates generated from 6K
SNPs have a much wider variance than the one IBD estimates generated from 1M SNPs. However, the
distance that they depart from the expected value appears to remain fairly constant at each degree of
relatedness.
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Figure S4. False positive (FP) and false negative (FN) relationship predictions with different KDE
bandwidths and likelihood cutoffs for full-sibling (FS), 2™ degree, 3" degree, distant (DIS) and
unrelated (UN) relationships. We used these predictions to optimize the ability of PRIMUS to
accurately identify the relationship between two individuals (true positive = 1 - FN) while minimizing
the number of incorrect relationships that it predicts (FP). Since the optimal bandwidth would need to
perform well across different likelihood cutoffs, we tested the performance of PRIMUS with likelihood
cutoffs ranging from 0.01 to 0.5. We used the scipy.stats.gaussian_kde function (Web Resources) with
two training features: genome-wide estimates of IBDO and IBD1. We tested a range of bandwidths by
specifying scalar values 1 through 17 as the “bw_method” option and these values are used as the



coefficient that multiplies the data covariance matrix to obtain the kernel covariance matrix. With
KDE:s trained at each bandwidth coefficient value from 1 to 17, we predicted the relationship category
of each relationship in the 100 Uniform size-400 pedigrees at likelihood cutoffs varying from 0.01 to
0.5. We evaluated the relationship prediction of the KDEs trained with different bandwidths by testing
their FN (results A-E) and FP (results F-J) rates. The color in each cell indicates the number of
relationships from the 100 size-400 Uniform pedigrees that were either FN or FP. The color scale is
logio. An FN occurs if the true relationship did not have a likelihood higher than the cutoff. An FP
occurs if a relationship other than the true relationship has a likelihood higher than the likelihood
cutoff. Parent-offspring relationships did not have any FP or FN predictions, so the corresponding heat
maps are not shown. We selected the covariance factor for each relationship category that minimized
the FP and FN predictions, and these are set as the default in PRIMUS: PO = 17; FS = 2; ond degree =
6; 31 degree=5; DIS = 2; UN = 1. With an initial likelihood threshold higher than 0.3, we found a
higher rate of false negative relationship predictions for 2nd degree, 374 degree, and distantly
related relationships in the Uniform size-400 pedigrees (Figure S3). However, lowering this
threshold results in more relationships with likelihood scores that exceed the threshold. If there is more
than one relationship category that exceeds the likelihood threshold, then PRIMUS will attempt to
reconstruct a different version of the pedigree for each possible relationship, resulting in additional
computational time. Therefore, we desired a default threshold that was lenient enough to reduce the
chance of a false negative prediction, but also stringent enough to minimize the number of false
positive relationships that are tested in the reconstruction. We chose 0.01 as the lower likelihood
threshold bound because all relationship categories had 0% false negative rate at this threshold for their
selected bandwidth. The strategy for the automatically lowering threshold is designed to capture the
true pedigree while minimizing the runtime and the number of possible false positive pedigrees. This
strategy assumes that PRIMUS will not output a pedigree structure until all true relationships have a
likelihood higher than the likelihood threshold, and, thus, it will be able to reconstruct the true pedigree
structure. There are rare scenarios (~0.5% of the simulations, Table S2) where PRIMUS did not output
a correct pedigree structure before the threshold was low enough to correctly predict all familial
relationships. Therefore, in this rare scenario, the true pedigree structure was not among the PRIMUS
results. In these instances, PRIMUS can generate the true pedigree structure if the likelihood threshold
is initially set low enough (e.g., 0.01). We chose 0.3 as the default because it provides the greatest
savings in runtime and reduced number of possible pedigrees for the common uses of PRIMUS, but
users can select a different value to fit their custom needs.



‘ «— Parent-Offspring

2"d Degree

IBD1

Full-Sibling
3rd Degree

>3rd Degree

0.2 0.4 0.6 0.8 1.0
IBDO

Figure S5. Kernel density distributions of the trained kernel density estimates for each familial
relationship category. Parent-offspring and full-sibling are viably separated from the other density
clusters. 2™ Degree and 3" Degree are labeling the distribution of IBD estimates for 2" and 3" degree
relationships, respectively. >3™ degree and “Unrelated” label the distributions of IBD estimates for
relatives more distant that 3 degree or unrelated, respectively.
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Figure S6. Results from the reconstructlon of simulated pedlgrees We simulated 100 pedigrees for
each size from five to 50 and for both Uniform and Halfsib pedigree structures. We removed up to ten
samples from each pedigree and reconstructed each in PRIMUS. For each simulation we determined
where the true pedigree fell among the ranked reconstruction results. Each bar displays the proportion
of the 100 simulations that corresponded to the five reconstruction outcomes. Some of the Halfsib
pedigree structures allowed for more samples to be removed than others due to the random nature of
how they were simulated. As a result, Halfsib size-10 with five missing samples and size-20 with nine
and ten missing samples do not have 100 unique simulations. The different outcomes are defined as
follows:

“highest scoring” — The true pedigree is the highest scoring pedigree

“among highest scoring” — PRIMUS output contained more than one possible pedigree, and the true
pedigree is tied as the highest scoring pedigree with one or more other pedigrees

“among scored” — the true pedigree is not the highest scoring pedigree, but is among the pedigrees
generated by PRIMUS

“partial reconstruction” — the complete reconstruction either resulted in too many possible pedigrees,
ran out of memory, or took longer than 36 hours to run, and, as a result, only a partial reconstruction
using 1* degree relationships was generated

“missing” — PRIMUS reconstructed one or more possible pedigrees, but the true pedigree was not
among them




3 - Pedigree Size
T e 36 hours
10
| 20
> 30 >
40
— 50 & —
é 2_,,v.,...,.,._,,..,‘.;'.'.}E,A’TE:' ........................... >..|.. 1 hour
! { N/
3 /\ // \ //
n} // A4
8 - “ // \ .//
3 \ / X
Q ﬁ/
E 4
-E i Y N Ry R R PR PR PP -+ 1 minute
=1 // &
o /
/
/
@
3 P
0 -t 050500000000 000000000000000000000080000000000a000000002030 s 1second
0 10 20 30 40 50

% missing samples

Figure S7. Simulation runtime results. These simulations were run on a single Intel Xeon CPU X5690
@ 3.47GHz with up to 35GB of RAM.
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Figure S8. A ten-person MapMap3 MXL pedigree obtained from the HapMap3 and 1000 Genomes
samples. The pedigree includes three reported trios (each colored differently) from HapMap3 and an
additional individual from the 1000 Genomes Project. The pedigree shown in A is one of four possible
pedigrees that fit the estimated IBD proportions and is the pedigree previously reported'. Alternative
possible pedigrees that fit the genetic data are shown in B, C, and D. For these MXL samples,
PREPARE reported a single sibling relationship (NA19662, NA19685), the two first-cousin
relationships (NA19662-NA19664 and NA19664-NA19685). PREPARE is presented to have
automatically reconstructed the nine-person HapMap3 MXL pedigree reported in the CARROT paper’,
but they only show that NA19686 (incorrectly labeled as NA19685 in Figure 14 of their paper”) and
NA19665 are 2™ cousins. Unlike the PRIMUS automatic reconstruction (Figure S8), they do not show
how the other eight individuals fit into the pedigree, nor do they acknowledge that there are four
different pedigree structures that fit the genetic data.
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Figure S9. Examples of simple and common pedigrees structures. Diagonal lines through an
individual’s symbol indicate that DNA data are unavailable for that individual. PRIMUS can easily
reconstruct all six pedigree structures. PREPARE? and IPED2 (He et al., in press) can reconstruct
pedigrees B and F because they require that all genotyped samples be in the same generation. If we had
prior knowledge of each of these pedigrees, ages of the samples, or knowledge of who was in which
generation, then PREPARE and IPED2 could do partial reconstructions of the lowest generation of
each pedigree and the middle generation of C by discarding the other genotyped individuals. IPED’ and
COP/CIP" can only reconstruct pedigree F, because they are unable to handle half-sibling relationships,
but could do the same partial reconstruction of the same pedigrees as PREPARE and IPED, except for
A.
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Figure S10. A pedigree submitted to the UW Center for Mendelian Genomics. The parents were
reported as unrelated individuals by the clinician as depicted in pedigree A, but PRIMUS reconstructed
them as first cousins, as depicted in pedigree B.
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Figure S11. A single example where pairwise relationship checking and removal of an inconsistent
sample results in an unnecessary loss of data. Panel A shows the reported pedigree as provided by the
investigator. Pairwise relationship checking reveals that all relationships are correct except between
sample II-5 and the siblings III-1 and III-2. Standard practice is to remove inconsistent samples, in this
case sample II-5, resulting in the 5-person pedigree on the right. Panel B shows the true pedigree where
sample II-5 was actually the father of the siblings III-1 and III-2 instead of individual II-2, who was not
successfully genotyped, being the father. The mix-up could realistically be explained by a sample swap
or by misspecified paternity for the two children, and these types of errors are common. Pedigree
reconstruction would have revealed the inconsistency and would have easily reconstructed the true
pedigree. Therefore, rather than discarding 17% of the data, the investigator could have retained all
samples.
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Figure S12. A single example where pairwise relationship checking and removal of an inconsistent
sample results in an unnecessary loss of data and the use of an incorrect pedigree. Panel A shows the
pedigree as reported by the investigator. Pairwise relationship checking reveals that all relationships are
correct except between sample I-1 and samples III-1, IV-1, and IV-2. Standard practice is to remove
inconsistent samples, in this case sample I-1, resulting in the 4-person pedigree on the right. Panel B
shows the true pedigree. The error in the original pedigree was that sample II-1 was incorrectly
assigned as the uncle to sample III-1, when, in fact, they were half-siblings. This mix-up could
realistically be explained if the family incorrectly reported their family history or by a clerical error,
and these types of errors are common. Pedigree reconstruction would easily have revealed the
inconsistency and would have reconstructed the true pedigree. Therefore, rather than discarding 20% of
the data and assuming an incorrect pedigree, the investigator would have retained all samples and used
the true pedigree in further analyses.



Table S1. True IBD vs. Estimated IBD for different SNP sets

# of SNPs IBDO r* IBDI r* B2t
6K 0.987 0.981 0.961
10K 0.992 0.99 0.984
20K 0.995 0.993 0.99

50K 0.997 0.996 0.997
100K 0.997 0.997 0.997
1000K 0.998 0.998 0.997
Linkage Panel IV | 0.979 0.974 0.97

Affy 6.0 0.998 0.997 0.993
CytoSNP 0.998 0.997 0.994
HumanCore 0.998 0.997 0.996
Omni Express 0.998 0.998 0.995
Omni 2.5 0.998 0.998 0.995

SNP sets 6K-1000K were generated using PLINK to trim the HapMap3 dataset down to the desired
number of SNPs. The remaining SNP sets were generated by taking the intersection of SNPs in those
panels and HapMap3. IBD estimates were generated with PLINK using SNPs with a minor allele
frequency >1% and a call rate >90%. In statistical package R, we plotted the true IBD proportion to the
estimated IBD proportion for each relationship in the 100 halfsib size-20 pedigrees. We then calculated
r* based on the deviation from Y=X.



Table S2. Combined simulation reconstruction results

0 1 2 3 4 5 6 7 8 9 10

Missing Missing Missing Missing Missing Missing Missing Missing Missing Missing Missing
Size structure samples samples | samples | samples | samples | samples | samples | samples | samples | samples | samples
5 highest scoring 200 200 200 NA NA NA NA NA NA NA NA
5 among highest scoring 0 0 0 NA NA NA NA NA NA NA NA
5 among scored 0 0 0 NA NA NA NA NA NA NA NA
5 partially reconstructed 0 0 0 NA NA NA NA NA NA NA NA
5 missing 0 0 0 NA NA NA NA NA NA NA NA
10 highest scoring 200 200 195 133 6 0 NA NA NA NA NA
10 among highest scoring 0 0 5 65 190 20 NA NA NA NA NA
10 among scored 0 0 0 1 2 4 NA NA NA NA NA
10 partially reconstructed 0 0 0 0 0 0 NA NA NA NA NA
10 missing 0 0 0 1 2 0 NA NA NA NA NA
20 highest scoring 200 200 193 172 138 95 45 13 0 0 0
20 among highest scoring 0 0 6 25 54 94 138 156 131 102 68
20 among scored 0 0 1 3 7 8 12 25 62 72 46
20 partially reconstructed 0 0 0 0 1 1 2 2 3 1 0
20 missing 0 0 0 0 0 2 3 4 4 3 1
30 highest scoring 200 199 197 190 171 148 113 74 47 22 3
30 among highest scoring 0 0 2 8 25 42 69 91 103 102 90
30 among scored 0 0 0 1 2 4 6 14 23 31 40
30 partially reconstructed 0 1 1 1 2 6 11 20 25 43 65
30 missing 0 0 0 0 0 0 1 1 2 2 2
40 highest scoring 198 197 192 189 183 168 150 126 105 78 49
40 among highest scoring 2 2 4 4 9 21 31 44 48 61 65
40 among scored 0 0 0 1 1 1 1 3 8 15 20
40 partially reconstructed 0 1 4 5 6 9 17 24 37 44 62
40 missing 0 0 0 1 1 1 1 3 2 2 4
50 highest scoring 199 197 194 190 186 174 159 141 123 102 84
50 among highest scoring 1 0 2 2 2 8 12 17 24 29 37
50 among scored 0 0 1 0 2 3 6 6 9 9 9
50 partially reconstructed 0 3 3 7 9 13 22 35 42 58 68
50 missing 0 0 0 1 1 2 1 1 2 2 2

We combined the reconstruction results for both the Uniform and Halfsib pedigrees. Some of the

Halfsib pedigree structures allowed for more samples to be removed than others due to the random




nature of how they were simulated. As a result, Halfsib size-10 with five missing samples and size-20
with nine and ten missing samples do not add up to 200 simulations. We ran 100 simulations for each
size and % of missing samples. For each simulation we determined where the true pedigree fell among
the ranked reconstruction results. Each bar displays the proportion of the 100 simulations that
corresponded to the five reconstruction outcomes defined as follows:

“highest scoring” — The true pedigree is the highest scoring pedigree

“among highest scoring” — PRIMUS output contained more than one possible pedigree and the true
pedigree is tied as the highest scoring pedigree with one or more other pedigrees

“among scored” — the true pedigree is not the highest scoring pedigree, but is among the pedigrees
generated by PRIMUS

“partial reconstruction” — the complete reconstruction either resulted in too many possible pedigrees,
ran out of memory, or took longer than 36 hours to run and as a result only a partial reconstruction
using 1% degree relationships was generated

“missing” — PRIMUS reconstructed one or more possible pedigrees, but the true pedigree was not
among them



Table S3. The accuracy of PRIMUS and RELPAIR’ relationship predictions with Halfsib size-20 pedigrees.
PRIMUS

Percent Missing
samples 0% 5% 10% 15% 20% 25% 30% 35% 40%
1st degree category 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00%
2nd degree category | 100.00% | 100.00% | 100.00% | 100.00% | 99.79% | 99.63% | 99.55% | 99.35% | 99.55%
3rd degree category | 100.00% | 100.00% | 100.00% | 99.79% | 98.81% | 99.26% | 98.30% | 96.27% | 93.37%
Distantly/unrelated 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00%
st degree
relationship type 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00%
2nd degree
relationship type 100.00% | 100.00% | 99.37% | 97.12% | 96.00% | 88.45% | 75.61% | 66.88% | 58.48%
3rd degree
relationship type 100.00% | 100.00% | 98.13% | 95.42% | 92.46% | 85.68% | 63.67% | 46.73% | 26.54%
Ist degree
relationship type +
direction 100.00% | 100.00% | 100.00% | 99.86% | 99.84% | 99.57% | 99.54% | 99.52% | 99.92%
2nd degree
relationship type +
direction 100.00% | 100.00% | 99.41% | 97.80% | 96.89% | 91.18% | 80.92% | 73.76% | 61.95%
3rd degree

relationship type +
direction 100.00% | 100.00% | 96.87% | 93.37% | 91.90% | 86.43% | 68.29% | 4541% | 14.15%

RELPAIR
Percent Missing
samples 0% 5% 10% 15% 20% 25% 30% 35% 40%

Ist degree category 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00%
2nd degree category | 99.98% | 99.98% | 99.97% |99.97% | 99.97% |99.96% | 100.00% | 100.00% | 100.00%
3rd degree category | 82.72% | 82.89% | 82.98% | 83.13% | 83.22% | 83.25% | 83.32% | 83.48% | 83.57%
Distantly/unrelated 97.17% | 96.67% | 96.04% | 95.07% | 93.75% | 91.77% | 88.16% | 82.52% | 66.98%
Ist relationship type | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00%
2nd relationship type | 55.95% | 55.27% | 55.81% | 56.18% | 56.68% | 57.17% | 56.20% | 57.60% | 55.89%
3rd relationship type | NA NA NA NA NA NA NA NA NA

Ist degree

relationship type +
direction NA NA NA NA NA NA NA NA NA

2nd degree
relationship type +
direction NA NA NA NA NA NA NA NA NA

3rd degree
relationship type +
direction NA NA NA NA NA NA NA NA NA

Halfsib size-20 pedigrees with 0% to 40% missing samples were used to test the pairwise relationship
prediction accuracy of both PRIMUS and RELPAIR®. We compared the pairwise relationship of the
highest ranked pedigree in PRIMUS to the true simulated relationship. We used the method employed
by Pemberton et al.® to obtain the RELPAIR prediction and then compared that to the true simulated
relationship. The table shows accuracy of each method at correctly predicting each relationship in the
pedigree by the degree of relatedness (e.g., A and B are first degree relatives), the type of relationship
(e.g., A and B have a parental relationship), and the type and directionality of the relationship (e.g., A is
the parent of B). The results have been grouped by the degree of the relationships. RELPAIR does not
make a distinction between the four 3" degree relationships nor is it able to predict the directionality of
pairwise relationships; therefore, NA is used for those results. The highlighted results are the ones
plotted in Figure 2,
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Table S4. EOCOPD pedigree reconstruction summary

Number
Number of Expected | of
Reconstructe | Genotyped | Reconstructed | Pedigree Possible
Fam FID | d Correctly Samples FIDs Rank Pedigrees | Explanation
Faml 1 11 1 1 2
Fam?2 1 8 2 1 1
Fam3 1 13 3 2 2
Fam4 1 3 4 1 1
Fam5 1 15 5 1 1
NON PATERNITY
CAUGHT: half sib
Fam6 0 9 6 | NA 20 | is actually full sib
Fam?7 1 10 7 20 28
Fam§ 1 9 8 1 1
Fam9 1 8 9 1 1
Fam10 1 9 10 1 1
Famll 1 4 11 3 7
Fam12 1 2 12 1 1
Fam13 1 3 13 1 1
Fam14 1 5 14 1 1
Fam15 1 2 15 2 2
Fam16 1 2 16 1 1
Fam17 1 8 17 1 1
Fam18 1 6 18 1 2
Fam19 1 5 19 32 33
Fam?20 1 15 20 4 11
Fam?21 1 5 21 1 1
Fam22 1 13 22 1 2
Fam23 1 8 23 2 3
NON PATERNITY
CAUGHT: half
avuncular instead of
Fam24 0 10 24 | NA 5 | avuncular
Fam25 1 5 25 1 1
Fam26 1 6 26 1 2
Fam27 1 6 27 1 1
Fam28 1 14 28 1 1
Fam29 1 29 1 1
Fam30 1 11 30 1 2
Fam31 1 5 31 1 1
NON PATERNITY
Fam32 0 6 32 | NA 4 | CAUGHT




Fam33 1 3 33 1 1
Fam34 1 4 34 1 4
Sample missing
because of
duplicate; Also non-
Fam35 0 6 | 35,39 NA 1 | paternity;
Fam36 1 3 36 1 1
Fam37 1 2 37 2 5
Fam38 1 3 38 1 1
Contains duplicate
Fam39 1 15 39 3 3 | sample
Fam40 1 5 40 1 1
Fam41 1 6 41 1 3
Fam42 1 5 42 1 1
Fam43 1 9 43 4 6
Fam44 1 14 44 1 2
NON PATERNITY
Fam45 0 7 45 | NA 1 | CAUGHT
Fam46 1 3 46 1 1
Fam47 1 6 47 4 4
Fam48 1 4 48 1 1
Fam49 1 10 49 1 1




Table S5. Comparison of HapMap3 pairwise relationships. Each pair of individuals that is predicted to
be related in at least one possible pedigree is represented in this table. The table lists the reported
relationships from HapMap3, Pemberton et al.’, Kyriazopoulou-Panagiotopoulou et al.' (CARROT),
and PRIMUS. The relationships in the PRIMUS column are the aggregate of all relationships from the
possible pedigrees, and they are listed as what their relationship is to the other person on the same line.
For example, the first row shows that NA19916 is the parent (P) of NA19918, and NA19918 is the
offspring (O) of NA19916.

Hapmap PRIMUS Pemberton CARROT Hapmap PRIMUS Pemberton CARROT
Population Network 1ID1 Sex Reported Predicted Predicted Predicted 11D2 Sex Reported Predicted Predicted Predicted Notes
ASW 1 NA19916 M P P o,P NA19918 M o] [0} o,P
ASW 1 NA19917 F P P o,P NA19918 M o] [0} o,P
ASW 2 NA19834 M P P o,P NA19836 F o] [0} o,P
ASW 2 NA19835 F P P o,P NA19836 F o] [0} o,P
ASW 3 NA20279 M [0} o,P NA20282 F P o,P
ASW 3 NA20279 M H H NA20284 M H H R*
ASW 3 NA20279 M N N NA20301 F A A R
ASW 3 NA20279 M 1Cc 1C NA20302 M 1C 1C
ASW 3 NA20282 F P P o,P NA20284 M o] [0} o,P
ASW 3 NA20282 F F F NA20301 F F F
ASW 3 NA20282 F A A NA20302 M N N R*
ASW 3 NA20284 M N N NA20301 F A A R
ASW 3 NA20284 M 1Cc 1C NA20302 M 1C 1C
ASW 3 NA20301 F P P o,P NA20302 M o] [0} o,P
ASW 4 NA19703 M P P o,P NA19705 M o] [0} o,P
ASW 4 NA19704 F P P o,P NA19705 M o] [0} o,P
ASW 6 NA19900 M P P o,P NA19902 F o] [0} o,P
ASW 6 NA19901 F P P o,P NA19902 F o] [0} o,P
ASW 9 NA20287 F P o,P o,P NA20288 M o] o,P o,P
ASW 14 NA19713 F A A NA19714 F N N R
ASW 14 NA19713 F P P o,P NA19983 F o] [0} o,P
ASW 14 NA19713 F F F NA19985 F F F R
ASW 14 NA19714 F 1Cc 1C NA19983 F 1C 1C
ASW 14 NA19714 F o] [0} o,P NA19985 F P P o,P
ASW 14 NA19982 M P P o,P NA19983 F o] [0} o,P
ASW 14 NA19983 F N N NA19985 F A A R*
1C,GA,GC 1C,GA,GC
,GG,GN,H ,GG,GN,H
ASW 15 NA20340 M AHN,UN V) NA20344 F AHN,UN V)
1C,GA,GC 1C,GA,GC
,GG,GN,H ,GG,GN,H
ASW 15 NA20340 M AHN,UN NA20349 M AHN,UN N
ASW 15 NA20344 F P P o,P NA20345 M o] [0} o,P
ASW 15 NA20344 F F F NA20349 M F F
ASW 15 NA20344 F A A NA20350 M N N R
ASW 15 NA20345 M N N NA20349 M A A R*
ASW 15 NA20345 M 1Cc 1C NA20350 M 1C 1C
ASW 15 NA20349 M P P o,P NA20350 M o] [0} o,P




ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

ASW

16

17

17

20

20

29

30

30

30

30

30

30

44

44

46

46

46

46

46

46

46

46

46

46

46

46

46

46

46

46

46

46

46

46

48

48

49

62

65

71

71

NA20281

NA19908

NA19909

NA19818

NA19819

NA20294

NA20334

NA20334

NA20334

NA20335

NA20335

NA20336

NA19700

NA19701

NA20289

NA20289

NA20290

NA20290

NA20332

NA20332

NA20332

NA20333

NA20342

NA20343

NA20346

NA20347

NA20347

NA20347

NA20347

NA20359

NA20359

NA20359

NA20360

NA20363

NA20356

NA20357

NA20291

NA19921

NA20317

NA20126

NA20127

1C,GA,GC
,GG,GN,H
AHN,UN

E

1C,GC,GG

,GN,HN,U
N

N

o,p

AGH

1C,UN
1C,GG,HA

1C,GC,GN
JHA,HN,U
N
1C,GC,GG
,GN,HA,H
N,UN

CH,N
1C,GC,HA
JHN

o,p
ACGH,N
1C,GA,GC
,GG,HA,H
N,UN
1C,GC,GG
,GN,HA,H
N,UN

o,p

o,p

o,p

o,p

op

o,p

o,p

op

o,p

op

o,p

o,p

o,p

o,p

o,p

o,p

o,p

op

o,p

op

op

op

op

o,p

op

GA

1c

NA20297

NA19919

NA19919

NA19828

NA19828

NA20295

NA20335

NA20336

NA20337

NA20336

NA20337

NA20337

NA19702

NA19702

NA20290

NA20341

NA20333

NA20341

NA20333

NA20343

NA20346

NA20343

NA20343

NA20346

NA20347

NA20359

NA20360

NA20363

NA20364

NA20360

NA20363

NA20364

NA20363

NA20364

NA20358

NA20358

NA20292

NA20129

NA20319

NA20128

NA20128

1C,GA,GC
,GG,GN,H
AHN,UN

o

o

o

(0]

o,p

(0]

E

1C,GA,GC

,GG,HA,U
N

A

o,

CH,N

1C,UN
1C,GC,HA

1C,GA,GG
JHA,HN,U
N
1C,GA,GC
,GG,HA,H
N,UN

AG,H
1C,GG,HA
JHN

op
AC,GH,N
1C,GC,GG
LGN,HA,H
N,UN
1C,GA,GC
,GG,HA,H
N,UN

op

op

op

op

op

o,p

0P

op

o,p

op

o,p

o,p

op

o,p

o,p

o,p

o,p

op

o,p

op

op

op

op

o,p

op

GN

1c

R,P

R?



ASW

ASW

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

74

80

12

22

22

26

26

27

27

28

28

29

29

32

37

37

44

46

46

47

47

50

50

52

52

54

54

55

55

59

61

61

65

65

66

66

70

70

74

74

77

77

NA19914

NA20276

NA10865

NA10865

NA10836

NA10852

NA10837

NA10837

NA12766

NA12766

NA12344

NA12344

NA12817

NA12817

NA10840

NA10840

NA12708

NA06995

NA06995

NA12375

NA12335

NA12335

NA12767

NA12767

NA12877

NA12877

NA07346

NA07347

NA12739

NA12739

NA10864

NA10864

NA10853

NA12818

NA12818

NA10843

NA10843

NA12376

NA12376

NA12832

NA12832

NA07014

NA07014

NA12386

NA12386

o,p

o,p

o,p

o,p

op

o,p

op

o,p

o,p

o,p

o,p

o,p

o,p

o,p

op

o,p

op

o,p

op

op

o,p

op

o,p

o,p

o,p

o,p

o,p

o,p

op

o,p

op

op

op

op

o,p

op

o,p

o,p

o,p

o,p

op

o,p

op

op

op

op

o,p

op

o,p

NA19915

NA20277

NA11891

NA11892

NA12275

NA12045

NA12272

NA12273

NA12775

NA12776

NA12347

NA12348

NA12827

NA12828

NA12286

NA12287

NA12718

NA07037

NA07435

NA12383

NA12340

NA12341

NA12777

NA12778

NA12889

NA12890

NA07349

NA07349

NA12748

NA12749

NA11893

NA11894

NA11843

NA12829

NA12830

NA11919

NA11920

NA12489

NA12546

NA12842

NA12843

NA07031

NA07051

NA12399

NA12400

op

op

o,p

op

op

op

op

op

o,p

op

o,p

o,p

o,p

o,p

op

o,p

op

op

op

op

o,p

op

o,p

o,p

o,p

o,p

op

o,p

op

op

op

op

o,p

op

o,p

o,p

o,p

o,p

op

o,p

op

o,p

op

op

o,p

op

o,p

o,p

o,p




CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

80

80

82

82

86

86

87

87

89

90

91

91

94

9

96

96

106

106

107

107

108

111

111

111

111

111

111

111

111

115

115

117

117

122

122

127

127

131

131

132

132

137

137

139

139

NA12336

NA12336

NA10845

NA10845

NA10847

NA10847

NA10859

NA10859

NA12707

NA10830

NA12753

NA12753

NA12865

NA12865

NA10831

NA10831

NA12752

NA12752

NA06985

NA06991

NA10838

NA06986

NA06997

NA06997

NA06997

NA07045

NA07045

NA12801

NA12801

NA10863

NA10863

NA12802

NA12802

NA10846

NA10846

NA10854

NA10854

NA10855

NA10855

NA06994

NA07000

NA12740

NA12740

NA10839

NA10839

o,p

o,p

op

o,p

op

o,p

op

o,p

o,p

op

o,p

o,p

o,p

o,p

op

o,p

op

op

op

op

o,p

op

o,p

o,p

o,p

o,p

op

op

o,p

op

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

NA12342

NA12343

NA11930

NA11931

NA12146

NA12239

NA11881

NA11882

NA12716

NA12154

NA12762

NA12763

NA12874

NA12875

NA12155

NA12156

NA12760

NA12761

NA06991

NA06993

NA12003

NA06997

NA07045

NA12801

NA12813

NA12801

NA12813

NA12812

NA12813

NA12234

NA12264

NA12814

NA12815

NA12144

NA12145

NA11839

NA11840

NA11831

NA11832

NA07029

NA07029

NA12750

NA12751

NA12005

NA12006

o,p

o,p

op

o,p

op

op

op

op

o,p

op

o,p

o,p

o,p

o,p

op

o,p

op

op

op

op

o,p

op

o,p

o,p

o,p

o,p

op

op

o,p

op

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p




CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CEU

CHD

CHD

GIH

GIH

GIH

GIH

GIH

GIH

LWK

LWK

LWK

LWK

LWK

LWK

LWK

LWK

LWK

LWK

LWK

LWK

LWK

LWK

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

141

141

143

143

147

147

150

150

152

152

156

156

16

54

61

61

61

61

71

13

22

22

22

38

45

60

60

60

69

71

80

82

NA07345

NA07348

NA12878

NA12878

NA12864

NA12864

NA10856

NA10856

NA10835

NA10835

NA10861

NA10861

NA17981

NA17980

NA20909

NA20882

NA20891

NA20891

NA20900

NA20874

NA19027

NA19396

NA19380

NA19380

NA19381

NA19347

NA19313

NA19443

NA19443

NA19469

NA19434

NA19451

NA19373

NA19309

NA19660

NA19660

NA19660

NA19660

NA19660

NA19661

NA19661

NA19661

ACGH,N

o,p

A,C,G,H,N

1C,GC,GN
JHA,HN

ACGH,N

1C,C,GA,
GC,GG,H
AHNN

ACGH,N

o,p

A,C,G,H,N

A

(0]

F

1C,GA,GC
,GG,GN,H
AHN,UN

E
1C,GA,GC

,GG,GN,H
AHN,UN

A,C,G,H,N

1C,GA,GG
JHA,HN

op

o,p

op

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

GA

NA07348

NA07357

NA12891

NA12892

NA12872

NA12873

NA11829

NA11830

NA12248

NA12249

NA11994

NA11995

NA17986

NA18150

NA20910

NA20900

NA20900

NA20907

NA20907

NA20879

NA19311

NA19397

NA19381

NA19382

NA19382

NA19352

NA19334

NA19469

NA19470

NA19470

NA19444

NA19452

NA19374

NA19359

NA19662

NA19664

NA19665

NA19685

NA19686

NA19662

NA19685

NA19686

AC,GH,N

op

(0]

(0]

A,CG,H,N

1C,GA,GG
JHA,HN

AC,GH,N

1C,A,G,G

C,GG,GN,
HA,HN

AC,GH,N

o,p

A,CG,H,N

N

E
1C,GA,GC
,GG,GN,H
AHN,UN
F
1C,GA,GC
,GG,GN,H
AHN,UN
o
AC,GH,N

1C,GC,GN
JHA,HN

(0]

op

op

op

op

o,p

op

o,p

o,p

o,p

o,p

o,p

o,p

o,p

GN

R?



MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

11

11

16

20

20

20

20

20

20

20

20

20

20

23

23

26

26

28

28

32

32

35

35

38

38

45

45

54

54

NA19662

NA19662

NA19662

NA19663

NA19664

NA19664

NA19684

NA19685

NA19722

NA19723

NA19649

NA19669

NA19670

NA19657

NA19658

NA19719

NA19720

NA19759

NA19675

NA19675

NA19675

NA19675

NA19676

NA19677

NA19677

NA19677

NA19678

NA19679

NA19651

NA19652

NA19725

NA19726

NA19755

NA19756

NA19773

NA19774

NA19776

NA19777

NA19782

NA19783

NA19779

NA19780

NA19681

NA19682

1C,GC,GN
JHA,HN

[

1C,GA,GG
JHA,HN

o,p

o,p

o,p

o,p

o,p

op

o,p

op

o,p

op

o,p

o,p

o,p

o,p

o,p

op

o,p

op

o,p

op

o,p

o,p

o,p

o,p

op

o,p

op

op

op

op

o,p

op

o,p

1c

1c

NA19664

NA19685

NA19686

NA19665

NA19665

NA19685

NA19686

NA19686

NA19724

NA19724

NA19650

NA19671

NA19671

NA19659

NA19659

NA19721

NA19721

NA19760

NA19677

NA19678

NA19679

NA19680

NA19677

NA19678

NA19679

NA19680

NA19680

NA19680

NA19653

NA19653

NA19727

NA19727

NA19757

NA19757

NA19775

NA19775

NA19778

NA19778

NA19784

NA19784

NA19781

NA19781

NA19683

NA19683

1C,GA,GG
JHA,HN

1C,GC,GN
JHA,HN

o,p

0P

o,p

o,p

o,p

op

o,p

op

o,p

op

op

o,p

op

o,p

o,p

op

o,p

op

o,p

op

o,p

o,p

o,p

o,p

op

o,p

op

op

op

op

o,p

op

o,p

1c

1c

R*

R*



MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MEX

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

55

55

59

61

61

63

64

64

67

67

69

69

73

73

16

16

16

16

25

26

26

26

26

26

26

26

26

26

31

40

40

NA19746

NA19747

NA19716

NA19794

NA19795

NA19654

NA19749

NA19750

NA19761

NA19762

NA19770

NA19771

NA19788

NA19789

NA21399

NA21399

NA21399

NA21399

NA21400

NA21401

NA21401

NA21401

NA21402

NA21402

NA21403

NA21404

NA21716

NA21716

NA21717

NA21718

NA21723

NA21307

NA21307

NA21308

NA21308

NA21308

NA21309

NA21309

NA21309

NA21379

NA21357

NA21381

NA21382

AC,GH,N

P
1C,GC,GN
JHA,HN

ACGH,N

A,C,G,H,N

A,C,G,H,N

A,C,G,H,N

1C,GC,GN
JHA,HN

1C,GC,GN
JHA,HN

1C,GC,GN
JHA,HN

1C,UN

op

o,p

op

o,p

op

o,p

o,p

op

o,p

o,p

o,p

o,p

op

o,p

op

o,p

op

op

op

op

op

o,p

o,p

NA19748

NA19748

NA19718

NA19796

NA19796

NA19656

NA19751

NA19751

NA19763

NA19763

NA19772

NA19772

NA19790

NA19790

NA21401

NA21402

NA21404

NA21405

NA21401

NA21402

NA21404

NA21405

NA21404

NA21405

NA21404

NA21405

NA21718

NA21741

NA21718

NA21741

NA21733

NA21309

NA21616

NA21309

NA21379

NA21517

NA21379

NA21517

NA21616

NA21517

NA21509

NA21383

NA21383

AC,GH,N

(0]

1C,GA,GG
JHA,HN

AC,GH,N

(0]

A,CG,H,N

(0]

A,CG,H,N

A,CG,HN

1C,GA,GG
JHA,HN

1C,GA,GG
JHA,HN

1C,GA,GG
JHA,HN

1C,UN

op

o,p

op

op

o,p

op

o,p

op

o,p

o,p

o,p

o,p

op

o,p

op

o,p

op

op

op

op

op

o,p

o,p

R*

R*

R*

R?



MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

40

40

40

40

40

40

40

40

40

40

40

40

40

40

43

43

43

43

57

68

101

105

114

114

115

115

119

119

119

119

119

119

119

119

119

119

119

119

119

119

119

NA21382

NA21382

NA21382

NA21383

NA21384

NA21384

NA21384

NA21384

NA21385

NA21386

NA21386

NA21386

NA21387

NA21388

NA21521

NA21521

NA21599

NA21600

NA21620

NA21574

NA21457

NA21363

NA21440

NA21441

NA21359

NA21360

NA21391

NA21391

NA21391

NA21391

NA21421

NA21421

NA21421

NA21421

NA21475

NA21475

NA21475

NA21475

NA21475

NA21475

NA21476

1C,GA,GG
JHA,HN
ACGH,N

1C,GA,GG
JHA,HN

1C,GC,GN
JHA,HN

AC,GH,N

1C,GA,GG
JHA,HN

A,C,G,H,N

o,p

o,p

A,C,G,H,N

1C,UN

1C,GA,GC

,GG,GN,H
AHN

1C,GA,GC
,GG,GN,H
AHN,UN

1C,UN

AC,GH,N
1C,GA,GG
JHA,HN
1C,UN

[

1C,GC,GN
JHA,HN

1C,GC,GN
JHA,HN

(0]

(0]

op

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

op

NA21384

NA21387

NA21389

NA21387

NA21386

NA21387

NA21388

NA21389

NA21386

NA21387

NA21388

NA21389

NA21389

NA21389

NA21599

NA21601

NA21601

NA21601

NA21719

NA21575

NA21683

NA21415

NA21442

NA21442

NA21361

NA21361

NA21421

NA21478

NA21485

NA21488

NA21478

NA21485

NA21487

NA21488

NA21477

NA21478

NA21485

NA21488

NA21489

NA21490

NA21477

1C,GC,GN
JHA,HN

AC,GH,N

1C,GC,GN
JHA,HN

1C,GA,GG
JHA,HN

(0]

(0]

AC,GH,N

1C,GC,GN
JHA,HN

(0]

(0]

A,CG,HN

o,p

o,p

(0]

A,CG,H,N

1C,UN

1C,GA,GC

,GG,GN,H
AHN

1C,GA,GC
,GG,GN,H
AHN,UN

1C,UN

AC,GH,N
1C,GC,GN
JHA,HN
1C,UN

(0]

1C,GA,GG
JHA,HN

1C,GA,GG
JHA,HN

op

o,p

o,p

o,p

o,p

op

op

o,p

op

o,p

op

R*



MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

119

119

119

119

119

119

119

119

119

119

119

119

119

119

119

119

119

119

119

125

125

125

125

125

125

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

NA21477

NA21477

NA21477

NA21478

NA21478

NA21478

NA21478

NA21478

NA21479

NA21479

NA21480

NA21480

NA21485

NA21485

NA21485

NA21486

NA21487

NA21488

NA21489

NA21352

NA21352

NA21352

NA21414

NA21526

NA21527

NA21300

NA21300

NA21300

NA21300

NA21300

NA21300

NA21300

NA21300

NA21300

NA21301

NA21301

NA21301

NA21302

NA21302

NA21302

NA21311

N

P
1C,GA,GC
,GG,GN,H
AHN,UN
GC,UN
ACGH,N

1C,GA,GG
JHA,HN

ACGH,N

1C,GC,GN
JHA,HN

1C,GC,GN
JHA,HN

ACGH,N

1C,GA,GG
JHA,HN

[

1C,GC,GN
JHA,HN

A,C,G,H,N

1C,GA,GG
JHA,HN

A,C,G,H,N

1C,UN

o
1C,GA,GG
JHA,HN,U
N
1C,GA,GG
JHA,HN,U
N
1C,UN
AG,HN
AG,HN
AC,GH,N
1C,UN

1C,UN

1C,UN

1Cc

GH

o,p

op

o,p

o,p

op

o,p

o,p

o,p

NA21488

NA21489

NA21490

NA21480

NA21485

NA21487

NA21488

NA21490

NA21480

NA21685

NA21488

NA21685

NA21487

NA21488

NA21490

NA21487

NA21488

NA21490

NA21490

NA21414

NA21527

NA21583

NA21583

NA21527

NA21583

NA21312

NA21370

NA21435

NA21520

NA21613

NA21617

NA21647

NA21686

NA21825

NA21302

NA21344

NA21366

NA21303

NA21344

NA21366

NA21312

A

(0]

1C,GA,GC

,GG,GN,H

AHN,UN
GG,UN

AC,GH,N

1C,GC,GN
JHA,HN

(0]

AC,GH,N

1C,GA,GG
JHA,HN

1C,GA,GG
JHA,HN

(0]

AC,GH,N

1C,GC,GN
JHA,HN

(0]

1C,GA,GG
JHA,HN

(0]
(0]

A,CG,HN

1C,GC,GN
JHA,HN

AC,GH,N
1C,UN
o
p
1C,GC,GN
JHA,HN,U
N
1C,GC,GN
,HA,HN,U
N
1C,UN
ACHN
ACHN
AC,GH,N
1C,UN
1C,UN

1C,UN

(0]

1Cc

CH

op

op

o,p

op

op

o,p

op

op

R?

R?

R*

R*

R*,?



MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

NA21311

NA21311

NA21311

NA21311

NA21311

NA21312

NA21312

NA21312

NA21312

NA21312

NA21312

NA21312

NA21312

NA21312

NA21312

NA21313

NA21313

NA21313

NA21313

NA21313

NA21313

M

M

M

M

1C,GC,GG
LGN,HA,H
N,UN

1C,UN

1C,UN

1C,GC,GN
JHA,HN

1C,GA,GC
,GG,GN,H
AHN,UN

1C,UN
1C,UN

1C,GC,GN
JHA,HN,U

1C,UN

1C,GC,GN

JHA,HN,U
N

CH,N

C

HA,HN

(0]

HN

1C,GC,GN
JHA,HN
GC,GN,H
N

NA21313

NA21314

NA21367

NA21424

NA21596

NA21313

NA21314

NA21367

NA21423

NA21424

NA21447

NA21520

NA21596

NA21613

NA21617

NA21314

NA21320

NA21362

NA21370

NA21438

NA21617

M

M

M

F

M

M

M

M

M

F

M

M

M

F

F

M

F

F

M

F

F

1C,GA,GC
,GG,HA,H
N,UN

1C,UN

1C,UN

(0]

1C,GA,GG
JHA,HN

1C,GA,GC
,GG,GN,H
AHN,UN

1C,UN

1C,UN
1C,GA,GG
JHA,HN,U

1C,UN

HA

1C,GA,GG
JHA,HN
GA,GG,H
A

R,P

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

131

131

131

131

131

131

131

131

131

131

131

131

131

131

NA21314

NA21314

NA21314

NA21314

NA21314

NA21314

NA21314

NA21314

NA21316

NA21316

NA21316

NA21316

NA21316

NA21316

ACGHN
1C,UN
1C,GA,GC
,GG,GN,H
AHN,UN
1C,UN
GC,UN
1C,UN

1C,UN

1C,UN

ACHN

1C,UN

1C,GA,GC
,GG,GN,H
AHN,UN

1C,GA,GC
,GG,GN,H
AHN,UN

NA21367

NA21378

NA21423

NA21424

NA21425

NA21447

NA21493

NA21596

NA21317

NA21318

NA21519

NA21619

NA21635

NA21678

M

M

M

F

F

M

F

M

M

M

M

M

F

M

A,CG,HN

1C,UN
1C,GA,GC
,GG,GN,H
AHN,UN
1C,UN
GG,UN
1C,UN
1C,UN

1C,UN

(0]

A,G,HN

1C,UN

1C,GA,GC
,GG,GN,H
AHN,UN

1C,GA,GC
,GG,GN,H
AHN,UN




MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

NA21317

NA21317

NA21317

NA21318

NA21318

NA21318

NA21318

NA21320

NA21320

NA21320

NA21320

NA21320

NA21320

NA21320

NA21320

NA21320

NA21344

NA21362

NA21362

NA21362

NA21362

NA21365

NA21365

NA21365

NA21366

NA21366

NA21367

NA21367

NA21367

NA21367

NA21367

NA21367

NA21370

NA21370

NA21370

NA21370

NA21370

NA21370

NA21370

N
1C,GC,GN
JHN

o
ACHN
1C,UN

1C,GA,GC
,GG,GN,H
AHN,UN

1C,GA,GC
,GG,GN,H
AHN,UN

H,N

1C,HA

1C,GC,GN
JHA,HN

1C,GA,GC
,GG,GN,H
AHN,UN

1C,UN

1C,UN
H,N

1C,HA

1C,UN

ACGH,N

1C,GA,GG
JHA,HN

1C,GN,HA
JHN,UN

1C,GN,HA
JHN,UN

N

1c

1C,GA,GN

JHA,HN,U
N

1C,UN
1C,UN

1C,UN

1C,GA,GN

JHA,HN,U
N

1C,GC,UN

H

1C,GC,GN

JHA,HN,U
N

o
1C,GN,HA
JHN
1C,GN,HA
JHN
1C,GC,GN
JHA,HN,U
N

CHN

o,p

o,p

NA21318

NA21519

NA21580

NA21519

NA21619

NA21635

NA21678

NA21365

NA21366

NA21367

NA21423

NA21424

NA21447

NA21523

NA21525

NA21596

NA21366

NA21438

NA21439

NA21528

NA21587

NA21366

NA21523

NA21525

NA21523

NA21525

NA21378

NA21423

NA21424

NA21447

NA21493

NA21596

NA21494

NA21520

NA21522

NA21528

NA21587

NA21613

NA21617

A
1C,GA,GG
JHA

AG,HN
1C,UN

1C,GA,GC
,GG,GN,H
AHN,UN

1C,GA,GC
,GG,GN,H
AHN,UN

AH

1C,HN

1C,GA,GG
JHA,HN

1C,GA,GC
,GG,GN,H
AHN,UN

1C,UN
1C,UN
AH
1C,HN
1C,UN
o

AC,GH,N

1C,GC,GN
JHA,HN

1C,GA,HA
JHN,UN

1C,GA,HA
JHN,UN

(0]

1c

1C,GA,GN

JHA,HN,U
N

1C,UN
1C,UN

1C,UN

1C,GA,GN

JHA,HN,U
N

1C,GG,U
N

H

1C,GA,GG

JHA,HN,U
N

p
1C,GA,HA
JHN
1C,GA,HA
JHN
1C,GA,GG
JHA,HN,U
N

AGH

op

o,p

R?

R?

R*

R,P



MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

NA21370

NA21378

NA21378

NA21378

NA21378

NA21378

NA21423

NA21423

NA21423

NA21424

NA21424

NA21425

NA21425

NA21435

NA21435

NA21435

NA21435

NA21435

NA21435

NA21435

NA21435

NA21438

NA21439

NA21448

NA21448

NA21448

NA21448

NA21453

NA21453

NA21453

NA21454

NA21455

NA21493

NA21494

NA21494

NA21494

NA21494

NA21519

NA21519

NA21519

CH

ACHN

ACH,N
1C,GA,HA
JHN

A

[

1C,GA,GG
JHA,HN

ACGH,N

F

1C,GC,GN
JHA,HN

N

1C,UN

1C,UN

1C,GA,GC
,GG,GN,H
AHN,UN

AC,GH,N

1C,GA,GG
JHA,HN

1CA,CG,
GA,GC,G

G,GN,H,H
AHNN

1C,GA,GG

JHA,HN,U

N

AC,GH,N

(0]

ACGH,N

1C,GA,GG
JHA,HN

AG,HN
1C,GA,GG
JHA

AG,H,N
1C,GA,GG
JHA

P
1C,GN,HA
JHN

o
1C,GN,HA
JHN
1C,GN,HA
JHN

CH

1C,UN
1C,C,GA,
GC,GG,G
N,HA,HN,
UN
GC,HN,U
N

o,p

op

o,p

o,p

o,p

o,p

op

NA21682

NA21448

NA21453

NA21455

NA21493

NA21494

NA21425

NA21439

NA21447

NA21425

NA21596

NA21447

NA21596

NA21520

NA21613

NA21617

NA21634

NA21636

NA21647

NA21648

NA21825

NA21439

NA21447

NA21453

NA21455

NA21493

NA21494

NA21455

NA21493

NA21494

NA21455

NA21493

NA21494

NA21522

NA21528

NA21587

NA21682

NA21619

NA21635

NA21636

GH

AG,H,N

AG,H,N
1C,GN,HA
JHN

1C,GC,GN
JHA,HN

AC,GH,N

(0]

F

1C,GA,GG
JHA,HN

A

1C,UN

1C,UN

1C,GA,GC
,GG,GN,H
AHN,UN

AC,GH,N

1C,GC,GN
JHA,HN

1C,A,CG,
GA,GC,G

G,GN,H,H
AHNN

1C,GC,GN

,HA,HN,U

N

AC,GH,N

(0]

AC,GH,N

1C,GC,GN
JHA,HN

ACHN
1C,GC,GN
JHN

(0]

ACH,N
1C,GC,GN
JHN

o
1C,GA,HA
JHN

(0]

p
1C,GA,HA
JHN
1C,GA,HA
JHN

GH

1C,UN
1C,G,GA,
GC,GG,G
N,HA,HN,
UN
GG,HA,U
N

o,p

op

o,p

o,p

o,p

o,p

op

R?

R§,P

R*

R?

R§,P

R?



MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

MKK

YRI

YRI

YRI

YRI

YRI

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

131

169

11

NA21519

NA21520

NA21520

NA21520

NA21520

NA21520

NA21522

NA21522

NA21522

NA21523

NA21524

NA21528

NA21528

NA21587

NA21613

NA21613

NA21613

NA21613

NA21617

NA21617

NA21617

NA21619

NA21619

NA21619

NA21634

NA21634

NA21634

NA21634

NA21635

NA21635

NA21636

NA21636

NA21647

NA21647

NA21648

NA21573

NA19184

NA19185

NA19146

NA19147

NA19178

1C,GA,GC
,GG,GN,H
AHN,UN

ACH,N
1C,GA,HA
JHN

ACHN
1C,UN
AGHN
AGHN

o,p

E

1C,GA,GC

JHA,HN,U
N

1C,GA,GC
JHA,HN,U
N

ACH,N
1C,GA,HA
JHN

ACHN
1C,UN
1C,UN

1C,UN

1C,GA,GC
,GG,GN,H
AHN,UN
ACGH,N

1C,GA,GG
JHA,HN
A,G,GNH
N

AC,GH,N

1C,GA,GG
JHA,HN

1C,UN

F

1C,GC,GN
JHA,HN

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

NA21678

NA21613

NA21617

NA21648

NA21686

NA21825

NA21528

NA21587

NA21682

NA21525

NA21525

NA21587

NA21682

NA21682

NA21617

NA21648

NA21686

NA21825

NA21647

NA21686

NA21825

NA21635

NA21636

NA21678

NA21636

NA21647

NA21648

NA21825

NA21636

NA21678

NA21647

NA21678

NA21648

NA21825

NA21686

NA21577

NA19186

NA19186

NA19148

NA19148

NA19180

1C,GA,GC
,GG,GN,H
AHN,UN

AG,H,N
1C,GN,HA
JHN
AG,HN
1C,UN
ACHN
ACHN
op
o

(0]

E
1C,GG,G
N,HA,HN,
UN
1C,GG,G
N,HA,HN,
UN

AG,H,N
1C,GN,HA
JHN

AG,HN
1C,UN
1C,UN
1C,UN

1C,GA,GC

,GG,GN,H

AHN,UN

A,CG,HN

1C,GC,GN
JHA,HN
ACGAH,
N

(0]

AC,GH,N

1C,GC,GN
JHA,HN

1C,UN

(0]

F

1C,GA,GG
JHA,HN

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

R*,?

R?

R§,P

R?



YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

11

11

11

11

11

11

12

12

15

15

20

20

24

24

26

26

29

29

31

31

32

32

33

33

34

34

38

38

39

39

41

41

46

46

47

47

48

48

49

49

52

52

62

62

NA19178

NA19178

NA19179

NA19180

NA19200

NA19201

NA18484

NA18484

NA19189

NA19190

NA19113

NA19114

NA19095

NA19096

NA18909

NA18910

NA19247

NA19248

NA18485

NA18485

NA19181

NA19182

NA19256

NA19257

NA19117

NA19118

NA18518

NA18518

NA19213

NA19214

NA19197

NA19198

NA19121

NA19122

NA18916

NA18917

NA18933

NA18934

NA18923

NA18924

NA18497

NA18497

NA18867

NA18868

1C,GA,GC
,GG,GN,H
AHN,UN

GC,UN

GG,UN

o,p

op

o,p

op

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

op

o,p

o,p

op

o,p

o,p

o,p

o,p

op

o,p

op

op

op

op

o,p

NA19200

NA19202

NA19180

NA19200

NA19202

NA19202

NA18486

NA18488

NA19191

NA19191

NA19115

NA19115

NA19097

NA19097

NA18911

NA18911

NA19249

NA19249

NA18487

NA18489

NA19183

NA19183

NA19258

NA19258

NA19174

NA19174

NA18519

NA18520

NA19215

NA19215

NA19199

NA19199

NA19123

NA19123

NA18930

NA18930

NA18935

NA18935

NA18925

NA18925

NA18498

NA18499

NA18869

NA18869

1C,GA,GC
,GG,GN,H
AHN,UN
GG,UN
o

GC,UN

o,p

op

o,p

op

o,p

o,p

o,p

o,p

o,p

o,p

op

o,p

op

0P

op

op

o,p

op

o,p

o,p

o,p

o,p

op

o,p

op

op

op

op

o,p

op

o,p

o,p

o,p

o,p

op

o,p

op

op

op

op

o,p




YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

65

65

66

66

71

71

81

83

83

85

85

86

86

91

91

92

92

94

94

95

105

105

109

109

110

115

115

117

117

122

122

122

122

122

122

122

122

131

131

133

133

134

134

141

141

NA19107

NA19108

NA19235

NA19236

NA19224

NA19224

NA18509

NA19149

NA19150

NA18873

NA18874

NA18503

NA18503

NA19137

NA19138

NA19152

NA19153

NA19221

NA19221

NA18500

NA18870

NA18871

NA18861

NA18862

NA18855

NA19171

NA19172

NA18515

NA18515

NA18912

NA18913

NA18913

NA18913

NA18914

NA18914

NA19238

NA19239

NA19209

NA19210

NA18506

NA18506

NA19159

NA19160

NA18858

NA18859

o,p

GH

CH

HA,HN

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

NA19109

NA19109

NA19237

NA19237

NA19225

NA19226

NA18511

NA19151

NA19151

NA18875

NA18875

NA18504

NA18505

NA19139

NA19139

NA19154

NA19154

NA19222

NA19223

NA18501

NA18872

NA18872

NA18863

NA18863

NA18857

NA19173

NA19173

NA18516

NA18517

NA18914

NA18914

NA19238

NA19240

NA19238

NA19240

NA19240

NA19240

NA19211

NA19211

NA18507

NA18508

NA19161

NA19161

NA18860

NA18860

o,p

CH

GH

HA,HN

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p

o,p




YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

YRI

149 NA19127  F p P op - NA19129  F o o op
149 NA19128 M p P op - NA19129  F o o op
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150 NA19130 M - ACGH,N AV - NA19192 M - AC,GH,N AV - ?
1C,GA,GG 1C,GC,GN
150 NA19130 M - JHA,HN - 1c NA19194 M - JHA,HN - 1c ?
150 NA19131  F P P op - NA19132  F o o op
1C,GC,GN 1C,GA,GG
150 NA19132  F - JHA,HN - GN NA19192 M - JHA,HN - GA ?
150 NA19192 M P P op - NA19194 M o o op
150 NA19193 F p P op - NA19194 M o o op
152 NA19116  F P P op - NA19120 M o o op
152 NA19119 M p P op - NA19120 M o o op
155 NA19093 F P 0P op - NA19094  F o op op
157 NA18852  F p P op - NA18854 M o o op
157 NA18853 M P P op - NA18854 M o o op
160 NA19140  F p P op - NA19142 M o o op
160 NA19141 M p P op - NA19142 M o o op
164 NA19206  F p P op - NA19208 M o o op
164 NA19207 M p P op - NA19208 M o o op
165 NA19101 M p P op - NA19103 M o o op
165 NA19102  F p P op - NA19103 M o o op

Notes column codes:
P — PRIMUS provides more precise relationship prediction than other methods.

? — One of the other methods reported a more precise relationship prediction than PRIMUS; however, we found
several instances where these predictions are incomplete (i.e., the authors failed to recognize that there are more
than one possible way to fit the pairwise relationships into a pedigree) or inaccurate.

R — Pemberton et al. prediction was based on RELPAIR results.

R - The Pemberton et al. reported relationship is based on manually reconstructed pedigrees, and it disagrees
with the relationship that RELPAIR predicted.

R' - Pemberton et al. could not reconcile the predicted 2" degree relationship with their manually reconstructed
pedigree structure.

N — A possible 3" degree relationship that was unreported in Pemberton et al.® and Kyriazopoulou-
Panagiotopoulou et al.'. However, the MKK population is reported as a small, isolated population,
which results in a low level of background relatedness among the samples. The background relatedness
can make individuals appear more closely related than they actually are.
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Relationship

We used a minimum coefficient of relatedness of 0.09875 (3" degree relatives or closer) to build the
relationship networks for all of HapMap3; however, one family network in the Maasai in Kinyawa,
Kenya, (MKK population) contained 126 individuals connected by 3" degree relationships or closer,
and it resulted in a number of possible pedigrees that were computationally infeasible. So, for the MKK
population we used a minimum coefficient of relatedness of 0.168 (to include all 2™ degree relatives
and closer), resulting in more manageable family network sizes. One MKK family still contained 61
individuals (Network 16 in this table). To reconstruct this network, we broke it into nine sub-networks
each containing four to eight closely related samples. We ran PRIMUS on each pair of sub-networks in

Parent

Off-spring
Full-sibling
Grandparent
Grandchild
Uncle/Aunt
Neice/Nephew
Half-sibling

GG Great-Grandparent
GC Great-Grandchild
GA Great-Aunt/Uncle
GN Great-Neice/Nephew
HA Half-uncle/aunt
HN half-neice/nephew

Z>060 10 ©

T

1C First cousin
U Uncertain
UN Unrelated (4th degree or more distant relative)

order to reconstruct relationships between the sub-networks.

Table S6. Possible combinations of pairwise 2™ and 3" degree family relationships that are considered

during reconstruction.

2" degree relationship between A and B A B
1. Half-sib through mother Half-sib Half-sib
2. Half-sib through father Half-sib Half-sib
3. Avuncular through mother Nephew Uncle
4. Avuncular through mother Uncle Nephew
5. Avuncular through father Nephew Uncle
6. Avuncular through father Uncle Nephew
7. Grandparent though father Grandfather Grandson
8. Grandparent though father Grandson Grandfather
9. Grandparent though mother Grandfather Grandson
10. Grandparent though mother Grandson Grandfather
3" degree relationship between A and B A B
. Cousins through A mom and B mom Cousins Cousins
. Cousins through A mom and B dad Cousins Cousins
. Cousins through A dad and B mom Cousins Cousins
. Cousins through A dad and B dad Cousins Cousins

. Great-grandparental through mom’s mom

Great-grandfather

Great-grandson

. Great-grandparental through dad’s mom

Great-grandfather

Great-grandson

. Great-grandparental through mom’s dad

Great-grandfather

Great-grandson

RIS N |R|W N |—

. Great-grandparental through dad’s dad

Great-grandfather

Great-grandson




9. Great-grandparental through mom’s mom

Great-grandson

Great-grandfather

10. Great-grandparental through dad’s mom Great-grandson Great-grandfather
11. Great-grandparental through mom’s dad Great-grandson Great-grandfather
12. Great-grandparental through dad’s dad Great-grandson Great-grandfather
13. Grand-avuncular through mom’s mom Grand-uncle Grand-nephew

14.

Grand-avuncular through dad’s mom

Grand-uncle

Grand-nephew

15. Grand-avuncular through mom’s dad Grand-uncle Grand-nephew
16. Grand-avuncular through dad’s dad Grand-uncle Grand-nephew
17. Grand-avuncular through mom’s mom Grand-nephew Grand-uncle
18. Grand-avuncular through dad’s mom Grand-nephew Grand-uncle

19.

Grand-avuncular through mom’s dad

Grand-nephew

Grand-uncle

20. Grand-avuncular through dad’s dad Grand-nephew Grand-uncle
21. Half-avuncular through mom’s mom Half-uncle Half-nephew
22. Half-avuncular through dad’s mom Half-uncle Half-nephew
23. Half-avuncular through mom’s dad Half-uncle Half-nephew
24. Half-avuncular through dad’s dad Half-uncle Half -nephew
25. Half-avuncular through mom’s mom Half-nephew Half-uncle
26. Half-avuncular through dad’s mom Half-nephew Half-uncle
27. Half-avuncular through mom’s dad Half-nephew Half-uncle
28. Half-avuncular through dad’s dad Half -nephew Half-uncle

As the degree of relatedness increases from 2™ to 3™ degree, there are far more relationships to test
during reconstruction. Continuing to 4™ degree relatives would require testing even more relationships.
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