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Molecular Convergence of Neurodevelopmental Disorders

Elizabeth S. Chen,1,2,7 Carolina O. Gigek,1,2,7 Jill A. Rosenfeld,3 Alpha B. Diallo,1,2 Gilles Maussion,1,2

Gary G. Chen,1,2 Kathryn Vaillancourt,1,2 Juan P. Lopez,2,4 Liam Crapper,1,2 Raphaël Poujol,1,2

Lisa G. Shaffer,5 Guillaume Bourque,4,6 and Carl Ernst1,2,4,*

Neurodevelopmental disorders (NDDs) are caused by mutations in diverse genes involved in different cellular functions, although

there can be crosstalk, or convergence, between molecular pathways affected by different NDDs. To assess molecular convergence, we

generated human neural progenitor cell models of 9q34 deletion syndrome, caused by haploinsufficiency of EHMT1, and 18q21 deletion

syndrome, caused by haploinsufficiency of TCF4. Using next-generation RNA sequencing, methylation sequencing, chromatin immu-

noprecipitation sequencing, and whole-genome miRNA analysis, we identified several levels of convergence. We found mRNA and

miRNA expression patterns that were more characteristic of differentiating cells than of proliferating cells, and we identified CpG

clusters that had similar methylation states in both models of reduced gene dosage. There was significant overlap of gene targets of

TCF4 and EHMT1, whereby 8.3% of TCF4 gene targets and 4.2% of EHMT1 gene targets were identical. These data suggest that

18q21 and 9q34 deletion syndromes show significant molecular convergence but distinct expression and methylation profiles. Com-

mon intersection points might highlight themost salient features of disease and provide avenues for similar treatments for NDDs caused

by different genetic mutations.
Introduction

Neurodevelopmental disorders (NDDs) include autism

spectrum disorders, seizure disorders, and intellectual

disability, among many others, although little is known

about the precise molecular mechanisms that lead to dis-

ease. Currently, approximately 20%–45% of all NDDs are

associated with variation in specific genes,1 most of which

show variable expressivity and reduced penetrance, high-

lighting the phenotypic complexity of NDDs.2 Notably,

NDDs are also characterized by locus heterogeneity, mean-

ing that mutations in many different genes can lead to

similar disease phenotypes.

Recent studies have suggested genotypic convergence

across diagnostic categories of NDDs. For example, com-

mon variants in the same gene have been associated with

two or more psychiatric disorders,3 and significant overlap

between haploinsufficiency of a gene and more than one

diagnostic category has also been shown.4 This leads to

an important question in NDD genetics: do mutations in

some or most genes associated with NDDs culminate on

similar cellular functions, or do they affect distinct cell

functions while having limited crosstalk between molecu-

lar pathways?

The purpose of the current study was to assess the degree

that genes associated with similar phenotypes converge

on the same cellular functions. To assess this question, we

selected two genes that are unambiguously associated

with NDDs, in which mutations cause disease by the same

mechanism (haploinsufficiency), and for which the disease

can be recapitulated in wild-type cells. Mutations in tran-
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scription factor 4 (TCF4 [MIM 602272]) cause 18q21 dele-

tion syndrome (Pitt-Hopkins syndrome [MIM 610954]),

characterized by moderate to severe intellectual disability,

breathing difficulties, recurrent seizures, cupid-bow upper

lip, distinct facial features, microcephaly, lack of speech,

and psychiatric behavioral problems. Mutations in euchro-

matic histone-lysine N-methyltransferase 1 (EHMT1 [MIM

607001]) cause 9q34 deletion syndrome,5 characterized by

severe intellectual disability, hypotonia, cupid-bow upper

lip, microcephaly, lack of speech, distinct facial features,

and psychiatric behavioral problems (MIM 610253). Both

disorders have other symptoms, and not all subjects show

all symptoms. We reasoned that modeling both disorders

in the identical neural stem cell line derived from healthy

human fetal brain might allow for an assessment of the de-

gree of molecular convergence caused by reduced dosage of

these two genes.
Material and Methods

All work was carried out with the approval of the research ethics

board of the Douglas Hospital Research Institute.
Cell Culture
Fetal brain cells (FBCs) are ReNcells derived from the ventral

mesencephalon of human fetal brain (Millipore SCC008). Cells

were grown on 6-well plates coated with poly-L-ornithine/laminin

(Sigma) and were maintained in 70% Dulbecco’s modified Eagle’s

medium, 2% B27, 1% penicillin and streptomycin (Life Technolo-

gies), 30% Ham’s F12 (Mediatech Herndon), 20 ng/ml basic fibro-

blast growth factor (bFGF, R&D Systems), 20 ng/ml epidermal
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growth factor (EGF), 5 mg/ml heparin (Sigma), and 0.2 mg/ml puro-

mycin (Sigma P8833). For studies involving differentiating FBCs,

we triggered differentiation by removing both bFGF and EGF

from cell media, leaving cells for 30 days, and changing media

every 3 days.6
Generation of Stable Knockdown Human FBC Lines
All short hairpin RNA (shRNA) used in this study was designed,

cloned into the pLKO.1 vector, and packaged into lentivirus at

the Broad Institute. To create stable cell lines (i.e., cell lines where

knockdown [KD] constructs are stably integrated into the cell

genome), we transfected FBCs with lentivirus and then selected

for cells where genomic integration occurred. For lentiviral trans-

fection, FBCs were maintained at 30% confluency (~400,000

cells/well) in a 6-well plate and then dosed with 20 ml viral media

in 2 ml cell-culture media without penicillin and streptomycin.

Puromycin (0.8 ml/ml, Sigma P8833), resistance to which is pro-

duced by the pLKO.1 vector, was added to cultures 48 hr after

infection, and this followed an initial media change 24 hr after

transfection. Stable cell lines were selected by continuous mainte-

nance of low-dose puromycin in culture media (0.2 ml/ml). Cells

that do not contain the KD construct also do not have the puro-

mycin-resistance gene, so all cells that can survive in the media

produce the KD construct. For controls, we used shRNAs targeting

LacZ, GFP, RFP, and Luc mRNA. We refer to these controls as

‘‘nontarget’’ controls because they were generated in the same

way as TCF4-KD and EHMT1-KD FBCs, but the stably integrated

construct produces an shRNA that targets an mRNA not present

in the human genome (i.e., LacZ, GFP, RFP, and Luc mRNA). After

creation and selection of stable cell lines, FBCs were frozen down

and regrown as required.
Immunocytochemistry
Cells were seeded in 6-well plates with glass coverslips and fixed

with a 4% formaldehyde solution (Tousimis, 1008C) diluted in

PBS when cells were 90% confluent. Fixed cells underwent a block-

ing and prepermeabilization step in 1% BSA and 0.1% Triton X

solution for 1 hr at room temperature. Next, primary antibodies

mouse monoclonal anti-EHMT1 (Abcam ab41969) and mouse

monoclonal anti-TCF4 (Abcam ab60727) were diluted to 1/100

and 1/200, respectively, and incubated at room temperature for

2 hr. Cells werewashed three times in 0.1%PBS and then incubated

at room temperature for 1 hr with a goat anti-mouse secondary

antibody coupled to Alexa Fluor 488 (Life Technologies A11001).

Cells were washed three times in PBS, and coverslips were slide

mounted with Vectashield with DAPI (VectorLabs H-1200).
Microscopy
Cells were imaged with an Olympus FluoView FV10i confocal mi-

croscope; high-magnification pictures (1,024 3 1,024 pixels) were

taken with a 603 oil-immersion objective with a 2.43 numerical

zoom with FluoView software (Olympus). In order to quantify

TCF4 and EHMT1 signals, we acquired all pictures during a single

session. Prior to image acquisition, we set laser intensities to con-

trol samples with the aim of eliminating saturating pixels equally

and ensuring that the same laser intensities were applied equally

to all samples. All images were exported as single black-and-white

TIFFs for Alexa Fluor 488, DAPI, and phase-contrast channels and

were imported into ImageJ (v.1.37c). For fluorescent intensities,

we followed the step-by-step quantification procedures laid out

in ImageJ. In brief, all quantification was done in gray scale with
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the corrected total-cell-fluorescence procedure after background

correction. Raw values per cell were then exported to Excel (Micro-

soft), and a Student’s t test was calculated. Ten to fifteen cells were

assessed per cell line.
Quantitative PCR
RNA from cells was extracted with the RNeasy MinElute Cleanup

Kit (QIAGEN), and cDNA was synthetized with M-MLV Reverse

Transcriptase (Invitrogen). Commercially available RNA from

eight different tissues (Ambion Total RNA: liver, kidney, spinal

cord, frontal lobe, fetal brain, lung, and testis) was used for anal-

ysis of EHMT1 (TaqMan Hs00226978_m1) and TCF4 (TaqMan

Hs00162613_m1) expression, and TaqMan endogenous controls

were used for targeting GAPDH (MIM 138400) or HPRT (MIM

308000). Primers for cell-characterization experiments were all

TaqMan primers designed by Life Technologies. Real-time PCR re-

actions were run in triplicate with the ABI 7900HT Fast Real-Time

PCR System, and data were collected with Sequence Detection Sys-

tem (SDS) software (Life Technologies).

miRNA was extracted with the QIAGEN miRNeasy Micro Kit,

after which miRNA was reverse transcribed with gene-specific

TaqMan RT-PCR miRNA assays according to the manufacturer’s

(Life Technologies) instructions. Expression levels of MIR99A

(MIM 614509; Applied Biosystems 000435) were calculated with

the Absolute Quantitation standard-curve method with RNU6-2

(HGNC 34270; Applied Biosystems 001093) as the endogenous

control. Real-time PCR reactions were run in quadruplicate with

the ABI 7900HT Fast Real-Time PCR System, and data were

collected with SDS software (Life Technologies). For each reaction,

the quantitative PCR (qPCR) mix included 7 ml 23 No AmpErase

UNGMasterMix (Applied Biosystems), 1 ml miRNA-specific primer

and probe mix, 2 ml cDNA, and 20 ml H20.
RNA Sequencing
RNA sequencing (RNA-seq) libraries were prepared from high-qual-

ity RNA (RNA integrity number> 9; Agilent 2100 Bioanalyzer), and

all libraries were prepared by expert technicians at the McGill Uni-

versity andGenomeQuebec Innovation Center. Replicates for each

shRNA construct were grown in different T75 flasks, and extraction

of RNAwas done independently for each flask. Prior to library prep-

aration, we spiked in external RNA controls from the External RNA

Control Consortium7 (Life Technologies) to assess sequencing

depth and create standard curves to determine depth and quality

of sequencing and library preparation. Three libraries were run

per lane of an Illumina HiSeq 2000 flow cell (100 bp paired-end

reads), which achieved an average of ~65 million reads per library.

For bioinformatic processing, we used FASTX-Toolkit, TopHat,8

Bowtie2,9 and Cufflinks210 with default parameters to preprocess,

align, and assemble reads into transcripts, estimate abundance,

and test differential expression. We used DAVID (Database for

Annotation, Visualization and Integrated Discovery)11 set to de-

fault parameters for Gene Ontology (GO) analysis.
Whole-Genome miRNA Analysis
miRNAswere processedwith the nCounter HumanmiRNA Expres-

sion Assay Kit (NanoString Technologies) at the NanoString facility

at the Jewish General Hospital (Montreal), and all samples were

run in duplicate. nCounter data were processed with NanoString-

Norm in R, and all data were normalized to the geometric mean

and miRNA spike-in controls according to the manufacturer’s in-

structions. All data were analyzed in R with DIANA miRPath.12
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Reduced Representation Bisulfite Sequencing
We followed BisQC, the multiplexed bisulfite sequencing parame-

ters that we developed.13,14 In brief, we used 5 mg of genomic DNA

extracted from FBCs to carry out the MspI (New England Biolabs)

digestion at 37�C for 7 hr (20 units of enzyme per microgram of

DNA). We used the QIAGEN EpiTect Fast 96 Bisulfite Kit to carry

out the bisulfite conversion of adaptor-ligated libraries and then

sequenced four indexed samples per lane of an Illumina HiSeq

2000 by using 50 bp single-end reads. We used Trim Galore, a

script to automate quality and adaptor trimming as well as quality

control, with the added functionality of removing biased methyl-

ation positions for reduced representation bisulfite sequencing

(RRBS) files. Afterwards, we used Bismark15 to map sequencing

reads to the human genome (UCSC Genome Browser; we allowed

two mismatches and used Bowtie2). For the postprocessing anal-

ysis, we developed an R script, including single-CpG and 500 bp

tiling-window analyses. To assess differentiallymethylated regions

(DMRs) within tiling windows, we needed at least two CpGs to be

present in all KD samples and 75% of control samples. Only CpG

sites with coverage greater than 53 were included, and we

excluded the 0.1% of CpGs that showed the highest coverage for

each sample. We determined significance by performing t tests

of methylation frequency within identical windows between KD

and control cells and then correcting these p values by using the

Benjamini-Hochberg approach.
Chromatin Immunoprecipitation Sequencing
For chromatin immunoprecipitation sequencing (ChIP-seq), 107

cells were dissociated by trypsin, crosslinked with 1% formalde-

hyde (Tousimis NC9611804) for 10min, pelleted, and resuspended

in lysis buffer with protease inhibitors. Samples were sonicated

with the Labsonic M Ultrasonic Homogenizer (Labsonic Sartorius

Stedim) for seven 30 s cycles at 30%power. Chromatinwas sheared

at 15 1 s pulses and subsequently rested for 2 min intervals at 50%

power with the same ultrasonic homogenizer (200–1,000 bp).

One hundred micrograms per microliter of DNA was incubated

with antibodies (5 mg/ml) overnight at 4�C in dilution buffer and

anti-EHMT1 (Abcam ab41969), anti-TCF4 (Abcam ab60727), or

IgG (Millipore 1710109 kit) as a negative control. We tested all an-

tibodies by immunoblot to ensure that a band of the correct size

could be detected. Immunoprecipitation (IP) washes, elution,

and crosslink reversal were performed with the Magna ChIP A –

Chromatin Immunoprecipitation Kit (Millipore) according to the

manufacturer’s instructions. IP and input DNA were purified by

phenol-chloroform extraction, precipitated in ethanol, and re-

suspended in sterile water. We used the Illumina ChIP-Seq DNA

Sample Prep Kit (IP-102-1001) for all experiments and followed in-

structions from the manufacturer. Libraries were sequenced with

Illumina technology and single-end sequencing. We used Bowtie2

for alignment and MACS for peak calling with default parameters

except for the background function, which we set to 10�6 instead

of 10�5. To associate ChIP peaks with genes, we considered any

regions 5 kb upstream of a gene and any region 2 kb downstream

of gene, as we did to associate genomic regions for methylation

analysis.
Case Samples
From Signature Genomics (SG), we analyzed a total of 36,938 pro-

bands referred for clinical oligonucleotide-based whole-genome

array comparative genomic hybridization (aCGH) testing. Subject

DNA was processed with arrays custom designed by SG—either a
492 The American Journal of Human Genetics 95, 490–508, Novemb
105K-feature platform (SignatureChipOS v.1 or v.4, Agilent Tech-

nologies) or a 135K-feature platform (SignatureChipOS v.2 or

v.3, Roche NimbleGen). The ethnic distribution in the samples

was estimated from a sampling cross-section: 75% were white in-

dividuals, 7% were African American individuals, and 18% were

individuals of other ethnicity. The sex distribution was 59%

male and 41% female.

Control Samples
A total of 29,957 control samples were used in the copy-number

variant (CNV) calling studies. All CNVs for control samples were

performed with SNP arrays. Control samples were derived from

theDatabase of Genomic Variants (DGV) from the following studies

(n): Wellcome Trust Case Control Consortium (WTCCC)16,17

(7,878), Cooper et al.18 non-WTCCC (6,113), Lionel et al.19

(1,234), PopGen20 (1,123), Altshuler et al.21 (1,056), Pinto et al.22

(1,287), Abecasis et al.23 (1,092), Shaikh et al.24 (2,026), and Xu

et al.25 (8,148).
Results

Expression and Generation of Reduced TCF4

and EHMT1 Dosage in FBCs

To assess the molecular convergence of two neurodeve-

lopmental disorders, we first needed a reasonable cell line

with which to model haploinsufficiency. We selected the

ReNCell VM neural progenitor cell line, referred to here

as FBCs, for several reasons: (1) they expressed appropriate

neural markers in the proliferating and differentiating cell

states (Figures 1A and 1B), (2) they expressed TCF4 and

EHMT1 mRNA at levels comparable to those observed in

fetal human brain (Figures 1C and 1D), although with

very high expression of EHMT1, and (3) TCF4 and

EHMT1 could be detected in all cells in a pattern consistent

with expected function; that is, both proteins were in, or

appeared to be clustered around, the nucleus, as expected

for proteins that associate with DNA (Figures 1E–1G).

18q21 deletion syndrome is caused by haploinsufficiency

of TCF4, and 9q34 deletion syndrome is caused by haplo-

insufficiency of EHMT1, so we modeled reduced dosage of

each gene in FBCs in an attempt to recapitulate disease.

We created stable cell lines (with KD constructs stably

integrated in the cell genome, along with the puromycin-

resistance gene, a selectable marker) for four shRNA KD

constructs per gene and four nontarget control constructs.

We identified two TCF4-KD lines that showed suitable

reduced dosage (Figure 2A) and four constructs for EHMT1

KD (Figure 2B). To confirm reduced dosage at the protein

level, we assessed TCF4-KD and EHMT1-KD cell lines by

immunocytochemistry. We selected two KD cell lines per

gene and one nontarget control and performed quantifica-

tion. For the two TCF4-KD cell lines (Figure 2C), we found a

significant decrease in TCF4 of 37% (p ¼ 0.022) for

construct 15036 and 40% (p ¼ 0.009) for construct

15037. For two EHMT1-KD cell lines (Figure 2D), we found

a significant decrease in EHMT1 of 38% (p ¼ 0.002) for

construct 229325 and 41% (p ¼ 0.002) for construct

229326.
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Figure 1. Characterization of Neural Progenitor Cells Derived from Human FBCs
(A) Expression of MSI1, NES, PAX3, and PAX6 (encoding neural progenitor cell markers) in proliferating FBCs and other human tissues.
(B) Characterization of genes encoding mature neuronal markers in differentiating FBCs and other human brain-derived tissues.
(C) qPCR expression of TCF4 in multiple human tissue types and cell lines. NPCs stands for neural progenitor cells derived from human
skin.
(D) qPCR expression of EHMT1 in multiple human tissue types and cell lines.
(E–G) Immunocytochemical analysis of TCF4 (E) and EHMT1 (F) in FBCs and the no primary control (G). Note the punctate appearance
of TCF4 and EHMT1 near and within DNA stained with DAPI. All scale bars represent 10 mm.
Whole-Genome Gene-Expression Patterns in FBCs

with Reduced Dosage of EHMT1 and TCF4

We asked how reduced expression of either TCF4 or

EHMT1 might affect the transcriptome of FBCs. We per-

formed an RNA-seq experiment by using two KD lines

per gene as well as replicates grown in independent flasks

(two shRNAs per gene for a total of four samples per gene)

and four nontarget controls with replicates for each (n ¼ 4

shRNA controls, n ¼ 8 samples) in proliferating FBCs.
The American
We assessed the number of annotated genes detectable

across all cell lines and found 11,944 genes with FPKM

(fragments per kilobase of transcript per million frag-

ments mapped) > 1, and very few were expressed in a

cell-line-specific manner (Figure 2E). We identified 330

genome-wide-significant differentially expressed anno-

tated genes in TCF4-KD cells, which we show pictorially

in Figure 2F. Immediately apparent is that 329/330

genes all showed increased expression in TCF4-KD cells,
Journal of Human Genetics 95, 490–508, November 6, 2014 493



Figure 2. Creation, Validation, and RNA-Seq of Reduced Dosage of TCF4 and EHMT1 in FBCs
(A) Creation of four stable FBC lines with reduced dosage of TCF4. The graph compares qPCR results of the TCF4 expression level in these
FBCs to that in four nontarget (NT) control cell lines (controls received a virus that produces a shRNA not known to bind to any known
human mRNA). Expression in nontarget controls is represented by a single brown bar and includes expression from four independent
cell lines in replicate.
(B) Creation of four stable FBC lines with reduced dosage of EHMT1. Color coding and sample numbers are identical to those in the TCF4
graph.
(C) Quantitative immunocytochemical analysis of TCF4 in one nontarget control (RFP) and two TCF4-KD cell lines. All scale bars repre-
sent 10 mm.
(D) Quantitative immunocytochemical analysis of EHMT1 in one nontarget control (RFP) and two EHMT1-KD cell lines.
(E) Venn diagram showing all detected RNA in nontarget control FBCs, FBCs with reduced TCF4 dosage (KD), and FBCs with reduced
EHMT1 dosage with FPKMs > 1.
(F) A dot plot of significant genes from RNA-seq compares FBCs with reduced TCF4 dosage to nontarget control cell lines. All genome-
wide-significant differentially expressed genes, except TCF4, showed increased expression. As a point of reference, the TCF4-KD FPKM
value is 13.4 (34.4 in nontarget controls).
(G) Dot plot of significant differentially expressed genes in cells with reduced EHMT1 dosage.
(H and I) GO analyses of significant differentially expressed genes from cells with reduced dosage of TCF4 (H) and EHMT1 (I).
(J) Statistical analysis of mRNA overlaps between TCF4-KD and EHMT1-KD cell lines. Hyper p refers to the cumulative hypergeometric p
value and was calculated with the numbers shown.
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Table 1. FPKM Values from Genes Significantly More Expressed in TCF4-KD and EHMT1-KD Cells Than in Nontarget Controls

Gene EHMT1 KD Nontarget Control Log2 Fold Change q Value TCF4 KD Nontarget Control Log2 Fold Change q Value

CDH6 11.93 1.81 �2.72 0.00 92.71 1.22 �6.25 0.002385

CHD3 2.63 1.19 �1.15 0.02 16.86 0.76 �4.47 0.002385

CHRNB1 3.91 1.95 �1.01 0.01 5.27 1.32 �2.00 0.0133388

COL5A3 1.29 0.50 �1.37 0.01 9.16 0.34 �4.76 0.002385

FAM181A 10.54 3.36 �1.65 0.00 19.61 2.27 �3.11 0.00823788

JPH2 1.25 0.20 �2.61 0.00 6.63 0.14 �5.59 0.002385

LPAR1 5.71 1.66 �1.78 0.00 44.93 1.12 �5.33 0.002385

SLC38A3 6.52 2.92 �1.16 0.01 7.70 1.92 �2.00 0.0133388

TFAP2C 3.22 1.17 �1.46 0.00 4.60 0.79 �2.54 0.002385

TOX1 8.92 5.95 �0.59 0.04 22.47 4.04 �2.47 0.002385

The q value is the genome-wide corrected p value and was calculated by the Benjamini-Hochberg method.
suggesting that TCF4 is a negative regulator of gene

expression. Only a single gene showed significantly

reduced expression, and this was TCF4. For EHMT1-KD

cells, there were 728 differentially expressed genes that

did not show a strong directional bias; compared to

nontarget controls, these cells showed increased expres-

sion of 409 genes and decreased expression of 318 genes

(Figure 2G), despite the fact that EHMT1 action (H3K9

methylation) was associated with gene repression.26 To

understand what pathways might be affected in each

deletion syndrome, we used DAVID to perform GO anal-

ysis of significantly differentially expressed genes from

each analysis. Notably, the three highest GO clusters

representing independent categories for TCF4-KD cells

were ion transport (e.g., GABA, glutamate, and calcium

receptor subunits), regulation of cell communication

(more specifically, TGF-b and MAPK signaling), and neu-

ral-tube development (Figure 2H). Genes from GO terms

included noggin (NOG [MIM 602991]), TGFB-induced

factor homeobox 1 (TGIF1 [MIM 602630]), and WNT5A

(MIM 164975). Similarly, an EHMT1-KD GO analysis

for those genes that were significantly differentially ex-

pressed (Figure 2I) suggested involvement of pathways

important in development, and differentially expressed

gens included BMP7 (MIM 112267), WNT7A (MIM

601570), CTNNB1 (MIM 116806), and TGFB2 (MIM

190220). From 11,944 expressed genes, 21 were differen-

tially expressed in both EHMT1-KD cells (728 genes with

q values < 0.05) and TCF4-KD cells (330 genes with q

values < 0.05). To find the probability that this overlap

occurred by chance, we calculated the hypergeometric

distribution27 and found a nonsignificant value of 0.45,

suggesting that any overlap at the gene level between

TCF4-KD cells and EHMT1-KD cells might be random

(Figure 2J). Still, there were ten intersecting genes that

overlapped and showed the same directional change

(increased expression) in both EHMT1-KD and TCF4-KD

cells (Table 1).
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Assessment of Duplications of Genes with

Significantly Increased Expression in FBCs with

Reduced Dosage of EHMT1 and TCF4

We identified ten different genes that showed increased

expression in both EHMT1-KD and TCF4-KD FBCs, which

might suggest that some of these genes are important

to the NDD phenotype for both 18q21 and 9q34 dele-

tion syndromes. We therefore reasoned that given that

decreased expression of either TCF4 or EHMT1 might

lead to increased expression of any of these genes, duplica-

tion in affected subjects might show a similar clinical

phenotype to 18q21 or 9q34 deletion syndromes, even

though gene duplications are not always associated with

dosage changes and gene duplications can be complicated

by duplication breakpoint location and even lead to

decreased gene expression. Notwithstanding these caveats,

we screened a large cohort of affected subjects referred for

genetic testing with duplications in any of these genes to

see whether the phenotype overlapped that of 18q21 or

9q34 deletion syndromes (Table 2). We observed only a

small number of subjects for each genomic region when se-

lecting duplication CNVs that were >100 kb and <3 Mb

and encompassed the gene of interest. Genes for which

there were at least two subjects with similar phenotypes

related to 18q21 and 9q34 deletion syndromes included

COL5A3 (MIM 120216), SLC38A3 (MIM 604437), CHRNB1

(MIM 100710), and TFAP2C (MIM 601602), suggesting

that duplications of these genes might contribute to ab-

normal phenotypes and warrant further investigation.

Eight of 14 CNV duplications were considered pathogenic

in a Clinical Laboratory Improvement Amendments-certi-

fied laboratory and were reported as such to referring phy-

sicians, whereas the six remaining CNVs were variants of

unknown significance but were considered valid by Amer-

ican Board of Medical Genetics-certified geneticists. Nine

of ten genes assessed had complete gene duplications;

only CDH6 (MIM 603007) could not be unambiguously

described as having a complete gene duplication as a result
Journal of Human Genetics 95, 490–508, November 6, 2014 495



Table 2. Clinical Information for Those Subjects with Duplications < 3 Mb in Genes Upregulated in Both EHMT1-KD and TCF4-KD Cells

ID Sex Phenotype Inheritance Array Coordinates Age
Other Potentially
Significant CNVs Validation

CDH6

38742 F congenital diaphragmatic
hernia

unknown SignatureChipOS
v.2.0 12-plex

chr5: 31,247,785–
31,508,304a

prenatal none –

68773 M velocardiofacial syndrome unknown SignatureChipOS
v.3.1 12-plex

chr5: 31,247,785–
31,538,938a

16 years arr[hg18]
4p16.3(33,860–
2,349,973) 31

–

CHD3

GC45076 M congenital heart disease unknown SignatureChipOS
v.2.0 12-plex

chr17: 7,696,576–
8,579,933

0 months none RP11-
769H2233

GC70690 F developmental delay,
seizure disorder

de novo SignatureChipOS
v.2.0 12-plex

chr17: 6,716,420–
8,264,897

6 years none RP11-
298H433

CHRNB1

GC39423 F encephalopathy unknown SignatureChipOS
v.1.1 Rev. B 2-plex

chr17: 6,904,478–
7,628,740

6 years none CTD-
3054O532b

GC70690 F developmental delay,
seizure disorder

de novo SignatureChipOS
v.2.0 12-plex

chr17: 6,716,420–
8,264,897

6 years none –

COL5A3

GC24840 M dysmorphic features,
seizure disorder

unknown SignatureChipOS
v.1.0 2-plex

chr19: 9,147,542–
10,279,708

14 years none RP11-
365L432b

GC25160 M developmental delay,
dysmorphic features

maternal SignatureChipOS
v.1.0 2-plex

chr19: 9,147,542–
11,061,034

6 years none RP11-
365L433

GC93811 M brain abnormality
(posterior fossa), partial
agenesis of cerebellar vermis

unknown SignatureChipOS
v.4.0 4-plex

chr19: 7,668,882–
10,208,159

prenatal none CTD-
2102F1933

SLC38A3

40532 F glycogenosis, other specific
developmental learning
difficulties, unspecified lack
of normal physiological
development, disorders of
mitochondrial metabolism

unknown SignatureChipOS
v.2.0 12-plex

chr3: 50,162,650–
50,286,670

12 years arr[hg18]
1p36.31p36.23
(6,151,213–
8,039,703)31

–

43079 M unspecified disturbance
of conduct

unknown SignatureChipOS
v.2.0 12-plex

chr3: 50,162,650–
50,286,670

5 years none –

TFAP2C

37732 M developmental delay unknown SignatureChipOS
v.2.0 12-plex

chr20: 54,033,017–
54,914,766

4 years arr[hg18]
2q31.3q32.3
(180,784,421–
192,194,263) 31

–

GC66182 M developmental delay,
dysmorphic features

unknown SignatureChipOS
v.2.0 12-plex

chr20: 54,558,953–
54,744,904

18 months none RP11-
361G1632b

MIRLET7E

GC66320 F obesity unknown SignatureChipOS
v.2.0 12-plex

chr19: 56795726-
57581342

8 years none –

Phenotypes are those listed by referring physicians; thus, subjects might have more than what is listed. Coordinates listed are according to the hg18 assembly of
the UCSC Human Genome Browser. American Board of Medical Genetics-certified geneticists reassessed all CNVs to ensure nonartifactual calls. For subjects with
IDs starting with ‘‘GC,’’ these findings were reported as abnormal and therefore adhered to all quality-assurance and quality-control requirements for a Clinical
Laboratory Improvement Amendment-certified laboratory. Missing genes were FAM181A (smallest duplication was at least 7.5 Mb, although arrays did not have
any direct coverage of this gene, so small, whole-gene duplications might remain undetected), JPH2 (smallest duplication was at least 18.5 Mb), LPAR1 (smallest
duplications were part of more complex 9q rearrangements involving at least ~15 Mb), and TOX1 (smallest duplication was at least 27 Mb). Abbreviations are as
follows: F, female; and M, male.
aThese duplications might or might not include the entire gene; the last nonduplicated probe (chr5: 31,221,930–31,221,990) is outside the gene, and the first
duplicated probe (chr5: 31,247,782–31,247,845) is within the gene.
bBelow resolution of detection by fluorescence in situ hybridization.
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of probe density over this region on the array. To ensure

these were not CNVs that occurred in the general popula-

tion, we utilized the DGV to determine whether complete

duplications in these same genes could be identified.

Because these control data are derived exclusively from

SNP array data (unlike case data, which were derived

from aCGH arrays), we restricted this analysis to CNVs >

100 kb, meaning that these genes in the general popula-

tion might contain duplication CNVs that are below the

detection resolution of the technology. One CNV duplica-

tion in each of TFAP2C (DGV nsv525425) and SLC38A3

(DGV nsv876768) in the control data set met these criteria,

suggesting that duplications in these two genes are un-

likely to be pathogenic. Still, we identified so few affected

subjects for the other genes possibly related to the clinical

phenotype that no significance level could be ascertained.

Sample sizes orders of magnitude larger will be required for

assessing any potential role for these genes in disease.

Expression Differences that Define Proliferating

FBCs with Reduced Dosage of TCF4 and EHMT1

Are More Characteristic of Differentiating than

of Proliferating Cells

GO analysis for FBCs with reduced dosage of TCF4 and

EHMT1 suggested that genes important in development,

cell differentiation, and ion transport might be affected

in these cell models of human deletion syndromes. Given

this observation, we wondered whether reduced dosage of

TCF4 or EHMT1 in FBCs might affect the balance of genes

involved in cell proliferation and cell differentiation,

collectively referred to here as cell state. To test this idea,

we generated RNA-seq data from nontarget controls in

both a proliferating state (n ¼ 4 shRNA control constructs,

n ¼ 8 samples in duplicate) and a differentiating state (n ¼
4 shRNA control constructs, n ¼ 8 samples in duplicate).

We defined differentiating FBCs as cells that are main-

tained in culture for 30 days in the absence of bFGF or

EGF and proliferating cells as those maintained in culture

with bFGF and EGF (Figure 3A), a technique that has

been accepted for many years.6,28 We identified 12,378

transcripts with FPKM> 1 (Figure 3B) in common between

both proliferating and differentiating FBCs. We performed

differential-expression analysis on these two cell states

and found that 7,683 genes were significantly differentially

expressed and that there was a slight overrepresentation of

genes showing decreased expression in differentiating

FBCs (n¼ 4,094 cells with decreased expression in differen-

tiating FBCs; Figure 3C). Performing GO analysis with

genes downregulated in differentiating FBCs (Figure 3D)

or upregulated in differentiating FBCs (Figure 3E) gave pre-

dictable results: genes involved in the cell cycle had lower

expression in differentiating FBCs, whereas genes involved

in neurodevelopment had higher expression. If reduced

dosage of TCF4 leads FBCs to an altered proliferation or

differentiation state, we might expect an overlap of gene-

expression changes in the TCF4-KD and cell-state experi-

ments. We intersected the differentially expressed genes
The American
from these experiments (Figure 3F) and found a significant

overlap beyond what would be expected by chance (n ¼
236 genes). GO terms associated with these overlapping

genes were involved in cell-projection assembly and ion

transport (Figure 3G). We plotted the log2 fold-change dif-

ferences for the common differentially expressed genes in

the TCF4-KD and the cell-state experiments and observed

a significant positive correlation between gene-expression

patterns (Pearson p ¼ 0.0001; Figure 3H)—the increased

expression of genes in the TCF4-KD experiment were corre-

lated with increased gene expression in differentiating

cells, suggesting that genes whose expression is altered by

reduced dosage of TCF4 are similarly altered in normal cells

as they differentiate. We performed identical analyses for

EHMT1 by using the same rationale and found a significant

overlap of significantly differentially expressed genes be-

tween the EHMT1-KD experiment and the cell-state exper-

iment (n ¼ 674 genes; Figure 3I), and GO terms for these

overlapping genes were all related to neurodevelopment

(Figure 3J). As for the TCF4 results, we observed a sig-

nificant positive Pearson correlation for log2 fold-change

differences between EHMT1 KD and differentiating FBCs

(p ¼ 1.4 3 10�11; Figure 3K). These data suggest that genes

that show differential expression in FBCs with reduced

dosage of EHMT1 or TCF4 are more characteristic of genes

that define a differentiating cell state than of genes that

define a proliferating cell state, although the genes that

make up these cell states are different for cells with reduced

dosage of TCF4 and EHMT1. Of note, we did not observe

any cell-proliferation phenotype of TCF4-KD or EHMT1-

KD cells in culture, meaning that the expression changes

observed here do not suffice to drive cells out of a prolifer-

ating state in the presence of growth factors.

miRNA Convergence in FBCs with Reduced Dosage

of TCF4 and EHMT1

To further understand the impact of reduced dosage of both

EHMT1 and TCF4, we performed another analysis on

genome-wide expression in proliferating FBCs, this time

of miRNA, by using the same design as for the RNA exper-

iment (two KD shRNAs for each of EHMT1-KD and TCF4-

KD FBCs in replicate and four nontarget shRNA controls

in replicate). Of the 800 miRNAs present on NanoString

arrays, only 254 were detectable in at least 75% of samples

in the nontarget control group or in 100% of KD cell lines.

For both TCF4-KD and EHMT1-KD FBCs, compared to

nontarget FBCs, only a single miRNA, MIRLET7E (MIM

611250), passed Benjamini-Hochberg false-discovery-

rate correction, suggesting that reduced dosage of both

EHMT1 and TCF4 increases expression of this gene. A total

of six genes were identical between TCF4-KD and EHMT1-

KD FBCs when we selected miRNAs with p values < 0.10,

and we calculated that the probability that this overlap

occurred by chance to be 0.027 (Figure 4A). When we

focused more closely on these six miRNAs common to

both TCF4-KD and EHMT1-KD FBCs (Figure 4B), we found

that the expression pattern was equivalent across all genes;
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Figure 3. Gene-Expression Patterns in FBCs with Reduced Dosage of TCF4 or EHMT1 Are More Characteristic of Differentiating Cells
Than of Proliferating FBCs
(A) Diagram outlining the experimental procedures to define proliferating and differentiating FBCs.
(B) RNA-seq analysis of four nontarget control (GFP, LacZ, RFP, Luc) FBC lines in a proliferating state or a differentiating state. The Venn
diagram shows the number of detected transcripts that were common to both cells states with FPKMs > 1.
(C) Dot plot plotting the log2 fold-change differences of FPKMs in proliferating and differentiating nontarget (NT) FBCs against the
FPKM value of differentiating FBCs. The graph was truncated at FPKM ¼ 200.
(D and E) GO analysis for significantly differentially expressed genes that showed lower (D) or higher (E) expression in differentiating
FBCs than in proliferating FBCs.
(F) This Venn diagram demonstrates the overlap of all significantly differentially expressed genes identified in the TCF4-KD and cell-state
experiments. We used 11,944 as the total mRNAs detectable.
(G) GO analysis of the 236 overlapping genes from (F).
(H) Dot plot demonstrating that those genes common to both the TCF4-KD analysis and the cell-state analysis (n ¼ 236 genes) have a
significant positive correlation. Plotted are the log2 fold-change differences for each analysis.
(I) This Venn diagram demonstrates the overlap of all significantly differentially expressed genes identified in the EHMT1-KD and
cell-state experiments.
(J) GO analysis of the 674 genes from (I).
(K) Dot plot demonstrating that those genes common to both the EHMT1-KD analysis and the cell-state analysis (n ¼ 674 genes) have a
significant positive correlation. Plotted are the log2 fold-change differences for each analysis.
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Figure 4. miRNA Analysis in FBCs with Reduced Dosage of TCF4 and EHMT1
(A) Venn diagram showing overlap of differentially expressed miRNAs common to FBCs with reduced dosage of TCF4 and EHMT1.
(B) Expression values of each of the six miRNAs common to FBCs with reduced dosage of TCF4 and EHMT1 at p < 0.10; the direction of
change is identical for all six miRNAs.
(C) NanoString results for the miRNA experiment performed in nontarget control cell lines in a proliferating and differentiating state.
(D and E) GO analysis for TCF4-KD (D) and EHMT1-KD (E) differentially expressed miRNAs (p < 0.10).
for example, when a miRNA was increased in TCF4-KD

cells, it was also increased in EHMT1-KD cells. Two of these

miRNAs (MIRLET7E andMIR99A) are involved in cell differ-

entiation,29–31 and two of the remaining four (MIR302D

[MIM 614599] and MIR378E [MIM 611957]) have known

roles in cell proliferation.32–34 We confirmed the validity

of the NanoString data by performing targeted qPCR on

one miRNA, MIR99A (ranked the second and third most

significant miRNA for both TCF4-KD and EHMT1-KD cells,

respectively), which had a unique probe available and

whose specificity we could confirm. The directional

changes we observed in this qPCR experiment were iden-

tical to those in the NanoString arrays (TCF4 KD, p ¼
0.01; EHMT1 KD, p ¼ 0.09).

RNA-seq data as well as the direction of expression

changes of four of the six miRNAs (Figure 4B) suggested

thatmiRNAs important in cell proliferation or cell differen-
The American
tiationmight be affected when TCF4 or EHMT1 expression

is reduced in FBCs. Two of the miRNAs in this list of six

genes (MIR1253 [HGNC 35318] and MIR644A [HGNC

32900]) are of unknown function, but their expression pat-

terns in the KD FBCsmight suggest that they are important

in cell proliferation, given the expression differences of the

four known miRNAs. We performed another NanoString

expression analysis by using four nontarget control FBCs

in the proliferating state and the same nontarget control

FBCs in a differentiating state (n ¼ 4 shRNAs per group,

in duplicate) in an attempt to identify miRNAs important

in each cell state. With these data, we would then be able

to better determine where the two miRNAs of unknown

function (MIR1253 and MIR644A) have a role. We found

394 miRNAs that could be detected in 75% of samples in

either the differentiating state or the proliferating state,

and 210 miRNAs had a p value < 0.01. With these newly
Journal of Human Genetics 95, 490–508, November 6, 2014 499



generated miRNA expression maps of differentiating and

proliferating FBCs, we graphed the values for the six miR-

NAs that we previously identified as common to both

TCF4-KD and EHMT1-KD FBCs. We found the directional

patterns of these six miRNAs to be identical to the results

from the gene-KD experiments, although the magnitude

was much more drastic in the cell-state experiment (Fig-

ure 4C). These results support the idea that miRNA pat-

terns in cells with reduced dosage of TCF4 or EHMT1 are

more characteristic of a differentiating cell state than of a

proliferating cell state. Finally, we performed a GO analysis

for differentially expressed miRNA for both gene-KD con-

ditions and implicated developmental and signaling path-

ways (Figures 4D and 4E).

Methylation Differences Caused by Reduced Dosage

of TCF4 or EHMT1 in FBCs

Chromatin modifiers and methyl binding proteins are

implicated in NDDs,35,36 suggesting that DNA-methyl-

ation patterns might reflect cell state. Methylation of

DNA is not a function of TCF4, but it might be a function

of EHMT1,37 and reduced dosage of either genemight have

downstream effects that culminate in DNA-methylation

changes. We therefore hypothesized that reduced dosage

of EHMT1 or TCF4 would lead to methylation changes in

identical genomic regions. These DMRs might reflect regu-

latory regions for genes important in proliferation or differ-

entiation, for example.

To do this analysis, we performed RRBS by using our es-

tablished pipeline13 with two shRNAs per KD cell line and

four nontarget controls. For the analysis, we segregated the

genome into 500 bp windows and assessed those windows

with at least two CpGs, and that showed a significant dif-

ference between methylation frequencies in KD and

nontarget controls (mean methylation differences were

>2%). A total of 15,433 windows were detected and used

for statistical testing, and Figures 5A and 5B show theMan-

hattan plots of the chromosomal distribution of significant

windows for TCF4 KD and EHMT1 KD. For TCF4 KDs, 89

DMRs were genome-wide significant (q values < 0.05),

whereas for EHMT1 KDs, 96 DMRs were genome-wide sig-

nificant, and these DMRs appeared more frequently in the

50 UTR and upstream regions than in the total group of

all windows (Figures 5C–5F). Twenty DMRs were identical

between TCF4-KD and EHMT1-KD cells, which has a hy-

pergeometric probability of occurring by chance of 8.3 3

10�26 (Figure 5G). We observed more hypomethylation

in the KD groups; TCF4 KD had 55/89 hypomethylated

DMRs (Figure 5H), whereas EHMT1 KD had 60/93 hypo-

methylated DMRs (Figure 5I). Importantly, 18/20 DMRs

were directionally identical (Pearson ¼ 0.65, p ¼ 0.001;

Figure 5J), and three DMRs showed hypermethylation. To

ensure that a single CpG of strong effect did not influence

these DMRs, we plotted all CpGs for each of these 20 clus-

ters for which we observed cluster-specific methylation

patterns, meaning that multiple CpGs appeared to

contribute equally to the signal (Figure 5K). A GO analysis
500 The American Journal of Human Genetics 95, 490–508, Novemb
of overlapping genes in which these DMRs were identified

strongly suggested a role for cell-differentiation processes

(Figure 5L), and we selected two DMRs (one in NCAM2

[MIM 602040] and one in RUNX2 [MIM 600211]) for

demonstration (Figure 5M).

Data from the mRNA and miRNA experiments suggest

that TCF4 KD and EHMT1 KD might affect genes impor-

tant in cell proliferation or differentiation. To test this

idea with methylation data, we performed an RRBS exper-

iment by using nontarget control cells in proliferating (n¼
4 nontarget controls) and differentiating (n ¼ 4 nontarget

controls) cell states and identified 134 DMRs. We wanted

to assess whether those DMRs significantly differentially

methylated between proliferating FBCs and differentiating

FBCs were also significantly differentially methylated in

the gene-KD experiments. For TCF4 KD, we found 11

DMRs that were common between the KD and cell-state

experiments (Figure 6A); we graph the distribution of these

differential methylation patterns in Figure 6B. Six of 11

DMRs were more similar to the differentiating nontarget

FBCs; this ratio is not above what would be expected by

chance, although it is in the direction expected if DNA-

methylation patterns are more similar to nontarget differ-

entiating FBCs than to nontarget proliferating FBCs. All of

these DMRs occurred in the introns of genes, except for

those in MIR34 (MIM 611172) and TMEM240 (HGNC

25186), which were within the promoter and less than 1

kb from the transcription start site (TSS). For EHMT1 KD,

we found seven DMRs that were common between the

reduced-dosage analysis and the cell-state analysis (Fig-

ure 6C); five of seven DMRs matched the pattern observed

in differentiating FBCs (Figure 6D), supporting the notion

that DNA-methylation patterns aremore similar to a differ-

entiating cell state than to a proliferating one, although

this was not statistically assessed because of the small num-

ber of overlapping DMRs observed. However, analyzing

significantly differentially methylated CpG dinucleotides

did support the hypothesis that methylation states are

more characteristic of differentiating cells than of prolifer-

ating cells (Figure S1, available online). Three DMRs (in

ETV6 [MIM 600618], RUNX2 [MIM 600211], and GNAS

[MIM 139320]) were common to both TCF4 KD and

EHMT1 KD and were identified in the cell-state experiment

(Figure 6E), and only one, in RUNX2, showed similar

methylation patterns among EHMT1-KD, TCF4-KD, and

differentiating nontarget FBCs. To provide perspective to

these data, we also show the ratio of hypermethylation

to hypomethylation in nontarget differentiating and

proliferating FBCs (Figure 6F).

EHMT1 and TCF4 DNA-Binding Sites in Human FBCs

Both EHMT1 and TCF4 either interact with DNA through

large protein complexes or directly bind DNA, so we next

performed genome-wide ChIP-seq to identify binding sites

in fetal brain. For TCF4, we identified 750 peaks, and 47%

of targets were associated with a gene (Figure 7A). We first

asked whether genes that are differentially expressed are
er 6, 2014



Figure 5. Methylation Analysis of FBCs with Reduced Dosage of TCF4 and EHMT1
(A and B) Manhattan plots showing genomic regions with genome-wide-significant differential methylation in reduced-dosage FBCs.
This analysis was donewith 500 bpwindows and by assessment of themeanmethylation per CpG in the interval. The red lines represent
q value ¼ 0.05 (i.e., genome-wide-corrected p values).
(C) Genomic distribution of 500 bp windows observed (i.e., at least two CpGs detected in all cell groups) in RRBS.
(D) Genomic distribution of DMRs from FBCs with reduced TCF4 dosage.
(E) Genomic distribution of DMRs from FBCs with reduced EHMT1 dosage.
(F) Genomic distribution of DMRs common to FBCs with reduced dosage of TCF4 and EHMT1.
(G) Venn diagram of statistical assessment of overlapping DMRs in TCF4 KD and EHMT1 KD.
(H and I) Dot plots showing the relationship between p value and direction of change (either hyper- or hypomethylated) for FBCs with
reduced dosage of TCF4 or EHMT1.
(J) Correlation analysis of those DMRs common to FBCs with reduced dosage of EHMT1 and TCF4.
(K) Plot of all individual CpGs that contribute to each cluster plotted in (J); each dot represents a single CpG site.
(L) GO analysis for DMRs common to FBCs with reduced dosage of TCF4 and EHMT1.
(M) Integrative Genomics Viewer (IGV) image showing two examples of DMRs common to FBCs with reduced dosage of TCF4 and
EHMT1. Compared to nontarget (NT) controls, both reduced-dosage cell lines were hypomethylated. Each individual colored line reflects
a single CpG at this locus, and black dashes represent read coverage over the region (the scale is set from 0 to 100 reads). The colored scale
bar refers to methylation frequency.
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Figure 6. Comparison of Methylation Patterns in Differentiating and Proliferating Nontarget Control FBCs and FBCs with Reduced
Dosage of EHMT1 and TCF4
(A) Venn diagram showing the overlap of DMRs identified in the TCF4-KD and the cell-state experiments. The analysis included a total of
14,533 windows.
(B) Genomic region in which the 11 DMRs from (A) were located, as well as the mean methylation level for each.
(C) Venn diagram showing the overlap of DMRs identified in the EHMT1-KD and cell-state experiments.
(D) Genomic region in which the seven DMRs were located, as well as the mean methylation level for each analysis.
(E) Venn diagram showing the overlap of DMRs that intersected the TCF4-KD, EHMT1-KD, and cell-state experiments.
(F) Distribution of methylation-frequency differences of 134 DMRs in the cell-state experiment.
also associated with DNA ChIP target regions in TCF4. We

found that COL5A3, DGKZ (MIM 601441), GRK4 (MIM

137026), MPP7 (MIM 610973), PI4KA (MIM 600286),

PLEKHA5 (MIM 607770), and QPCT (MIM 607065) were

boundbyTCF4and showeddifferential expression (Table3),

suggesting that the explicit cause of increased expression of

these particular genes might be reduced binding by TCF4,

although the probability of observing seven genes common

to both the RNA-seq data (n ¼ 330 genes) and the ChIP-seq

(n ¼ 349 unique genes) by chance is only modestly signifi-

cant (hypergeometric p ¼ 0.022) when the 41,566 anno-
502 The American Journal of Human Genetics 95, 490–508, Novemb
tated genes in GRCh37 are used as the global pool of genes.

We provide the significant de novo binding motifs as pre-

dicted by the HOMER (Hypergeometric Optimization of

Motif Enrichment) algorithm for TCF4 in Figure S2. TCF4

peaks intersected with some genomic regions that are

known to associate with transcription factors, at least ac-

cording to ENCODE transcription factor maps generated

with the H1 stem cell line (Figure 7C). For EHMT1 ChIP-

seq, we identified 1,218 peaks, of which 56% were associ-

ated with a gene (Figure 7B); a significant proportion of

peaks, at least compared to TCF4 peaks, were in close
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Figure 7. DNA-Binding Analysis of FBCs with Reduced Dosage of TCF4 and EHMT1
(A) Genomic distribution of peaks from TCF4 ChIP-seq (colored pie chart); the bar graph represents the distribution of TCF4 ChIP peaks
from the nearest TSS and was generated with ChIP-Enrich.
(B) Genomic distribution of peaks from EHMT1 ChIP-seq (colored pie chart); the bar graph represents the distribution of EHMT1 ChIP
peaks from the nearest TSS.
(C) Pie chart showing the degree of overlap among ChIP peaks, conserved transcription factor binding sites (TFBSs), and ENCODEDNase
hypersensitivity sites from the H1 stem cell line.
(D) Venn diagram showing the degree of overlap between TCF4 ChIP peaks and EHMT1 ChIP peaks in the same genes. Hyper p refers to
the cumulative hypergeometric p value.
(E) GO analysis of the 29 overlapping genes common to both TCF4 and EHMT1 ChIP peaks.
(F and G) IGV images showing ChIP peaks from TCF4 and EHMT1. Peaks are in different regions of the same gene and show different
binding patterns. Grey bars represent sequencing reads, and blue represents the gene of interest.
proximity to the TSS. Gene-expression analysis of EHMT1

KD showed 728 different genes with differential expression,

whereas 683 unique genes were associated with ChiP-seq

peaks; 34 of these genes were common between EHMT1-

KD RNA-seq and ChIP-seq experiments, corresponding to

a hypergeometric probability of p < 7.1 3 10�8 (Table 4).

Sixteen of these 34 genes showed binding directly in the
The American
promoter or 50 UTR (within 1 kb of the TSS), suggesting

not only that EHMT1 (compared to TCF4) preferentially

targets promoter regions but also that these EHMT1 target

regions might also affect gene expression. Figure S3 shows

the DNA motifs that are most commonly associated with

EHMT1 sequencing reads. EHMT1 ChIP peaks showed

more overlap with ENCODE-identified transcription factor
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Table 3. TCF4 RNA-Seq and TCF4 ChIP-Seq Intersection

Gene

RNA-Seq
Log2 Fold
Change

TCF4 Peak
(Distance from
TSS in bp) Peak Coordinates (hg19)

COL5A3 4.75 20,129 chr19: 10,100,917–10,101,120

DGKZ 2.99 �3,649 chr11: 46,350,704–46,350,906

GRK4 2.07 50,743 chr4: 3,015,789–3,016,381

MPP7 6.06 251,199 chr10: 28,340,695–28,340,898

PI4KA 3.74 91,421 chr22: 21,121,578–21,121,780

PLEKHA5 4.16 242,739 chr12: 19,525,263–19,525,465

QPCT 5.42 1,8791 chr2: 37,590,397–37,590,689

Table 4. EHMT1 RNA-Seq and EHMT1 ChIP-Seq Intersection

Gene

RNA-Seq
Log2 Fold
Change

EHMT1 Peak
(Distance
from TSS
in bp) Peak Coordinates (hg19)

ANKRD52 �0.77 �90 chr12: 56,652,025–56,652,442

ARIH1 �0.67 638 chr15: 72,767,080–72,767,528

B3GALTL 0.64 95 chr13: 31,773,895–31,774,518

BCL2L1 0.62 25,036 chr20: 30,285,526–30,285,714

CA2 �0.65 �193 chr8: 86,375,713–86,376,162

CCBE1 1.96 79 chr18: 57,364,328–57,364,802

CEP70 �0.73 24,421 chr3: 138,288,449–138,288,968

DGKG 0.67 121,476 chr3: 185,958,454–185,958,641

E2F2 0.7 374 chr1: 23,857,001–23,857,675

GREB1L 1.2 262 chr18: 18,822,248–18,822,680

HNRNPM 0.49 40,988 chr19: 8,550,410–8,551,171

ICAM5 �2.05 40 chr19: 10,400,338–10,401,051

KDM5B �0.88 48,817 chr1: 202,728,529–202,728,936

KIF11 0.48 46,478 chr10: 94,399,209–94,399,396

LARGE �1.17 125,911 chr22: 34,192,579–34,192,767

LASP1 0.55 212 chr17: 37,025,935–37,026,711

MCM2 0.58 �117 chr3: 127,317,003–127,317,268

MXI1 �0.68 3,168 chr10: 111,970,325–111,970,735

NFIC 0.54 16,756 chr19: 3,376,188–3,376,444

NUMB �0.59 137 chr14: 73,924,911–73,925,388

NUP210 0.48 7,606 chr3: 13,453,958–13,454,448

PCCA �1.09 171,972 chr13: 100,913,147–100,913,334

PDE4B 0.61 572 chr1: 66,258,549–66,258,979

PDLIM5 0.97 111 chr4: 95,372,954–95,373,343

PPP1R14C 1.15 46,422 chr6: 150,510,516–150,510,703
binding regions (Figure 7C) than did TCF4 ChIP peaks.

Finally, we assessed whether TCF4 and EHMT1 target the

same genes, though not necessarily at the same genomic

loci and irrespective of expression effects. We intersected

genes that were associated with ChIP peaks for both TCF4

and EHMT1 and identified 29 overlapping genes between

TCF4 and EHMT1 ChIP-seq experiments, corresponding

to a hypergeometric probability of 5.3 3 10�7(Figure 7D

and Table 5). GO terms associated with these 29 overlapping

peaks were consistent with previous results in that neuron

development was again a significant term (Figure 7E). In Fig-

ures 7F and 7G, we show two examples of TCF4 and EHMT1

binding regions in the same gene. For TCF4, we observed

binding in overlapping inward- or outward-facing reads,

suggesting that TCF4 binds in dimer at some distance

from TSSs. For EHMT1, we observed a clustering of reads

in 500–800 bp regions often close to TSSs. These data sug-

gest that TCF4 and EHMT1 target some of the same genes

in the human genome, which might reflect biological ef-

fects on these genes, although we did not observe expres-

sion differences for any overlapping target genes in both

KD cell models.
PPP4R1 0.66 361 chr18: 9,614,127–9,614,352

REV3L 0.78 1,241 chr6: 111,803,282–111,804,073

SEZ6 �0.89 329 chr17: 27,332,931–27,333,327

SHCBP1 0.65 14,486 chr16: 46,640,732–46,640,919

SLC35F1 0.73 314,827 chr6: 118,543,422–118,543,609

SLC45A3 �1.06 41,003 chr1: 205,608,456–205,608,799

VGLL4 �0.85 931 chr3: 11,760,893–11,761,686

VIPR1 2.13 13,499 chr3: 42,543,989–42,544,590

WDR76 0.76 19,668 chr15: 44,138,686–44,138,873
Discussion

In this study, we assessed the molecular convergence of

two neurodevelopmental disorders that show similar phe-

notypes in affected individuals: 18q21 and 9q34 deletion

syndromes, which are caused by TCF4 and EHMT1 hap-

loinsufficiency, respectively. To do this, we assessed the de-

gree to which TCF4 KD and EHMT1 KD had similar effects

on neural stem cells. In identifying the expression, methyl-

ation, or DNA-binding convergence points, we reasoned

that we might better dissect the pathways that lead to neu-

rodevelopmental disease caused by haploinsufficiency of

TCF4 or EHMT1.

We modeled the two syndromes by knocking down

TCF4 and EHMT1 in a human FBC line and using well-

controlled comparison constructs. Using stringent RNA-

seq parameters, we found that all differentially expressed

genes in the 18q21 deletion syndrome model (with the

exception of the target gene, TCF4) were upregulated, a
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strong indication that this disease causes release from

gene repression. However, this was not observed in the

cell model of 9q34 deletion syndrome, where we found

approximately equal up- and downregulation of differen-

tially expressed genes. We found ten different genes that

intersected these two syndromes from the RNA-seq anal-

ysis and that showed increased expression; all have the
er 6, 2014



Table 5. Gene Intersection of TCF4 ChIP-Seq and EHMT1 ChIP-Seq Data

Gene
TCF4 Peak
(Distance to TSS in bp) Peak Coordinates (hg19)

EHMT1 Peak
(Distance to TSS in bp) Peak Coordinates (hg19)

ADCY10 25,347 chr1: 167,858,004–167,858,209 61,837 chr1: 167,821,523–167,821,710

CALN1 477,279 chr7: 71,434,732–71,434,982 605,204 chr7: 71,306,839–71,307,026

CDH8 128,864 chr16: 61,941,774–61,941,976 187,576 chr16: 61,883,070–61,883,257

CLPP 8,311 chr19: 63,69,672–63,69,874 129 chr19: 6,361,242–6,361,940

CRAMP1L 28,848 chr16: 1,693,387–1,693,590 2,441 chr16: 1,666,987–1,667,175

CYB5B 1,753 chr16: 69,460,128–69,460,372 3,977 chr16: 69,462,350–69,462,598

DGKG 12,293 chr3: 186,067,593–186,067,867 121,476 chr3: 185,958,454–185,958,641

DMXL2 18,399 chr15: 51,896,467–51,896,669 153,878 chr15: 517,60,989–51,761,190

DONSON 277,890 chr21: 35,006,697–35,006,930 295,407 chr21: 34,989,085–34,989,507

EXOC4 94,228 chr7: 133,031,940–133,032,160 357,929 chr7: 133,295,574–133,295,929

FRMD4B 320,008 chr3: 69,271,624–69,271,826 292,358 chr3: 69,299,280–69,299,471

GNAQ 47,397 chr9: 80,598,629–80,599,016 467 chr9: 80,645,405–80,646,100

GPR124 8,578 chr8: 37,662,852–37,663,105 �4,997 chr8: 37,649,284–37,649,523

ITCH 51,309 chr20: 33,002,269–33,002,471 6,587 chr20: 32,957,508–32,957,789

KIF11 31,106 chr10: 94,383,829–94,384,032 46,478 chr10: 94,399,209–94,399,396

LOC100507412 2,999 chrun_gl000220: 99,910–100,344 7,145 chrun_gl000220: 104,089–104,457

MAP4 12,792 chr3: 48,117,876–48,118,079 158,853 chr3: 47,971,803–47,972,030

PCDH7 235,654 chr4: 30,957,571–30,957,809 210,386 chr4: 30,932,249–30,932,596

PLEKHA5 242,739 chr12: 19,525,263–19,525,465 �9 chr12: 19,282,326–19,282,906

SEMA3D 86,757 chr7: 84,696,180–84,696,416 67,000 chr7: 84,715,960–84,716,151

SLC25A15 4,876 chr13: 41,368,302–41,368,543 53 chr13: 41,363,363–41,363,836

SOBP 109,434 chr6: 107,920,576–107,920,925 47,647 chr6: 107,858,849–107,859,078

SORCS1 85,549 chr10: 108,838,816–108,839,019 �306 chr10: 108,924,603–108,924,942

SPPL2A 21,599 chr15: 51,036,210–51,036,412 20,242 chr15: 51,037,574–51,037,762

SPTBN4 38,508 chr19: 41,010,453–41,010,857 47,050 chr19: 41,018,905–41,019,490

STX2 41,021 chr12: 131,282,689–131,282,891 440 chr12: 131,323,071–131,323,672

UNC5D 413,175 chr8: 35,506,046–35,506,252 145 chr8: 35,092,687–35,093,551

WDFY3 3,010 chr4: 85,884,433–85,884,635 5,271 chr4: 85,882,147–85,882,400

WDR34 8,261 chr9: 131,410,767–131,410,969 238 chr9: 131,418,757–131,419,025
potential to be dosage sensitive and cause a phenotype,

at least on the basis of their published function. Still, this

represented very few common targets between the two dis-

eases, and statistical analysis of this overlap suggested that

ten genes might arise by chance.

We found ten intersecting genes that code formRNA and

that showed increased expression in both EHMT1-KD and

TCF4-KD FBCs, and we used a very large cohort of clinical

case samples to attempt to support a role for these genes in

disease. We cannot say, however, that duplications in any

gene cause all or part of the clinical phenotype of 9q34

or 18q21 deletion syndromes. That said, the data support

COL5A1 and CHRNB1, both of which are genes expressed

in muscle; complete duplications of each gene were associ-
The American
ated with a neurodevelopmental phenotype in at least two

affected subjects and absent from control subjects. We

cannot rule out that this NDD phenotype is due to dosage

effects of neighboring genes.

GO terms and the changes in direction of expression of

fundamental neurodevelopmental genes, such as NOG38

andWNT7A,39 in EHMT1-KD and TCF4-KD cells suggested

to us that these two disease models might share a similar

cell state, namely becoming more like differentiating cells.

Both disease models were always assayed from a prolifer-

ating cell state, yet our gene-expression analysis suggested

that KD FBCs share characteristics with differentiating

nontarget control FBCs. We did not observe a cell-prolifer-

ation phenotype in culture in the KD FBCs, so we do not
Journal of Human Genetics 95, 490–508, November 6, 2014 505



think that reducing the dosage of TCF4 or EHMT1 causes

neural progenitor cells to spontaneously differentiate.

Rather, only some genes important in cell state appear to

be affected, and we hypothesize that this puts cells with

reduced dosage of TCF4 and EHMT1 in a suboptimal or

compromised position: the processes that regulate the

timing of differentiation40 or the check points established

to ensure that neural progenitor cells continue to divide

might be impaired. This might cause neural progenitor

cells to differentiate too early in response to outside

signaling cues, for example. In human subjects with either

deletion syndrome, one might speculate that some neural

progenitor cells differentiate prematurely and thus lead to

neurodevelopmental anomalies, such as improper integra-

tion into cellular networks. This might be a convergence

point for cells with reduced dosage of TCF4 and EHMT1,

but we note that the genes affected in each disorder differ.

miRNA-expression data provide convergence points for

reduced dosage of TCF4 and EHMT1—the same miRNA,

MIRLET7E, was genome-wide significant for both disease

models and had a role in cell differentiation.31 Our analysis

of the six miRNAs differentially expressed in both disease

models further supports findings from the RNA-seq exper-

iment, namely that differentially expressed miRNAs were

important in cell state and seemed to match expression

patterns of differentiating neural progenitor cells. One of

these miRNAs, MIR302D, can drive somatic cells to plurip-

otency,41 and this gene was downregulated in both

EHMT1-KD and TCF4-KD FBCs in comparison to nontarget

control FBCs. We were able to provide supporting evidence

for this idea by generating miRNA-expression maps from

proliferating and differentiating nontarget control FBCs

and could show that the six miRNAs differentially ex-

pressed and common to both deletion-syndrome models

showed increased expression of genes characteristic of a

differentiating state and lower expression of miRNAs char-

acteristic of a proliferating cell state.

We suspected that DNA-methylation changes might be

similar in 18q21 and 9q34 deletion syndromes. We found

specific methylation clusters that converged between cells

with reduced dosage of TCF4 and EHMT1 and observed

highly significant correlations between methylation di-

rection (hyper- or hypomethylation) and valence (extent

of the change) of both disease models in comparison to

nontarget control cells. This suggests that DNA-methylation

patterns in both disease states might be similarly altered

and that the diseases might converge at these genomic

locations. We also performed a methylation sequencing

experiment in nontarget controls in proliferating and differ-

entiating cell states to assess whether methylation patterns

in both disease models are more characteristic of the differ-

entiating state, as was suggested by the RNA-seq andmiRNA

analyses. Too few DMRs were common between disease

models and the cell-state experiment for us to determine

whether the direction of methylation differences was

more similar to that in proliferating or differentiating cells,

although we did observe the expected pattern when we
506 The American Journal of Human Genetics 95, 490–508, Novemb
analyzed individual CpG sites. Several DMRswere identified

within genes that were either lowly expressed in FBCs or not

expressed at all. For example, in FBCs with reduced dosage

of TCF4 and EHMT1, a DMR in RUNX2 matched the

methylation pattern of differentiating FBCs and differed

from the increased methylation observed in proliferating

nontarget control FBCs. RUNX2 is a transcription factor

important in osteogenesis and has been implicated in the

bone morphology and craniofacial anomalies of 9q34 dele-

tion syndrome.42 Interestingly, RUNX2 is also thought to be

one target of SATB2 (SATB2 [MIM 608148] has been impli-

cated in 2q33.1 deletion syndrome [MIM 612313], a disease

not modeled here) and might be important in a bone

morphology phenotype43 in subjects with 2q33.1 haploin-

sufficiency. Why there is a DMR in this gene in cells with

reduced dosage of EHMT1 and TCF4 is not known, and

FPKMs for this gene range from 3 to 6 in either proliferating

or differentiating FBCs. It could be that the aberrantmethyl-

ation pattern observed in FBCs is recapitulated in osteo-

blasts but that the expression of RUNX2 is so much higher

in osteoblasts that this DMR affects expression only in those

cells and not neural progenitor cells.

Our final analysis to assess convergence between TCF4

and EHMT1 function was to determine whether DNA-

binding targets of TCF4 and EHMT1 overlap in normal

FBCs (i.e., those without viral transfections). We observed

a strongly significant overlap between TCF4 and EHMT1

target genes, although this only represented 29 different

target genes. EHMT1 appeared to bind near the TSS and

formed large (500–800 bp) clusters; TCF4 was more likely

to associate with introns and seemed to bind in dimer

given the pattern of sequenced reads. When we calculated

the overlap of genes whose expression differed from that of

those targeted by either TCF4 or EHMT1, we only found

significant effects for EHMT1, meaning that TCF4 might

exert its effects by binding directly to target genes. This is

noteworthy because of the remarkable repressive effect

that TCF4 clearly has on gene expression—all differentially

expressed genes from the TCF4-KD RNA-seq experiment

had increased expression. How TCF4 accomplishes this

can thus not be explained by its DNA-binding patterns;

however, TCF4 rarely bound promoter regions, so it could

be that there is a direct association between TCF4 DNA

binding and expression but that TCF4 exerts its repressive

effects from some distance.

These data suggest that 18q21 and 9q34 deletion

syndromes have significant molecular convergence with

respect to DNA methylation, miRNA, and DNA-binding

targets but that each maintains a distinct expression, epige-

netic, and DNA-binding profile. Our studies comparing an-

alyses of disease-model cells and control proliferating and

differentiating cells suggest that disease-model cells share

some characteristics with differentiating cells. Collectively,

these data lead us to suggest that neural progenitor cells

with reduced dosage of TCF4 and EHMT1might share char-

acteristics with differentiating cells that might make them

vulnerable to aberrant timing of cell differentiation when
er 6, 2014



they respond to external signaling cues during human

brain development. This hypothesis should be addressed

in future studies of reduced dosage of TCF4 and EHMT1,

as well as of other genetically defined NDDs.
Supplemental Data

Supplemental Data include three figures and can be found with
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grateful to Maria Antonietta Davoli and Naguib Mechawar for

help and advice on performing fluorescent microscopy andmicro-

scopy analysis.

Received: June 18, 2014

Accepted: September 19, 2014

Published: October 9, 2014
Web Resources

The URLs for data presented herein are as follows:

Calculation of the hypergeometric distribution, http://nemates.

org/MA/progs/overlap_stats.html

Chip-Enrich, http://chip-enrich.med.umich.edu/chipMain.jsp

Database of Genomic Variants, http://dgv.tcag.ca/dgv/app/home

DAVID, http://david.abcc.ncifcrf.gov/home.jsp

HOMER, http://homer.salk.edu/

ImageJ, http://imagej.nih.gov/ij/

Integrative Genomics Viewer, http://www.broadinstitute.org/igv/

home

PAVIS, http://manticore.niehs.nih.gov:8080/pavis/

The RNAi Consortium, http://www.broadinstitute.org/rnai/trc

Trim Galore, http://www.bioinformatics.babraham.ac.uk/projects/

trim_galore/

UCSC Human Genome Browser, http://genome.ucsc.edu/cgi-bin/

hgGateway
References

1. Krumm, N., O’Roak, B.J., Shendure, J., and Eichler, E.E. (2014).

A de novo convergence of autism genetics and molecular

neuroscience. Trends Neurosci. 37, 95–105.

2. Pinto, D., Delaby, E., Merico, D., Barbosa, M., Merikangas, A.,

Klei, L., Thiruvahindrapuram, B., Xu, X., Ziman, R., Wang, Z.,

et al. (2014). Convergence of genes and cellular pathways dys-

regulated in autism spectrum disorders. Am. J. Hum. Genet.

94, 677–694.

3. Williams, H.J., Craddock, N., Russo, G., Hamshere, M.L.,

Moskvina, V., Dwyer, S., Smith, R.L., Green, E., Grozeva, D.,

Holmans, P., et al. (2011). Most genome-wide significant sus-

ceptibility loci for schizophrenia and bipolar disorder reported
The American
to date cross-traditional diagnostic boundaries. Hum. Mol.

Genet. 20, 387–391.

4. Talkowski, M.E., Rosenfeld, J.A., Blumenthal, I., Pillalamarri,

V., Chiang, C., Heilbut, A., Ernst, C., Hanscom, C., Rossin,

E., Lindgren, A.M., et al. (2012). Sequencing chromosomal ab-

normalities reveals neurodevelopmental loci that confer risk

across diagnostic boundaries. Cell 149, 525–537.

5. Kleefstra, T., Kramer, J.M., Neveling, K.,Willemsen,M.H., Koe-

mans, T.S., Vissers, L.E., Wissink-Lindhout, W., Fenckova, M.,

van den Akker, W.M., Kasri, N.N., et al. (2012). Disruption of

an EHMT1-associated chromatin-modification module causes

intellectual disability. Am. J. Hum. Genet. 91, 73–82.

6. Reynolds, B.A., and Weiss, S. (1996). Clonal and population

analyses demonstrate that an EGF-responsive mammalian

embryonic CNS precursor is a stem cell. Dev. Biol. 175,

1–13.

7. Baker, S.C., Bauer, S.R., Beyer, R.P., Brenton, J.D., Bromley, B.,

Burrill, J., Causton, H., Conley, M.P., Elespuru, R., Fero, M.,

et al.; External RNAControls Consortium (2005). The External

RNA Controls Consortium: a progress report. Nat. Methods 2,

731–734.

8. Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat:

discovering splice junctions with RNA-Seq. Bioinformatics

25, 1105–1111.

9. Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009).

Ultrafast and memory-efficient alignment of short DNA

sequences to the human genome. Genome Biol. 10, R25.

10. Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley,

D.R., Pimentel, H., Salzberg, S.L., Rinn, J.L., and Pachter, L.

(2012). Differential gene and transcript expression analysis

of RNA-seq experiments with TopHat and Cufflinks. Nat. Pro-

toc. 7, 562–578.

11. Huang, W., Sherman, B.T., and Lempicki, R.A. (2009). Bioin-

formatics enrichment tools: paths toward the comprehen-

sive functional analysis of large gene lists. Nucleic Acids

Res. 37, 1–13.

12. Vlachos, I.S., Kostoulas, N., Vergoulis, T., Georgakilas, G.,

Reczko, M., Maragkakis, M., Paraskevopoulou, M.D., Prioni-

dis, K., Dalamagas, T., and Hatzigeorgiou, A.G. (2012). DIANA

miRPath v.2.0: investigating the combinatorial effect of mi-

croRNAs in pathways. Nucleic Acids Res. 40 (Web Server

issue), W498–W504.

13. Chen, G.G., Diallo, A.B., Poujol, R., Nagy, C., Staffa, A., Vail-

lancourt, K., Lutz, P.E., Ota, V.K., Mash, D.C., Turecki, G.,

and Ernst, C. (2014). BisQC: an operational pipeline for multi-

plexed bisulfite sequencing. BMC Genomics 15, 290.

14. Ernst, C., McGowan, P.O., Deleva, V., Meaney, M.J., Szyf, M.,

and Turecki, G. (2008). The effects of pH on DNAmethylation

state: In vitro and post-mortem brain studies. J. Neurosci.

Methods 174, 123–125.

15. Krueger, F., and Andrews, S.R. (2011). Bismark: a flexible

aligner and methylation caller for Bisulfite-Seq applications.

Bioinformatics 27, 1571–1572.

16. Craddock, N., Hurles, M.E., Cardin, N., Pearson, R.D., Plagnol,

V., Robson, S., Vukcevic, D., Barnes, C., Conrad, D.F., Gian-

noulatou, E., et al.; Wellcome Trust Case Control Consortium

(2010). Genome-wide association study of CNVs in 16,000

cases of eight common diseases and 3,000 shared controls. Na-

ture 464, 713–720.

17. International Schizophrenia Consortium (2008). Rare chro-

mosomal deletions and duplications increase risk of schizo-

phrenia. Nature 455, 237–241.
Journal of Human Genetics 95, 490–508, November 6, 2014 507

http://dx.doi.org/10.1016/j.ajhg.2014.09.013
http://nemates.org/MA/progs/overlap_stats.html
http://nemates.org/MA/progs/overlap_stats.html
http://chip-enrich.med.umich.edu/chipMain.jsp
http://dgv.tcag.ca/dgv/app/home
http://david.abcc.ncifcrf.gov/home.jsp
http://homer.salk.edu/
http://imagej.nih.gov/ij/
http://www.broadinstitute.org/igv/home
http://www.broadinstitute.org/igv/home
http://manticore.niehs.nih.gov:8080/pavis/
http://www.broadinstitute.org/rnai/trc
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://genome.ucsc.edu/cgi-bin/hgGateway
http://genome.ucsc.edu/cgi-bin/hgGateway


18. Cooper, G.M., Coe, B.P., Girirajan, S., Rosenfeld, J.A., Vu, T.H.,

Baker, C., Williams, C., Stalker, H., Hamid, R., Hannig, V., et al.

(2011). A copy number variation morbidity map of develop-

mental delay. Nat. Genet. 43, 838–846.

19. Lionel, A.C., Crosbie, J., Barbosa, N., Goodale, T., Thiruvahin-

drapuram, B., Rickaby, J., Gazzellone, M., Carson, A.R., Howe,

J.L., Wang, Z., et al. (2011). Rare copy number variation dis-

covery and cross-disorder comparisons identify risk genes for

ADHD. Sci. Transl. Med. 3, 95ra75.

20. Krawczak, M., Nikolaus, S., von Eberstein, H., Croucher, P.J., El

Mokhtari, N.E., and Schreiber, S. (2006). PopGen: population-

based recruitment of patients and controls for the analysis of

complex genotype-phenotype relationships. Community

Genet. 9, 55–61.

21. Altshuler, D.M., Gibbs, R.A., Peltonen, L., Altshuler, D.M.,

Gibbs, R.A., Peltonen, L., Dermitzakis, E., Schaffner, S.F., Yu,

F., Peltonen, L., et al.; International HapMap 3 Consortium

(2010). Integrating common and rare genetic variation in

diverse human populations. Nature 467, 52–58.

22. Pinto, D., Pagnamenta, A.T., Klei, L., Anney, R., Merico, D.,

Regan, R., Conroy, J., Magalhaes, T.R., Correia, C., Abrahams,

B.S., et al. (2010). Functional impact of global rare copy

number variation in autism spectrum disorders. Nature 466,

368–372.

23. Abecasis, G.R., Auton, A., Brooks, L.D., DePristo, M.A., Dur-

bin, R.M., Handsaker, R.E., Kang, H.M., Marth, G.T., and

McVean, G.A.; 1000 Genomes Project Consortium (2012).

An integrated map of genetic variation from 1,092 human ge-

nomes. Nature 491, 56–65.

24. Shaikh, T.H., Gai, X., Perin, J.C., Glessner, J.T., Xie, H., Mur-

phy, K., O’Hara, R., Casalunovo, T., Conlin, L.K., D’Arcy, M.,

et al. (2009). High-resolution mapping and analysis of copy

number variations in the human genome: a data resource for

clinical and research applications. Genome Res. 19, 1682–

1690.

25. Xu, H., Poh, W.T., Sim, X., Ong, R.T., Suo, C., Tay, W.T., Khor,

C.C., Seielstad, M., Liu, J., Aung, T., et al. (2011). SgD-CNV, a

database for common and rare copy number variants in three

Asian populations. Hum. Mutat. 32, 1341–1349.

26. Ogawa, H., Ishiguro, K., Gaubatz, S., Livingston, D.M., and

Nakatani, Y. (2002). A complex with chromatin modifiers

that occupies E2F- and Myc-responsive genes in G0 cells. Sci-

ence 296, 1132–1136.

27. Roy, P.J., Stuart, J.M., Lund, J., and Kim, S.K. (2002). Chromo-

somal clustering of muscle-expressed genes in Caenorhabditis

elegans. Nature 418, 975–979.

28. Pollard, S.M., Conti, L., Sun, Y., Goffredo, D., and Smith, A.

(2006). Adherent neural stem (NS) cells from fetal and adult

forebrain. Cereb. Cortex 16 (Suppl 1 ), i112–i120.

29. Baek, S.T., Kerjan, G., Bielas, S.L., Lee, J.E., Fenstermaker, A.G.,

Novarino, G., and Gleeson, J.G. (2014). Off-target effect of

doublecortin family shRNA on neuronal migration associated

with endogenous microRNA dysregulation. Neuron 82, 1255–

1262.

30. Turcatel, G., Rubin, N., El-Hashash, A., and Warburton, D.

(2012). MIR-99a and MIR-99b modulate TGF-b induced
508 The American Journal of Human Genetics 95, 490–508, Novemb
epithelial to mesenchymal plasticity in normal murine mam-

mary gland cells. PLoS ONE 7, e31032.
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Figure	  S1.	  	  Analysis	  of	  differentially	  methylated	  single	  CpG	  sites	  in	  TCF4	  KD,	  EHMT1	  KD,	  
and	  the	  cell	  state	  experiment.	  A	  and	  B)	  Significant	  overlap	  of	  differentially	  methylated	  CpGs	  in	  
TCF4	  KD	  and	  EHMT1	  KD	  and	  correlation	  of	  methylation	  changes.	  	  C)	  CpG	  dinucleotides	  that	  show	  
differential	  methylation	  in	  TCF4	  KD	  show	  significant	  overlap	  with	  CpGs	  that	  show	  methylation	  
differences	  in	  the	  cell	  state	  experiment	  (non-‐target	  proliferating	  FBCs	  compared	  to	  non-‐target	  
differentiating	  FBCs).	  	  D)	  Common	  methylation	  differences	  observed	  in	  (C)	  show	  significant	  
positive	  correlation	  with	  methylation	  patterns	  observed	  in	  differentiating	  FBCs.	  	  E)	  CpG	  
dinucleotides	  that	  show	  differential	  methylation	  in	  EHMT1	  KD	  show	  significant	  overlap	  with	  
CpGs	  that	  show	  methylation	  differences	  in	  the	  cell	  state	  experiment	  (non-‐target	  proliferating	  
FBCs	  compared	  to	  non-‐target	  differentiating	  FBCs).	  	  F)	  Common	  methylation	  differences	  
observed	  in	  (E)	  show	  significant	  positive	  correlation	  with	  methylation	  patterns	  observed	  in	  
differentiating	  FBCs.	  	  G)	  No	  significant	  overlap	  between	  single	  CpG	  methylation	  differences	  in	  
TCF4	  KD,	  EHMT1	  KD,	  and	  the	  cell	  state	  experiments,	  suggesting	  that	  both	  TCF4	  KD	  and	  EHMT1	  
show	  methylation	  differences	  more	  characteristic	  of	  the	  differentiating	  state,	  but	  that	  different	  
CpGs	  are	  responsible	  for	  this	  effect.	  	  H)	  86%	  of	  CpGs	  in	  the	  cell	  state	  experiment	  (non-‐target	  
proliferating	  FBCs	  compared	  to	  non-‐target	  differentiating	  FBCs)	  are	  hypermethylated	  in	  
differentiating	  FBCs.	  	  	  
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Figure	  S2.	  	  TCF4	  de	  novo	  binding	  motifs.	  	  	  	  Motifs	  were	  calculating	  using	  all	  TCF4	  peaks	  
compared	  to	  36930	  background	  sequences	  using	  HOMER.	  	  	  Poly-‐A	  and	  poly-‐GA	  were	  the	  two	  
most	  significant	  motifs	  (not	  shown).	  	  
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Figure	  S3.	  	  EHMT1	  de	  novo	  binding	  motifs.	  	  	  	  Motifs	  were	  calculating	  using	  all	  EHMT1	  peaks	  
compared	  to	  44896	  background	  sequences	  using	  HOMER.	  	  	  Poly-‐A	  was	  the	  most	  significant	  motif	  
(not	  shown).	  	  
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