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Supplemental Figures

Figure S1. Principal components analysis of WTCCC samples. Two most significant principal
components are plotted for each disease cohort, with cases and controls color coded red and black respectively.
Each sub-panel label specifies the variance in phenotype explained by all 20PCs in parentheses. MS and SP
cohorts are known to be highly structured due to environment and ascertainment.
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Figure S2. Principal components analysis of Swedish samples. Two main principal components are
shown for analysis of GWAS data from the full Swedish Schizophrenia cohort. Homogenous Swedish samples
are highlighted in blue.
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Figure S3. Observed variance-component enrichment from simulated null architecture. Dis-
tribution of enrichment estimate over 1000 simulations with three different disease architectures performed
in genotyped SNPs (top) and imputed SNPs (bottom). All phenotypes simulated without category-specific
enrichment, red line showing expected enrichment of 1.0×. Red asterisk indicates significant difference from
expectation (by z-test, accounting for 36 comparisons).
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Figure S4. Enrichment of summary statistics under the null. Results for MAF-independent (left)
and low-frequency (right) architectures shown for stratified QQ-plots (top) and P -value enrichment plots
(bottom).
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Figure S5. Partitioning of h2g with imputed SNPs and MAF-independent causals. Estimate of
h2g from imputed SNPs in each functional category for phenotypes simulated from imputed SNPs with any
frequency. Each section of the figure describes results from 200 simulations where all h2g was induced in the
titular functional category (highlighted in blue).
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Figure S6. Observed P -value enrichment from simulated enrichment (MAF-independent).
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Figure S7. Observed P -value enrichment from simulated enrichment (low-frequency).
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Figure S8. Partitioning of h2g with imputed SNPs and low-frequency causals. Estimate of h2g
from imputed SNPs in each functional category for phenotypes simulated from imputed SNPs with MAF
< 0.05. Each section of the figure describes results from 200 simulations where all h2g was induced in the
titular functional category (highlighted in blue).
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Figure S9. Partitioning of h2g simulated in MAF-independent imputed data. Estimate of h2g from
genotyped SNPs in each functional category for phenotypes simulated from imputed SNPs from any MAF.
Each section of the figure describes average results from simulations where all h2g was induced in the titular
functional category (highlighted in blue). Estimate h2g is spread across multiple functional categories due to
incomplete tagging. Error-bars indicate standard error from 200 simulations.
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Figure S10. Partitioning of h2g simulated in low-frequency imputed data. Estimate of h2g from
genotyped SNPs in each functional category for phenotypes simulated from imputed SNPs with MAF < 0.05.
Each section of the figure describes average results from simulations where all h2g was induced in the titular
functional category (highlighted in blue). Estimate h2g is spread across multiple functional categories due to
incomplete tagging. Error-bars indicate standard error from 200 simulations.
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Figure S11. Partitioning of h2g from causal variants at the DHS boundary. Causal variants were
sampled from non-DHS intronic and intergenic regions within 0-500bp (left, 29% of imputed SNPs) and
500-1,000bp (right, 15% of imputed SNPs) of any DHS region boundary. Box-plots shown % h2g estimates
over 200 simulations with MAF-independent causal variants. Phenotypes and GRMs from genotyped SNPs
(top) and from imputed SNPs (bottom).
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Figure S12. Individual trait analysis of coding and DHS variants. Forest plot of % h2g inferred
for each trait over coding SNPs (top) and DHS SNPs (bottom). Total h2g shown for each trait and SNP
platform in second column.
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Figure S13. Functional enrichment of SNP-heritability in DHS regions. The ratio of observed %
heritability over corresponding % of SNPs is reported as meta-analysis over all traits for four locus types.
Light blue bars detail analysis of typed SNPs and dark blue bars detail analysis of typed and 1,000 Genomes
imputed SNPs. “Known Loci” categories corespond to analysis restricted to 1MB regions around published
genome-wide significant loci for the corresponding trait. We note that the choice of region size may impact
the absolute enrichment, with larger regions expected to appear more like the genome-wide enrichment
and yield a conservative estimate of the difference. This region size is expected to yield a representative
estimate1. SP, HT, and BD had too few known loci or could not converge in the local analyses and were
excluded from all computations, resulting in slightly different overall values from Figure 1. Error bars define
95% confidence interval after adjusting for shared controls.
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Figure S14. P -value enrichment in 11 traits. Fold-enrichment of P -values meeting a given significance
threshold in each functional category. Enrichment plotted for all thresholds that contain at least 100 SNPs.
Average over 11 traits shown in top-left for thresholds observed in all traits, with shaded region corresponding
to standard error.
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Figure S15. P -value enrichment in PGC2. Fold-enrichment of P -values meeting a given significance
threshold in each functional category.
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Figure S16. Power to detect significant h2g enrichment. Phenotypes were simulated with DHS and
coding enrichment matching the observed meta-analysis values in a 33,000 sample cohort. Power was then
inferred as the fraction of 100 simulations where enrichment was significant at P < 0.05 over increasing
sample sizes.
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Figure S17. Heritability estimates in simulation with normalized allelic effect-sizes. Distribution
of h2g inferred by four variance-component models is shown over a range of disease architectures. Additive
phenotypes with h2 = 0.5 were simulated from 1,000 randomly selected causal variants with maximum allele
frequency from 0.01 to 0.1 (x-axis). Normalized SNP effect-sizes were drawn from the standard normal such
that each SNP explains equal variance in expectation. Box-plots show inferred h2g over 40 random simulations.
For the joint component model the sum of both inferred h2g values is reported. A red asterisk indicates
significant difference from 0.5 by z-test after correcting for ten architectures tested. Under the un-adjusted
single-component model we observe both kinds of bias depending on the causal allele frequency cutoff. When
causal variants are primarily rare (MAF ≤ 0.02) the mean estimate is significantly deflated down to 0.45,
whereas when causal variants are more common (MAF ≤ 0.1) the mean estimate is significantly deflated up
to 0.59. LD adjustment1 of the single component appears to fix the downwards bias, with mean estimate
no lower than 0.49 (not significantly different from 0.50) but does not completely mitigate the upwards bias,
with a mean estimate up to 0.57. Splitting the data into two components for rare and common SNPs entirely
removes the upwards bias but introduces downwards bias in most instances where causal variants can be
common. Combining the two strategies and using two internally LD-adjusted1 components yields completely
unbiased estimates with no disease architecture exhibiting h2g significantly different from 0.5.
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Figure S18. Heritability estimates in simulation with standard allelic effect-sizes. Distribution
h2g inferred by four variance-component models is shown over a range of disease architectures. Additive
phenotypes with h2 = 0.5 were simulated from 1,000 randomly selected causal variants with maximum
allele frequency from 0.01 to 0.1 (x-axis). Allelic effect-sizes were drawn from the standard normal such
that common SNPs explain more variance in expectation. Box-plots show inferred h2g over 40 random
simulations. For the joint component model the sum of both inferred h2g values is reported. A red asterisk
indicates significant difference from 0.5 by z-test after correcting for ten architectures tested.

We considered weather the SNPs used to construct the GRM should be normalized by their observed variance or the expected
variance 2p(1− p) based on the minor allele frequency p. We performed simulations for the two normalization schemes and two
effect-size distributions. Under the infinitesimal model where every variant explains the same amount of phenotypic variance
in expectation, we observed no differences between the normalizations for any class of SNPs. Under the neutral model where
effect-size is proportional to the minor allele frequency, we observed a significant difference between the two normalizations
when rare variants were included in the analysis, with the 2p(1 − p) scaling resulting in a significant upwards bias. These
findings indicate that rare variants have slight but consistent deviations from Hardy-Weinberg equilibrium that can affect the
variance-component estimate under the 2p(1−p) normalization. To account for this, we use the observed variance to normalize
markers in all analyses of rare variants.
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Figure S19. Estimates of functional enrichment under the null. We simulated a polygenic disease
architecture with MAF-independent imputed causal SNPs uniformly drawn from all functional categories,
corresponding to no enrichment. Simulated phenotypes were tested using the variance-component method
(top left) from 3000 simulations; P -value enrichment (top right) from 100 simulations; stratified QQ-plot
(bottom left) from 100 simulations; FGWAS (bottom right) from 100 converged simulations (out of ∼ 800
total). FGWAS plot contains mean (red point); 1.96× standard error (black line); and density function for
the full distribution shown in gray. All methods showed no enrichment except FGWAS, which exhibited
upward bias at smaller categories due to enrichment being restricted to the 0-1 scale.
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Figure S20. Partitioning of h2g with DHS centers enriched. Causal effect-sizes were sampled such
that center of DHS (1% of genome) explains 25% of h2 and remainder of DHS (15% of genome) explains
75% of h2. Box-plots shown %h2 over 200 simulations with MAF-independent causal variants.
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Figure S21. Estimates of functional enrichment from single causal category. We simulated a
polygenic disease architecture with MAF-independent imputed causal SNPs drawn from a single functional
category, corresponding to complete enrichment of the respective category. Simulated phenotypes were tested
using the variance-component method (top left) from 1000 simulations; P -value enrichment (top right) from
100 simulations; stratified QQ-plot (bottom left) from 100 simulations; FGWAS (bottom right) from 100
converged simulations (out of ∼ 800 total). FGWAS plot contains mean (red point); 1.96× standard error
(black line); and density function for the full distribution shown in gray. Stratified QQ-plot and P -value
enrichment sub-plots show 1.96× standard error as shaded regions. In the DHS-causal scenario, GWAS-
based methods underestimated the enrichment; while in the Coding-causal scenario, GWAS-based methods
overestimated enrichment from other correlated categories. For each method, only the Coding causal and
DHS causal scenarios are shown, additional simulations appear in Fig. S6, S7, S23, S24, S26, S27.
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Figure S22. Stratified QQ-plot from realistic simulations. Stratified QQ-plots2 display association statistics from
variants in LD with each functional category in a probability plot, and assess significant enrichment of a given category visually
or by a non-parametric test. The method accounts for LD by computing the sum of r2 correlations between each GWAS SNP
and all neighboring variants (within 1Mbp, including the SNP itself) belonging to a given functional category. A GWAS SNP
is then considered part of a category if the corresponding score is ≥ 1 and QQ-lines are computed, separately, for each SNP in
a category. We implemented this method as described in Schork et al.2, using the European 1000 Genomes samples as the LD
reference. As required, intergenic variants were defined as those having a score of zero to every other category, and we refer to
them as “baseline” here to distinguish from the functionally intergenic category. Association statistics for each category were
divided by the λGC observed in the baseline variants. Realistic traits were simulated in a 33,000 sample cohort with 8,300
causal SNPs where DHS and coding variants explaining 79% and 8% of h2g, respectively (no enrichment for other categories).
Phenotypes and GWAS summary statistics were computed in a cohort of 32,000 samples. DHS appears to be the least enriched
non-baseline category, while UTR, Promoter, and Intron appear falsely enriched due to LD to the truly causal Coding category.
Shaded regions show standard error from 50 replicates. Under the null, the method correctly identified no enrichment for
any disease architecture (Fig. S19). Under the causal category scenario, the stratified QQ-plots exhibited similar patterns of
false-positive enrichment for correlated categories and false-negative estimates for DHS (Fig. S21, S23, S24). While the truly
causal category generally had the highest deviation from the null in all instances except DHS-causal, it was not significantly
distinguishable from the other truly null categories. Patterns were similar for the low-frequency architecture, with the DHS
category further falsely depleted.
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Figure S23. Stratified QQ-plots enrichment from simulated enrichment (MAF-independent).
Each sub-figure shows stratified QQ-plot estimate when only the title category is causal. Non-intergenic
categories appear falsely enriched in most instances. See Figure S22 for method and simulation details.
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Figure S24. Stratified QQ-plots enrichment from simulated enrichment (low-frequency). Each
sub-figure shows stratified QQ-plot estimate when only the title category is causal. Non-intergenic categories
appear falsely enriched in most instances. See Figure S22 for method and simulation details.
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Figure S25. Enrichment from FGWAS under the null. Recently, Pickrell et al.3 proposed a Bayesian hierarchical
model that iteratively estimates category-specific enrichment priors and individual SNP association posteriors, implemented in
the FGWAS software (see Web Resources). It’s important to note that the main focus of this work was to identify functional
enrichment at strongly associated variants, which is a fundamentally different question from enrichment in polygenic h2g. With
this in mind, we provide comparisons to FGWAS here for completeness, and as a measure of the expected difference between
polygenic architecture and the strong associations. We computed the estimates of P(causal), the probability that a SNP from
the given annotation is causal, by running FGWAS in the “-print -p 0” mode to return individual SNP posteriors and then
summing the posteriors over all SNPs in a given annotation divided by the sum of posteriors over all SNPs. We also report the
odds-ratio estimate of enrichment inferred by FGWAS where appropriate. We ran FGWAS on our simulated phenotypes with
window size set such that one causal variant is present in expectation (-k 500), to match the methodological assumptions. Due
to computational constraints, FGWAS was only evaluated on chromosome 1 and any non-converging runs were excluded. In
the null simulations, FGWAS was significantly upwardly biased for the smaller categories, perhaps due to the underlying metric
having high variance and being restricted to the 0-1 scale or due to the large number of simulations not converging (Fig. S25A).
The low-frequency and mixed architectures were generally similar to the MAF-independent architecture (Fig. S25B,C). For the
causal simulations, the P(causal) at the true causal category was typically the highest but still underestimated by over 50%,
with the larger non-causal categories also falsely identified as causal (Fig. S21, S26). This was most apparent when DHS is truly
causal, with the intron and intergenic categories being indistinguishable from DHS. On the other hand, under the low-frequency
architecture, estimates of P(causal) were not substantially different from the null; matching the overall category size regardless
of true enrichment (Fig. S27). The FGWAS estimate has previously been shown to be unbiased when annotations are randomly
sampled from the genome4, and we suspect that the complex LD between contiguous categories results in the bias observed
here. Each subplot shows estimates of enrichment from simulated phenotypes with no enrichment under different causal-variant
architectures. Depending on the causality, smaller categories (Coding, UTR, Promoter) yield upward bias due to individual
estimates being bounded to 0-1. The fraction of simulations that converged was 15%, 38%, and 16% respectively.
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Figure S26. FGWAS estimates from simulated enrichment (MAF-independent). Each sub-
figure shows the FGWAS estimate whe only the title category is causal. Though the truly causal category is
typically identified as most enriched, other categories (particularly the larger DHS/Intron/Intergenic) exhibit
upward bias. The fraction of simulations that converged was 10% on average per category. See Figure S25
for method and simulation details.
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Figure S27. FGWAS estimates from simulated enrichment (low-frequency). Each sub-figure
shows the FGWAS estimate whe only the title category is causal. Unlike the MAF-independent architecture,
estimates of causality are not substantially different from the null category size. The fraction of simulations
that converged was 30% on average per category. See Figure S25 for method and simulation details.
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Figure S28. Enrichment from GWAS summary-statistics across 11 traits. Enrichment estimates
from three GWAS-based methods are shown averaged over 11 traits (top) and for PGC2 Schizophrenia
(bottom). Estimates for most enriched category were inconsistent across methods both in the WTCCC
traits and in PGC. Shaded regions for P -value enrichment and QQ-plot, gray bars for FGWAS correspond
to 1.96× standard error. FGWAS did not converge for BD, HT, and SP and they were excluded from the
plot. We did not observe a clear consensus across the methods, with P -value enrichment showing promoter
variants as significantly enriched; stratified QQ-plots showing significant enrichment in all non-intergenic
categories; and FGWAS identifying coding variants as significantly enriched (Fig. 4A, S28). Likewise, in
analyses of PGC2, none of the GWAS-based methods identified substantial enrichment at DHS variants
(Fig. S28) nor did they agree on the most enriched category: promoter/coding for P -value enrichment;
coding/UTR for stratified qq-plot; and promoter for FGWAS. This is consistent with our findings in realistic
simulations, with stratified QQ-plots having similar results to P -value enrichment (Fig. 4B, S22, results from
FGWAS were not shown due to lack of convergence).
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Figure S29. Partitioning of h2g with true DHS and coding enrichment. Inferred h2g enrichment from
disease architecture mimicking observed DHS and coding enrichment in real data. Due to computational
restrictions, enrichment was estimated from a random 15,000 samples of the 33,000 sample simulated GWAS
cohort. Colored bars show the induced enrichment. Boxplots show the distribution of inferred enrichment
over 50 trials.
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Phenotype Label Prevalence Cases Controls Genotyped SNPs Imputed SNPs

WTCCC2:

Schizophrenia SP 0.010 2698 5458 394992 4345606
Ankylosing spondylitis AS 0.003 1783 5239 408616 6162624
Multiple sclerosis MS 0.001 9315 5211 396469 5795523
Ulcerative colitis UC 0.001 2495 5428 447905 4620390

WTCCC:

Bipolar disorder BD 0.005 1550 2666 143054 4192374
Coronary artery disease CAD 0.060 1746 2668 139567 4190156
Crohns disease CD 0.001 1542 2662 146952 4199232
Hypertension HT 0.050 1730 2669 139541 4185735
Rheumatoid arthritis RA 0.005 1664 2664 143732 4190217
Type 1 diabetes T1D 0.005 1746 2668 139206 4184291
Type 2 diabetes T2D 0.080 1641 2671 142027 4195404

Other:

Schizophrenia PGC2 0.010 24926 33271 Varies 4-5 million
Schizophrenia SWE ex-chip 0.010 5010 6197 238652 NA

Table S1. Datasets analyzed. Number of samples and markers for each dataset analyzed.
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Cohort Cases Controls

boco 1754 2121
buls 192 595
denm 462 449
dubl 259 828
edin 363 281
ersw 260 311
lie5 486 383
mgs2 2583 2444
pewb 564 1779
ucla 688 598

clo3 2105 1975
cou3 530 678
egcu 234 1152
ersw 265 319
swe5 1764 2581
swe6 975 1145
umeb 341 577
umes 193 704

buls 195 608
butr 608 613
cims 67 65
clm2 3426 4085
lie2 133 269
msaf 325 139
pewb 574 1812
pews 150 236

aarh 876 871
boco 1773 2161
fii6 360 1082
gras 1067 1169
lacw 157 245
lie5 497 389
ucla 700 607

Table S2. PGC2 datasets analyzed.
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Variant class Homogenous All

All coding 104,240 110,331
Singleton coding 19,860 19,329
Rare coding (MAF < 0.01, non-singleton) 64,040 70,569
Common coding (MAF ≥ 0.01) 20,340 20,433

Table S3. Summary of exome-chip data. Number of polymorphic variants by coding class and sub-
cohort in the Swedish schizophrenia samples.
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Category Description % physical % 1000G % array % imputed

Coding (non-UTR) Overlaps a coding exon. 1.1% 0.9% 0.9% 0.5%
UTR Overlaps a 5’ or 3’ untranslated region. 1.0% 0.9% 1.0% 0.8%
Promoter Within 2kbp of a transcription start site. 2.5% 2.6% 2.2% 2.2%
DHS Overlaps DHS region observed in any cell-type. 14.6% 16.4% 23.3% 15.7%
Intron Overlaps an intron. 29.1% 28.6% 26.8% 28.8%
Intergenic All other intergenic variants. 51.8% 50.5% 44.8% 52.0%

Table S4. Coding and regulatory annotation categories. Description of functional categories and
fraction occupied, respectively, by physical genome; all 1000 Genomes SNPs; average array SNPs; average
imputed 1000G SNPs.

33



WTCCC1 Genotyped: Affymetrix

Annotation MAF INFO LD score Cons

Coding 0.2330 NA 116.4 1.076
UTR 0.2388 NA 104.1 0.560
Promoter 0.2435 NA 118.6 0.231
DHS 0.2462 NA 92.6 0.346
Intron 0.2450 NA 111.0 0.177
Intergenic 0.2489 NA 116.9 0.135

WTCCC2 Imputed: Affymetrix

Annotation MAF INFO LD score Cons

Coding 0.1700 0.9730 111.0 1.191
UTR 0.1773 0.9749 100.2 0.620
Promoter 0.1780 0.9739 114.5 0.266
DHS 0.1836 0.9775 89.0 0.388
Intron 0.1817 0.9776 108.2 0.194
Intergenic 0.1846 0.9773 111.6 0.148

WTCCC2 Imputed: Illumina

Annotation MAF INFO LD score Cons

Coding 0.1672 0.9745 91.7 1.525
UTR 0.1735 0.9758 85.8 0.816
Promoter 0.1749 0.9751 97.1 0.358
DHS 0.1798 0.9778 79.2 0.498
Intron 0.1780 0.9791 94.7 0.254
Intergenic 0.1810 0.9780 101.3 0.188

Table S5. Functional category features. For each genotyping platform and functional category, the
following features are reported: minor allele frequency (MAF), imputation quality (INFO), average number
of LD partners (LD score), and GERP conservation score (Cons).
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Imputed Genotyped
Annotation % SNPs % Effective SNPs % SNPs % Effective SNPs

Coding 0.5% 0.5% 1.0% 2.3%
UTR 0.8% 0.8% 1.0% 2.4%
Promoter 2.2% 2.0% 2.3% 4.8%
DHS 15.7% 18.9% 23.6% 33.6%
Intron 28.6% 29.8% 27.1% 23.2%
Other 52.2% 47.9% 45.0% 33.7%

DHS-Cell-Unique 4.0% 4.4% NA NA
DHS-DGF 7.8% 9.5% NA NA
DHS-Enhancer 3.2% 4.2% NA NA
DHS-Narrowed 1% 1.1% 1.3% NA NA
DHS-Narrowed 5% 5.2% 6.1% NA NA
DHS-Narrowed 10% 10.3% 12.1% NA NA

Table S6. Effective % of SNPs in analyzed categories. For each functional category analyzed, effective
number of imputed SNPs was computed using LD in 1000G EUR samples5,6; defined as the number of SNPs
divided by the average sum of r2 between a SNP in the category and every other SNP in a 1Mbp window.
Lower panel shows estimates from functional categories analyzed only in imputed data.
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Table S7. Cell types analyzed. Excel spreadsheet detailing cell types and tissues used for cell-type
specific DHS analysis.
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1x noise 2x noise

Category % SNPs % h2g (se) SD REML SE % h2g (se) SD REML SE

CODING 0.6% 0.2% (0.5%) 5.5% 5.0% 0.4% (0.6%) 5.8% 5.2%
DHS 15.8% 16.0% (1.9%) 19.4% 17.9% 18.5% (1.7%) 17.2% 18.4%
PROMOTER 2.4% 1.4% (0.7%) 7.0% 6.5% 2.6% (0.7%) 6.9% 6.7%
UTR 0.9% 1.4% (0.5%) 4.8% 5.1% 1.5% (0.6%) 5.7% 5.3%
INTRON 29.1% 29.0% (1.1%) 10.8% 10.4% 28.7% (1.1%) 10.8% 10.7%
OTHER 51.3% 52.0% (1.1%) 11.4% 11.2% 48.3% (1.1%) 11.3% 11.4%

Table S8. Partitioned null h2g with simulated imputation noise. Null phenotypes were simulated from
SNPs with realistic imputation noise (proportional to imputation INFO score) added and % h2g inferred using
functional components without noise; corresponding to a scenario where genotypes are imputed with some
inaccuracy. Under the assumption that INFO score is a reasonable proxy for imputation accuracy, substantial
differences in imputation between categories would be expected to yield biased estimates. However, no
significant deviations from the null were observed. As in previous simulations, a polygenic quantitative trait
was constructed from 8,300 randomly selected causal variants for individuals in the WTCCC2:AS cohort.
For each causal SNP s and corresponding INFO (imputation accuracy) score is, normally distributed noise
was added to create a new SNP s′ such that s had an R2 of is with s′. A polygenic trait with h2g = 0.50
and no functional enrichment was then simulated from the noisy genotypes (identical to a model where
phenotypes come from clean genotypes and the GRM is constructed from noisy ones). The “2x noise”
column corresponds to a more extreme simulation where the added noise was double that observed in the
real data (new is = 1−2(1−is)). The emperical standard deviation (SD) and the average analytical standard
error (REML SE) is also shown for each scenario and do not deviate substantially. All estimates computed
from 100 random simulations.
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1x noise 2x noise
Category % h2g (se) % h2g (se)

CODING 99.5% (0.8%) 100.3% (0.9%)
DHS 95.7% (2.4%) 95.4% (2.4%)

Table S9. Partitioned causal h2g with simulated imputation noise. Simulations as described in
Table S8 but with 100% h2g in the listed category.
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Category λGC % h2g se P -value adjusted se adjusted P -value

Coding 1.26 7.5% 2.0% 4.74e-04 2.2% 1.83e-03
UTR 1.34 6.6% 2.0% 4.28e-03 2.4% 1.36e-02
Promoter 1.45 6.2% 2.6% 1.25e-01 3.1% 2.02e-01
DHS 1.32 79.5% 6.6% 3.64e-22 7.6% 3.74e-17
Intron 1.39 1.5% 3.9% 5.48e-12 4.7% 4.89e-09
Intergenic 1.70 -3.1% 4.0% 2.84e-42 5.3% 1.53e-25

Table S10. Meta-analysis adjusted for shared controls. We evaluated potential biases due to the use
of shared controls by shifting the functional categories and performing the entire genotyped meta-analysis
procedure to compute an empirical null distribution. Specifically, over 1,000 consecutive indices, we shifted
all functional annotations ahead by 2MB (moving regions that crossed the chromosome boundary into the
next chromosome) thereby preserving the total h2g, total sample relatedness, and relative dependence between
categories but permuting any relationship to true function. For each shifted annotation, we re-computed
GRMs from the genotyped data and estimated functional enrichment within each trait, as well as the meta-
analysis value across all 11 traits, yielding 1, 000 × 6 shifted meta-analysis estimates. We observed no
enrichment or inflation of P -values within each study (Table S11), further supporting the robustness of the
empirical standard error. We did observe inflation in the meta-analysis P -values ranging from λGC of 1.26
(coding) to 1.70 (intergenic). We adjusted the standard errors observed in real data by the corresponding√
λGC, which yielded adjusted P -values that remained significant for all categories but UTR (Table S10).

For each functional category, the empirical inflation of p-values due to shared controls (λGC) is reported.
The raw meta-analysis estimate of h2g, standard error, and enrichment P -value is shown for imputed SNPs;
followed by the corresponding λGC adjusted estimates.
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Category avg. enrichment avg. Z-score

Coding 0.98 -0.04
UTR 1.01 -0.04
Promoter 1.04 -0.01
DHS 0.99 -0.02
Intron 1.00 0.00
Intergenic 1.00 0.00

Table S11. Estimates of enrichment from shifted regions. For each category, the average enrichment
and Z-score observed in h2g estimates on real phenotypes and shifted functional annotations. Results averaged
across 1,000 shifts and all traits.
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Genotyped Imputed

Annotation % h2g (s.e.) Enrichment (s.e) P -value % h2g (s.e.) Enrichment (s.e.) P -value

Coding 4% (1%) 4.12 (0.96) 1.1e-03 8% (2%) 13.84 (4.12) 1.8e-03
DHS 38% (4%) 1.63 (0.16) 1.0e-04 79% (8%) 5.07 (0.48) 3.7e-17
Promoter 5% (1%) 2.19 (0.62) 5.2e-02 6% (3%) 2.79 (1.41) 2.0e-01
UTR 4% (1%) 3.51 (0.95) 8.2e-03 7% (2%) 8.42 (3.01) 1.4e-02
Intron 23% (3%) 0.83 (0.11) 1.2e-01 2% (5%) 0.05 (0.16) 4.9e-9
Intergenic 25% (4%) 0.56 (0.08) 2.7e-08 -3% (5%) -0.06 (0.10) ¡1e-20

Table S12. Components of heritability from regulatory elements in GWAS data (meta-
analysis). Shared controls correction applied (see also Table S13, S10).
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Genotyped Imputed

Annotation % h2g (s.e.) Enrichment (s.e) P -value % h2g (s.e.) Enrichment (s.e.) P -value

Coding 4% (1%) 4.12 (0.85) 2.59e-04 8% (2%) 13.84 (3.67) 4.74e-04
DHS 38% (3%) 1.63 (0.14) 7.98e-06 79% (7%) 5.07 (0.42) 3.64e-22
Promoter 5% (1%) 2.19 (0.51) 1.94e-02 6% (3%) 2.79 (1.17) 1.25e-01
UTR 4% (1%) 3.51 (0.82) 2.21e-03 7% (2%) 8.42 (2.60) 4.28e-03
Intron 23% (2%) 0.83 (0.09) 6.40e-02 2% (4%) 0.05 (0.14) 5.48e-12
Intergenic 25% (3%) 0.56 (0.06) 4.11e-13 -3% (4%) -0.06 (0.08) 2.84e-42

Table S13. Components of heritability from regulatory elements in GWAS data (meta-
analysis). Meta-analysis estimates computed using inverse-variance weighting without shared controls
correction.
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Bipolar disorder
(h2 = 0.6-0.7) Genotyped h2g = 0.26 (0.032) Imputed h2g = 0.24 (0.035)

Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value

Coding 3.5% (2.4%) 4.2 2.6e-01 4.9% (7.2%) 9.0 5.5e-01
UTR 3.6% (2.5%) 3.8 2.8e-01 11.6% (7.6%) 15.3 1.5e-01
Promoter -1.0% (3.3%) -0.5 3.4e-01 -11.0% (9.4%) -5.1 1.6e-01
DHS 34.0% (10.3%) 1.4 3.1e-01 34.6% (26.5%) 2.2 4.7e-01
Intron 22.9% (8.0%) 0.9 6.2e-01 27.0% (15.3%) 0.9 9.2e-01
Intergenic 37.0% (8.9%) 0.8 3.3e-01 33.0% (16.2%) 0.6 2.3e-01

Coronary artery disease
(h2 = 0.3-0.6) Genotyped h2g = 0.31 (0.057) Imputed h2g = 0.25 (0.062)

Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value

Coding 1.7% (3.2%) 2.2 7.7e-01 7.5% (12.5%) 14.0 5.7e-01
UTR 5.6% (3.7%) 5.9 2.1e-01 10.5% (13.0%) 13.8 4.6e-01
Promoter 4.5% (5.1%) 2.0 6.6e-01 2.8% (16.0%) 1.3 9.7e-01
DHS 41.1% (15.4%) 1.8 2.5e-01 0.7% (47.1%) 0.0 7.5e-01
Intron 24.5% (12.0%) 0.9 8.4e-01 44.4% (27.5%) 1.5 5.7e-01
Intergenic 22.6% (13.8%) 0.5 9.3e-02 34.1% (27.2%) 0.7 5.0e-01

Crohn’s disease
(h2 = 0.6-0.8) Genotyped h2g = 0.18 (0.024) Imputed h2g = 0.17 (0.025)

Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value

Coding 3.7% (2.5%) 4.6 2.5e-01 19.2% (8.2%) 35.9 2.3e-02
UTR -0.8% (2.5%) -0.8 4.8e-01 3.1% (7.6%) 4.1 7.6e-01
Promoter 7.3% (4.0%) 3.3 2.0e-01 -3.6% (9.5%) -1.7 5.4e-01
DHS 58.4% (11.9%) 2.5 3.4e-03 151.7% (27.1%) 9.7 5.2e-07
Intron 14.9% (8.8%) 0.6 1.7e-01 -30.9% (15.6%) -1.1 1.3e-04
Intergenic 16.5% (10.3%) 0.4 4.9e-03 -39.5% (17.3%) -0.8 1.1e-07

Hypertension
(h2 = 0.3-0.7) Genotyped h2g = 0.37 (0.053) Imputed h2g = 0.33 (0.059)

Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value

Coding 6.2% (2.9%) 7.6 6.4e-02 25.4% (10.5%) 47.2 1.8e-02
UTR 5.5% (3.0%) 5.6 1.3e-01 12.7% (9.5%) 16.7 2.1e-01
Promoter 4.9% (4.2%) 2.2 5.1e-01 -3.0% (11.7%) -1.4 6.6e-01
DHS 28.3% (11.7%) 1.2 6.8e-01 93.8% (31.6%) 6.0 1.3e-02
Intron 19.4% (9.4%) 0.7 4.2e-01 -32.4% (18.6%) -1.1 1.1e-03
Intergenic 35.6% (10.5%) 0.8 3.4e-01 3.4% (19.8%) 0.1 1.3e-02

Rheumatoid arthritis
(h2 = 0.6) Genotyped h2g = 0.11 (0.031) Imputed h2g = 0.09 (0.033)

Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value

Coding -0.6% (5.0%) -0.8 7.7e-01 1.4% (17.7%) 2.6 9.6e-01
UTR 7.1% (5.7%) 7.3 2.9e-01 21.1% (19.3%) 27.9 2.9e-01
Promoter 1.9% (7.5%) 0.9 9.8e-01 28.3% (24.6%) 13.2 2.9e-01
DHS 46.4% (23.4%) 2.0 3.3e-01 162.7% (67.4%) 10.4 2.9e-02
Intron 6.5% (18.9%) 0.2 2.8e-01 -78.9% (45.1%) -2.8 1.7e-02
Intergenic 38.8% (20.1%) 0.8 7.3e-01 -34.6% (42.0%) -0.7 3.8e-02

Type 1 diabetes
(h2 =0.9) Genotyped h2g = 0.13 (0.030) Imputed h2g = 0.13 (0.032)
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Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value

Coding 7.9% (4.6%) 9.5 1.3e-01 35.0% (16.1%) 65.3 3.2e-02
UTR 5.1% (4.4%) 5.2 3.5e-01 -1.8% (12.9%) -2.4 8.4e-01
Promoter 11.0% (6.7%) 5.0 1.9e-01 28.8% (18.3%) 13.5 1.4e-01
DHS 28.2% (18.0%) 1.2 7.9e-01 106.2% (42.5%) 6.8 3.3e-02
Intron 36.7% (14.7%) 1.4 5.1e-01 -8.3% (26.0%) -0.3 1.5e-01
Intergenic 11.2% (17.1%) 0.2 4.4e-02 -59.9% (30.8%) -1.1 2.7e-04

Type 2 diabetes
(h2 = 0.3-0.6) Genotyped h2g = 0.37 (0.065) Imputed h2g = 0.42 (0.070)

Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value

Coding -2.0% (3.0%) -2.4 3.5e-01 2.5% (8.1%) 4.7 8.1e-01
UTR -0.7% (3.2%) -0.7 6.0e-01 8.7% (8.5%) 11.4 3.5e-01
Promoter -3.5% (4.7%) -1.6 2.3e-01 -3.3% (10.3%) -1.5 6.0e-01
DHS 69.3% (16.0%) 3.0 4.0e-03 63.8% (27.5%) 4.1 8.0e-02
Intron 26.1% (11.4%) 1.0 9.4e-01 17.1% (17.4%) 0.6 5.1e-01
Intergenic 10.7% (13.6%) 0.2 1.0e-02 11.1% (17.2%) 0.2 1.7e-02

Multiple sclerosis
(h2 = 0.3-0.8) Genotyped h2g = 0.19 (0.009) Imputed h2g = 0.17 (0.009)

Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value

Coding 6.4% (1.7%) 3.6 6.2e-03 5.5% (2.9%) 9.4 9.5e-02
UTR 3.9% (1.4%) 3.2 6.3e-02 8.1% (3.1%) 9.4 1.9e-02
Promoter 6.1% (2.0%) 2.4 7.4e-02 11.7% (4.0%) 5.0 1.8e-02
DHS 33.1% (5.3%) 1.3 1.1e-01 77.7% (9.4%) 4.9 5.5e-11
Intron 24.1% (4.0%) 0.9 3.1e-01 1.5% (5.7%) 0.1 9.1e-07
Intergenic 26.4% (4.2%) 0.6 3.2e-04 -4.5% (5.7%) -0.1 1.0e-16

Ankylosing spondylitis
(h2 > 0.90) Genotyped h2g = 0.18 (0.028) Imputed h2g = 0.14 (0.027)

Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value

Coding 6.9% (4.8%) 3.9 2.9e-01 1.5% (10.4%) 2.6 9.3e-01
UTR 11.4% (4.6%) 9.2 2.7e-02 20.9% (12.0%) 24.5 9.6e-02
Promoter 5.2% (5.7%) 2.0 6.5e-01 7.5% (13.5%) 3.2 7.1e-01
DHS 41.8% (16.1%) 1.7 2.8e-01 106.3% (33.4%) 6.7 6.8e-03
Intron 14.9% (11.7%) 0.5 2.6e-01 -23.6% (20.6%) -0.8 1.1e-02
Intergenic 19.8% (12.7%) 0.5 8.6e-02 -12.6% (20.2%) -0.2 1.5e-03

Schizophrenia
(h2 = 0.7-0.8) Genotyped h2g = 0.20 (0.025) Imputed h2g = 0.18 (0.024)

Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value

Coding 1.9% (2.9%) 2.6 6.8e-01 7.7% (6.6%) 14.2 2.8e-01
UTR 2.5% (3.1%) 2.6 6.2e-01 0.8% (6.3%) 1.0 1.0e 00
Promoter 7.4% (4.4%) 3.4 2.4e-01 -9.7% (7.7%) -4.2 1.2e-01
DHS 37.6% (13.3%) 1.6 2.7e-01 44.4% (22.8%) 2.8 2.1e-01
Intron 26.6% (9.4%) 1.0 9.8e-01 37.3% (14.0%) 1.3 5.3e-01
Intergenic 23.9% (10.6%) 0.5 3.5e-02 19.6% (14.1%) 0.4 2.2e-02

Ulcerative colitis
(h2 = 0.5) Genotyped h2g = 0.17 (0.017) Imputed h2g = 0.14 (0.016)

Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value
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Coding 4.7% (2.5%) 6.2 1.2e-01 7.6% (5.9%) 14.5 2.3e-01
UTR 4.3% (2.6%) 4.5 2.1e-01 -1.4% (5.7%) -1.7 7.0e-01
Promoter 8.7% (3.7%) 4.0 7.3e-02 23.8% (7.9%) 10.6 6.5e-03
DHS 43.3% (10.9%) 1.9 6.5e-02 93.5% (19.4%) 6.0 6.0e-05
Intron 21.2% (7.6%) 0.8 4.5e-01 -5.6% (11.5%) -0.2 2.8e-03
Intergenic 17.9% (8.7%) 0.4 1.1e-03 -18.0% (12.4%) -0.3 1.5e-08

Table S14. Components of heritability from regulatory elements in GWAS data. Family-based
h2 (from literature), total h2g, and function-specific h2g of liability is reported for eleven traits. Enrichment
computed over the % of SNPs in each category and P -value computed from Z-score. For auto-immune traits
(CD,RA,T1D,MS,AS,UC) the well-studied MHC locus was removed from analyses. By inverse-variance meta-
analysis, the average total genotyped h2g = 0.17 (0.01) and imputed h2g = 0.19 (0.01) for a nominally significant
difference of P=0.03. Using flat weights instead yielded % h2g DHS = 85% with standard deviation of 48%
(corresponding to both trait and sampling variation) and root mean squared analytical standard error of 36%
(corresponding to estimated sampling variation only), yielding a standard deviation of

√
0.482 − 0.362 = 32%

in the true unobserved values. All traits with % h2g estimates > 100% (CD, RA, T1D, AS) have compensatory
components with negative estimates.
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Constrained Standard

Category fraction h2g (se) enrichment (se) PV fraction h2g (se) enrichment (se) PV

Coding 0.052 (0.019) 9.521 (3.418) 1.27e-02 0.075 (0.020) 13.838 (3.673) 4.74e-04
UTR 0.053 (0.019) 6.801 (2.443) 1.76e-02 0.066 (0.020) 8.417 (2.596) 4.28e-03
Promoter 0.069 (0.025) 3.126 (1.109) 5.52e-02 0.062 (0.026) 2.792 (1.168) 1.25e-01
DHS 0.710 (0.064) 4.532 (0.407) 3.82e-18 0.795 (0.066) 5.072 (0.421) 3.64e-22
Intron 0.061 (0.038) 0.211 (0.131) 1.74e-09 0.015 (0.039) 0.053 (0.137) 5.48e-12
Intergenic 0.046 (0.039) 0.088 (0.075) 9.68e-34 -0.031 (0.040) -0.059 (0.078) 2.84e-42

Table S15. Constrained REML estimate of h2g. Comparison of constrained analysis (where components
estimating h2g below zero are dropped from the analysis) and the standard un-constrained results. All values
computed from meta-analysis over 11 traits. No shared-controls correction applied.
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Enrichment Coding DHS Promoter UTR Intron Intergenic Entropy (H)

Promoter (imputed) 0.00% 2.35% 0.14% 0.01% 7.94% 25.98% 0.65
Coding (imputed) 0.04% 2.28% 0.05% 0.01% 7.69% 25.17% 0.64
All categories (genotyped) 0.02% 6.02% 0.11% 0.03% 6.49% 13.03% 0.62
DHS (imputed) 0.00% 12.45% 0.01% 0.00% 2.02% 6.60% 0.52
All categories (imputed) 0.04% 12.45% 0.14% 0.05% 0.44% -1.59% 0.30

Table S16. Theoretical entropy of functional partitions. Our estimates of the relative significance
of different h2g enrichment scenarios were directly dependent on the standard error and overall sample size
analyzed. Here, we consider an alternative figure of merit which relies only on the fraction of h2g in each
category. We borrow from information theory the concept of entropy, which is a measure of uncertainty in
the distribution of a random variable. Given P (Xi), the probability mass function of a random variable,

entropy can be quantified as H = −
a∑

i=1

P (Xi)log(P (Xi)). Depending on the distribution and log-base, this

is equivalent to the number of bits required to encode an observation, with higher entropy implying lower
predictability. Applying this to functional categories, we define P (Xi) as the joint probability that a SNP
falls into the given category and is causal. Assuming that %h2gi corresponds to the probability of causality

in category i, we compute P (Xi) = %SNPi ×%h2gi. We then compute the entropy as outlined previously.
Table S16 demonstrates the resulting entropy from multiple enrichment scenarios observed in the 11 traits,
with entropy inversely correlated to the individual category significance. Highest entropy was computed
for an enrichment scenario that only accounted for the (least significant) promoter category, and lowest
entropy was observed for an enrichment scenario that accounted for all six categories. Interestingly, the six-
category genotyped enrichment yielded higher entropy than a hypothetical DHS-only imputed enrichment.
This formulation of “functional entropy” provides a standard metric for comparing real and hypothetical
enrichment scenarios completely independent of sample size and data platform. Each row indicates a different
enrichment scenarios observed in the 11 traits, with the rows listing individual annotations corresponding
to an enrichment only at that category and no enrichmet in other categories. Each column then lists the
probability of a SNP being causal (% h2g × % SNP for that category), as well as the resulting entropy
computed as H = −

∑
p× log(p).
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A: 1000G imputed B: Genome-wide significant C: Known from NHGRI

Category % SNPs % SNPs (enrichment) % SNPs (enrichment1)

Coding 0.5% 1.7% (3.16) 8.5% (16.98)
UTR 0.8% 1.7% (2.20) 2.6% (3.25)
Promoter 2.2% 2.3% (1.04) 7.5% (3.39)
DHS 15.7% 14.3% (0.91) 27.4% (1.74)
Intron 28.8% 30.7% (1.07) 25.5% (0.88)
Intergenic 52.0% 49.3% (0.95) 28.6% (0.55)

1Does not account for null distribution of NHGRI SNPs.

Table S17. Functional enrichment from GWAS hits. Fraction of SNPs partitioned into each category
shown for (A) all 1000 Genomes imputed SNPs; (B) genome-wide significant imputed SNPs (single best
association in 1MB locus); and (C) known associated SNPs from NHGRI catalog. Enrichments computed
relative to 1000G imputed fractions, all values computed from union of 11 traits.

48



Annotation % h2g (s.e.) Enrichment (s.e) P -value

Coding 0.026 (0.014) 4.206 (2.192) 1.44e-01
UTR 0.075 (0.014) 8.934 (1.653) 1.59e-06
Promoter 0.040 (0.017) 1.814 (0.760) 2.84e-01
DHS 0.509 (0.047) 3.154 (0.291) 1.40e-13
Intron 0.193 (0.028) 0.651 (0.096) 2.82e-04
Intergenic 0.149 (0.029) 0.294 (0.057) 1.94e-35

Table S18. Components of heritability from regulatory elements in PGC2 schizophrenia.
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Category % category % h2g % DHS h2g (se) % DHS SNP enrichment to DHS (se) PV

DHS-Coding 27.4% 5% (1%) 5% (1%) 0.9% 5.30 (1.34) 1.35e-03
DHS-UTR 31.2% 5% (1%) 4% (1%) 1.4% 2.62 (0.93) 8.16e-02
DHS-Promoter 29.8% 9% (2%) 9% (2%) 3.9% 2.25 (0.47) 7.90e-03
DHS-Intron NA 40% (3%) 35% (2%) 39.6% 0.87 (0.06) 3.74e-02
DHS-Intergenic NA 51% (4%) 48% (2%) 54.2% 0.89 (0.04) 1.05e-02
non-DHS NA -16% (5%) NA NA NA NA

Table S19. Functional enrichment of main categories within DHS category. The extended DHS
category was sub-partitioned into five annotations, and h2g reported. % category reports the percent of main
category covered by DHS. The remaining non-DHS category was significantly negative (P = 0.002), likely
due to underestimating standard errors.
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Genotyped Imputed Genotyped
Tissue type Cell type Autoimmune Autoimmune Non-autoimmune

Blood T Cell 5.8 (4.2e-06) 10.2 (1.3e-12) 2.1 (3.5e-01)
Blood Leukemia Cells 3.5 (6.7e-06) 4.7 (5.3e-10) 1.0 (9.8e-01)
Blood Lymphoblastoid Cell 3.3 (1.1e-05) 4.9 (5.4e-11) 1.0 (9.4e-01)
Fetal Kidney Fetal Right Renal Pelvis 5.4 (1.4e-04) 8.2 (5.7e-08) 1.5 (7.4e-01)
Bone Marrow Monocyte 4.1 (1.6e-04) 5.7 (2.2e-07) 1.3 (7.6e-01)
Blood CD8 Primary Cell 3.0 (3.0e-04) 5.4 (1.8e-10) 1.0 (9.6e-01)
Fetal Thymus Fetal Thymus Cell 2.6 (4.0e-04) 4.5 (3.2e-09) 0.8 (6.6e-01)
Blood CD4 Primary Cell 2.3 (9.5e-04) 3.1 (6.5e-06) 0.9 (8.7e-01)
Blood CD14 Primary Cell 2.7 (1.1e-03) 3.2 (2.8e-04) 1.3 (7.4e-01)
Liver Hliver Cell 3.7 (1.4e-03) 6.4 (2.8e-08) -0.3 (2.1e-01)
Fetal Kidney Fetal Left Renal Cortex Cell 4.8 (2.0e-03) 8.3 (2.6e-07) 1.6 (7.1e-01)
Bone Marrow Blast Cell 2.9 (2.1e-03) 5.1 (9.1e-09) 2.4 (9.0e-02)
Fetal Muscle Fetal Back Muscle Cell 5.6 (6.5e-03) 9.5 (2.5e-08) 2.9 (2.3e-01)
Blood CD34 Primary Cell 1.7 (9.9e-03) 1.7 (1.5e-02) 0.7 (3.9e-01)
Blood CD34 Mobilized Primary Cell 0.1 (3.0e-02) 0.3 (1.2e-01) 1.2 (6.6e-01)
Bone Marrow Erythroleukemic Cell 2.3 (3.8e-02) 3.2 (4.7e-04) 0.5 (5.4e-01)
Fetal Lung Fetal Left Lung Cell 0.2 (3.9e-02) -0.1 (1.6e-02) 1.1 (8.4e-01)
Blood Lymphocyte 1.7 (4.0e-02) 2.4 (3.5e-04) 0.7 (4.7e-01)
Fetal Kidney Fetal Left Renal Pelvis 2.3 (4.7e-02) 3.2 (3.7e-03) 0.9 (8.8e-01)
Fetal Large Intestine Fetal Large Intestine Cell 1.6 (4.9e-02) 2.7 (2.2e-06) 0.9 (6.9e-01)

Table S20. Cell-type and phenotype specific DHS enrichment. Fold-enrichment of h2g relative
to SNPs reported for cell-types DHSs observed as significant in genotype data (without adjusting for 83
cell-types tested). Enrichment was measured in comparison to h2g at DHS regions, accounting for the
background DHS enrichment. Results shown separately from meta-analysis of 6 autoimmune traits and
5 non-autoimmune traits. No shared-controls adjustment applied.
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Cell type AS CD MS RA T1D UC

Monocyte 9.3% (2.8) 9.2% (3.1) 14.8% (4.5) 20.7% (7.0) 11.6% (3.8) 13.8% (4.7)
Fetal Right Renal Pelvis 5.5% (2.7) 5.0% (3.3) 13.7% (7.0) 12.2% (7.8) 6.0% (3.9) 11.6% (7.6)
Lymphoblastoid Cell 35.1% (4.2) 15.2% (2.1) 35.8% (4.4) 28.3% (3.8) 12.5% (1.7) 29.9% (4.1)
CD8 Primary Cell 23.3% (3.1) 7.8% (1.2) 33.6% (4.5) 14.4% (2.2) 56.4% (8.7) 28.4% (4.4)
Fetal Thymus Cell 20.3% (2.1) 15.7% (1.8) 34.8% (3.6) -2.3% (-0.3) 23.4% (2.8) 30.5% (3.5)
T Cell 19.2% (7.2) 11.3% (5.0) 15.9% (6.1) 7.9% (3.5) NA 15.1% (7.0)
Leukemia Cells 10.5% (1.5) 19.3% (2.9) 29.8% (4.1) 19.9% (3.0) 30.2% (4.6) 29.5% (4.6)

Mean enrichment: (3.4) (2.8) (4.9) (3.9) (4.2) (5.1)

Table S21. Cell-type and phenotype specific DHS enrichment by trait. For cell-types reported
as significant in Table 1, % h2g and fold-enrichment relative to DHS is shown for each autoimmune trait,
estimated from genotyped data.
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Joint with main categories

% genome % h2g univar % h2g (se) enrichment (se) P -value

1% 0.610 0.198 (0.040) 18.094 (3.655) 2.91e-06
5% 0.853 0.415 (0.070) 7.971 (1.335) 1.76e-07
10% 0.948 0.704 (0.073) 6.884 (0.717) 2.35e-16
16% (all DHS) 0.985 0.795 (0.066) 5.072 (0.421) 3.64e-22

Table S22. h2g from narrowed DHS regions. DHS regions were narrowed (to the center of the region)
to achieve set % of genome, and h2g estimates are reported from a single DHS component (univar) as well as
jointly with the five other main components. For comparison, a randomly sampled 16% of SNPs yielded an
average % h2g univar of 0.86.
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Variant class (and SNPs in LD) All h2g (se) Hom. h2g (se) Hom. h2gLD (se)

All 0.307 (0.027) 0.366 (0.038) 0.370 (0.040)
GWAS chip 0.273 (0.020) 0.314 (0.028) 0.317 (0.042)
Exome chip 0.116 (0.022) 0.157 (0.032) 0.158 (0.034)

Variant class (exclusive) All h2g (se) Hom. h2g (se) Hom. h2gLD (se)

P -value P -value P -value

GWAS chip 0.242 (0.020) 0.282 (0.029) 0.291 (0.028)
Exome chip 0.065 (0.021) 0.084 (0.031) 0.079 (0.034)

2.0× 10−06 2.0× 10−03 1.2× 10−02

Exome chip (rare) 0.014 (0.019) 0.040 (0.028) 0.037 (0.029)
2.1× 10−01 7.7× 10−02 1.0× 10−01

Exome chip (common) 0.051 (0.011) 0.044 (0.015) 0.042 (0.017)
5.2× 10−07 1.3× 10−03 7.7× 10−03

Table S23. Components of heritability of Schizophrenia from exome chip. Estimates of h2g are
reported from variance components in the homogenous Swedish sub-population as well as all samples. Top
panel shows estimates (without accounting for shared variance due to LD between classes) in All samples,
homogenous Swedish sub-population, and LD-adjusted1 estimates (h2gLD) from the homogenous Swedish
sub-population. Bottom panel shows corresponding joint estimates accounting for shared variance due to
LD. In bottom panel, P -values from a likelihood ratio test on the corresponding component are shown below
each row.
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A: GWAS chip + Exome chip

Annotation h2g (se) % h2g (se) % Non-coding SNPs Enrichment (se) P -value

Coding (common) 0.049 (0.015) NA NA NA NA
Coding (rare) 0.037 (0.028) NA NA NA NA
UTR 0.003 (0.007) 1.1% (2.4%) 1.9% 0.59 (1.24) 7.4e-01
Promoter 0.006 (0.008) 2.2% (3.0%) 3.0% 0.73 (1.00) 7.8e-01
DHS 0.114 (0.023) 41.2% (8.0%) 25.7% 1.60 (0.31) 5.3e-02
Intron 0.083 (0.019) 30.2% (6.4%) 26.2% 1.15 (0.25) 5.3e-01
Intergenic 0.070 (0.023) 25.3% (7.4%) 43.2% 0.59 (0.17) 1.6e-02

B: GWAS chip

Annotation h2g (se) % h2g (se) % SNPs Enrichment (se) P -value

Coding 0.014 (0.007) 4.3% (2.3%) 2.0% 2.15 (1.13) 3.1e-01
UTR 0.005 (0.007) 1.6% (2.1%) 1.9% 0.84 (1.12) 8.9e-01
Promoter 0.009 (0.008) 2.8% (2.6%) 2.9% 0.95 (0.90) 9.5e-01
DHS 0.118 (0.023) 37.8% (7.1%) 25.2% 1.50 (0.28) 7.3e-02
Intron 0.092 (0.019) 29.5% (5.8%) 25.7% 1.15 (0.22) 5.1e-01
Intergenic 0.075 (0.023) 24.0% (6.6%) 42.4% 0.57 (0.16) 5.7e-03

C: 1000G imputed + Exome chip

Annotation h2g (se) % h2g (se) % Non-coding SNPs Enrichment (se) P -value

Coding (common) 0.050 (0.016) NA NA NA NA
Coding (rare) 0.035 (0.028) NA NA NA NA
UTR 0.030 (0.016) 11.0% (5.9%) 0.8% 13.26 (7.08) 8.3e-02
Promoter -0.017 (0.019) -6.1% (7.0%) 2.3% -2.63 (2.99) 2.3e-01
DHS 0.144 (0.059) 53.0% (20.4%) 16.9% 3.13 (1.21) 7.7e-02
Intron 0.044 (0.032) 16.0% (11.8%) 28.7% 0.56 (0.41) 2.8e-01
Intergenic 0.071 (0.035) 26.1% (12.6%) 51.2% 0.51 (0.25) 4.7e-02

D: 1000G imputed

Annotation h2g (se) % h2g (se) % SNPs Enrichment (se) P -value

Coding 0.056 (0.014) 17.6% (4.8%) 0.4% 45.89 (12.43) 3.1e-04
UTR 0.023 (0.015) 7.2% (4.7%) 0.8% 8.66 (5.68) 1.8e-01
Promoter -0.024 (0.018) -7.7% (5.7%) 2.3% -3.31 (2.47) 8.2e-02
DHS 0.169 (0.055) 53.6% (16.4%) 16.9% 3.18 (0.97) 2.5e-02
Intron 0.025 (0.030) 7.8% (9.5%) 28.6% 0.27 (0.33) 2.8e-02
Intergenic 0.068 (0.032) 21.6% (10.1%) 51.0% 0.42 (0.20) 3.7e-03

Table S24. Components of heritability from regulatory elements in SWE-SCZ schizophrenia.
Estimates are reported from the homogenous Swedish sub-population.
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Coding fmax Homogenous All

Singleton 0.000 (0.007) 0.000 (0.004)
0.001 0.000 (0.009) 0.000 (0.006)
0.005 0.000 (0.010) 0.004 (0.007)
0.010 0.000 (0.011) 0.006 (0.008)
0.050 0.025 (0.013) 0.031 (0.009)

Table S25. Collapsed-variant ĥ2g of Schizophrenia from exome chip. For a given cohort, the variance
of the heritability estimate tends to grow with the number of markers analyzed. Borrowing from gene-based
burden association tests7,8, we considered a strategy for reducing the variance of this estimate by collapsing
rare variants in a gene into a single polymorphic site when computing the GRM. Over the full data-set,
this procedure collapses the 60,000 effective SNPs into approximately 16,000 genes that contain polymorphic
SNPs. This technique also has the benefit of incorporating singleton variants that violate the traditional
variance-components model normality assumptions. However, as with burden-tests, the model assumes that
all SNPs have identical normalized effect-sizes and will exhibit downwards bias when this assumption is
violated. Formally, the method recodes each gene as a multi-allelic “pseudo-SNP” where samples that carry
a minor allele below frequency threshold fmax are considered carriers of the pseudo-SNP allele equal to the
number of such variants they carry. The pseudo-SNPs are then normalized to have mean=0 and variance=1
and a new GRM is computed over the normalized pseudo-SNPs as in the standard model. The corresponding
measure of h2g,collapsed is estimated from this collapsed variance-component, jointly with a single non-coding

component, which fully accounts for the minimal tagging of h2g from non-coding regions by collapsed variants
(Table S41). Our simulations show that disease architectures with > 50% non-causal (or non-deleterious)
variants capture substantially less heritability as to make this approach underpowered compared to the
standard model considering all SNPs (Table S42, S43). This table reports estimates of heritability from gene-
based collapsed variants computed in two sub-groups of Swedish samples with increasing allele frequency
thresholds. Analytical standard error reported in parenthesis.
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Phenotype Study # SNPs # Samples

RA Stahl et al. 2010 2,556,272 25,708
T2D Morris et al. 2012 2,473,442 149,821
CAD Schunkert et al. 2011 2,420,361 22,233
SCZ PGC2 2014 9,444,246 150,064

Table S26. GWAS summary statistics used for fine-mapping.
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# SNPs in critical set P(causal in critical set)

Sample size No prior1 True prior2 Wrong prior3 No prior1 True prior2 Wrong prior3

4414 1132 309 310 0.95 0.94 0.84
8828 1024 279 280 0.97 0.96 0.87

13242 903 246 245 0.98 0.97 0.88
17656 747 202 201 0.98 0.97 0.89
22070 603 161 163 0.98 0.96 0.88
26484 485 128 125 0.97 0.96 0.88
30898 375 97 95 0.96 0.96 0.87
35312 276 70 72 0.96 0.94 0.86
39726 199 50 52 0.96 0.94 0.85
44140 145 38 39 0.95 0.93 0.83

For (Coding, UTR, Promoter, DHS, Intron, Intergenic) respectively the following models and priors were used:
1Trait = ( 13.8 , 8.4 , 2.8 , 5.1 , 0.05 , 0.001 ); prior = ( 1.0 , 1.0 , 1.0 , 1.0 , 1.0 , 1.0 )

2Trait = prior = ( 13.8 , 8.4 , 2.8 , 5.1 , 0.05 , 0.001 )
3Trait = ( 6.6 , 3.3 , 0.5 , 4.3 , 0.3 , 0.1 ); prior = ( 13.8 , 8.4 , 2.8 , 5.1 , 0.05 , 0.001 )

Table S27. Simulated fine-mapping analyses and calibration. Loci harboring a single typed causal
variant were simulated from imputed SNPs and evaluated for fine-mapping over increasing sample sizes. The
95% critical set of causal variants was then computed with and without SNP priors, with set size and fraction
of instances where the causal variant is in the critical set reported. “No prior” corresponds to a generative
model where enrichment matches mean estimate from imputed data in main text and no prior is used for
fine-mapping. “True prior” corresponds to the same generative model and the true enrichment is used as
prior for fine-mapping. “Wrong prior” corresponds to the same fine-mapping priors but true enrichment
set to the boundary of the confidence interval reported in main text. Each value is the mean from 2,000
simulations.
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Component Univariate R2 Step-wise R2 Step-wise PV Multivariate PV

DHS 0.055 0.055 4.24e-104 7.49e-12
Intron 0.034 0.056 1.60e-03 2.83e-04
Intergenic 0.031 0.059 8.50e-07 6.22e-07
UTR 0.021 0.062 1.05e-07 7.34e-07
Promoter 0.016 0.062 3.46e-01 2.42e-01
Coding 0.009 0.062 2.24e-01 2.24e-01

We computed the expected GBLUP prediction accuracy using the previously derived9,10 relationship that M effective SNPs,
N training samples, and h2g are expected to yield prediction r2 = (h2gh

2
g)/(h2g +M/N). We did not account for ascertainment

because prediction was assessed by cross-validation. For the PGC analysis, the observed-scale h2g = 0.49, N = 10000 and we

assumed M = 60000, which is expected to yield genome-wide r2 = 0.037. Assuming independent variance components, we
similarly estimated expected r2 of the functionally stratified predictor by evaluating (jointly estimated) component-specific h2g
directly in the data, estimating M from the fraction of SNPs in each component, and summing all of the functional expected r2

to compute the genome-wide prediction. For the PGC analysis, this yielded an expected genome-wide r2 = 0.077, or a 2.08×
increase over the standard predictor.

Table S28. BLUP prediction accuracy in PGC. The h2g for a set of SNPs is an upper-bound on the
prediction accuracy of a polygenic score constructed from those SNPs in unrelated samples9–11. To evaluate
the impact of functional partitioning on risk prediction, we compared GBLUP12,13 prediction accuracy using
six jointly estimated functional components vs. a single genome-wide component in the phase 1 subset of the
PGC schizophrenia data (11,000 samples, see Materials and Methods). BLUP coefficients were computed
in GCTA14 (see Web Resources) using the imputed data in a model with a single genome-wide component
and a separate model with the six functional category components and converted into SNP effects. Risk
scores were then computed from the SNPs and effects in each component. We assessed prediction accuracy
using 10-fold cross-validation, where component-specific heritability and BLUP values were only estimated in
the ∼10,000 training samples. To account for population structure we included 10 principal components as
fixed-effects in training the BLUP. We also included the same number of PCs when evaluating the predicted
phenotype in a logistic regression with the true phenotype, reporting the Nagelkerke pseudo-R2 of each
model minus that of the principal components. Results are reported in Table S28. In this table, prediction
R2 and significance is reported for GBLUPs estimated from six functional categories jointly in 10-fold cross-
validation. Univariate R2 column reports the accuracy of a 1-dof predictor from each of the component
individually. Step-wise R2 column reports the accuracy of a multiple-dof prediction with each component
added as an additional predictor in turn. Step-wise PV column reports P -value from the newly added
predictor. Multivariate PV reports P -value from each predictor in the final 6-dof prediction model. In all
instances, principal components were included as additional fixed-effects and subtracted from prediction R2.
Of the six jointly estimated components, DHS yielded the highest individual R2 (0.055) and coding yielded
the lowest (0.009). A single degree of freedom GBLUP prediction from the sum of all six components yielded
a highly significant R2 of 0.061 (P < 10−20). However, GBLUP prediction using a single component was only
slightly less accurate, with R2 = 0.058 (P = 2.6× 10−7 for difference). On the observed-scale OLS R2, this
corresponds to a genome-wide r2 = 0.043 and a stratified r2 = 0.046. Though highly statistically significant,
the observed-scale increase of 1.07× is substantially lower than the 2.08× that would be expected in the
case of independent markers (see Foonote). This indicates that the assumption of component independence
is strongly violated and significant enrichments in component h2g do not necessarily translate into increased
prediction accuracy.
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Genotyped:

causal MAF< 0.50 causal MAF< 0.05 causal MAFDHS < 0.05

Category empirical sd REML se empirical sd REML se empirical sd REML se

Coding 0.009 0.008 0.011 0.010 0.011 0.010
UTR 0.009 0.009 0.011 0.011 0.011 0.011
Promoter 0.015 0.015 0.017 0.016 0.016 0.016
DHS 0.059 0.053 0.050 0.051 0.051 0.051
Intron 0.047 0.047 0.041 0.042 0.042 0.042
Intergenic 0.058 0.058 0.050 0.050 0.051 0.050

Imputed:

causal MAF< 0.50 causal MAF< 0.05 causal MAFDHS < 0.05

Category empirical sd REML se empirical sd REML se empirical sd REML se

Coding 0.033 0.032 0.033 0.032 0.032 0.032
UTR 0.033 0.033 0.033 0.033 0.032 0.033
Promoter 0.042 0.041 0.042 0.041 0.044 0.041
DHS 0.124 0.124 0.125 0.124 0.126 0.124
Intron 0.069 0.068 0.069 0.068 0.067 0.069
Intergenic 0.077 0.075 0.073 0.075 0.077 0.075

Table S29. Empirical and analytical standard error of partitioned h2g. Over 1,000 simulations for
each of three disease architectures, the emperical standard deviation and average REML analytical standard
error is reported for each functional category.
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Phenotype Coding DHS Promoter UTR Intron Intergenic

SP (REML) 0.020 (0.029) 0.376 (0.133) 0.074 (0.044) 0.025 (0.031) 0.266 (0.094) 0.239 (0.106)
SP (jknife) 0.024 (0.027) 0.368 (0.168) 0.085 (0.047) 0.022 (0.019) 0.258 (0.143) 0.244 (0.088)
AS (REML) 0.069 (0.048) 0.418 (0.161) 0.052 (0.057) 0.114 (0.046) 0.149 (0.117) 0.198 (0.127)
AS (jknife) 0.086 (0.048) 0.419 (0.188) 0.040 (0.057) 0.102 (0.052) 0.115 (0.149) 0.238 (0.112)
MS (REML) 0.064 (0.017) 0.331 (0.053) 0.061 (0.020) 0.039 (0.014) 0.242 (0.040) 0.264 (0.042)
MS (jknife) 0.073 (0.023) 0.339 (0.076) 0.050 (0.021) 0.046 (0.012) 0.235 (0.034) 0.258 (0.068)
UC (REML) 0.047 (0.025) 0.433 (0.109) 0.087 (0.037) 0.043 (0.026) 0.212 (0.076) 0.179 (0.086)
UC (jknife) 0.045 (0.027) 0.425 (0.105) 0.085 (0.039) 0.045 (0.028) 0.223 (0.069) 0.177 (0.077)
BD (REML) 0.035 (0.024) 0.340 (0.103) -0.010 (0.033) 0.036 (0.025) 0.229 (0.080) 0.370 (0.089)
BD (jknife) 0.030 (0.027) 0.321 (0.129) -0.021 (0.035) 0.047 (0.022) 0.245 (0.088) 0.377 (0.093)
CAD (REML) 0.017 (0.032) 0.411 (0.154) 0.045 (0.052) 0.056 (0.037) 0.245 (0.120) 0.226 (0.138)
CAD (jknife) 0.018 (0.025) 0.432 (0.137) 0.048 (0.054) 0.058 (0.039) 0.225 (0.105) 0.220 (0.134)
CD (REML) 0.037 (0.025) 0.584 (0.119) 0.073 (0.040) -0.008 (0.025) 0.149 (0.088) 0.165 (0.103)
CD (jknife) 0.036 (0.025) 0.619 (0.113) 0.071 (0.050) 0.005 (0.029) 0.134 (0.107) 0.133 (0.117)
HT (REML) 0.062 (0.029) 0.283 (0.117) 0.049 (0.042) 0.055 (0.030) 0.194 (0.094) 0.356 (0.105)
HT (jknife) 0.062 (0.027) 0.319 (0.110) 0.058 (0.052) 0.057 (0.026) 0.210 (0.083) 0.293 (0.116)
RA (REML) -0.006 (0.049) 0.464 (0.234) 0.019 (0.076) 0.071 (0.057) 0.065 (0.189) 0.388 (0.201)
RA (jknife) -0.017 (0.037) 0.444 (0.325) -0.007 (0.085) 0.069 (0.063) 0.063 (0.193) 0.443 (0.241)
T1D (REML) 0.079 (0.046) 0.282 (0.180) 0.110 (0.067) 0.051 (0.044) 0.367 (0.147) 0.112 (0.171)
T1D (jknife) 0.077 (0.050) 0.301 (0.158) 0.114 (0.076) 0.061 (0.054) 0.361 (0.103) 0.088 (0.161)
T2D (REML) -0.020 (0.030) 0.694 (0.160) -0.035 (0.047) -0.007 (0.032) 0.261 (0.114) 0.107 (0.136)
T2D (jknife) -0.020 (0.041) 0.769 (0.146) -0.030 (0.048) -0.019 (0.040) 0.208 (0.160) 0.096 (0.180)

meta (REML) 0.040 (0.008) 0.384 (0.033) 0.050 (0.012) 0.035 (0.008) 0.226 (0.025) 0.250 (0.028)
2.59e-04 7.98e-06 1.94e-02 2.21e-03 6.40e-02 4.11e-13

meta (jknife) 0.039 (0.009) 0.418 (0.038) 0.043 (0.013) 0.040 (0.008) 0.228 (0.024) 0.238 (0.032)
1.10e-03 1.50e-06 1.07e-01 6.45e-05 6.72e-02 1.78e-11

Table S30. Comparison of analytical and jack-knife % h2g from genotyped SNPs. For each trait
and functional category, the % h2g and standard error (in parentheses) is shown from a the standard REML
and a weighted block-jackknife dropping each chromosome in turn. Results from meta-analysis for each
method shown at the bottom, with P -values for enrichment below each entry.
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Phenotype Coding DHS Promoter UTR Intron Intergenic

BD (REML) 0.049 (0.072) 0.346 (0.265) -0.110 (0.093) 0.116 (0.076) 0.270 (0.153) 0.330 (0.162)
BD (jknife) 0.029 (0.079) 0.244 (0.294) -0.110 (0.119) 0.155 (0.086) 0.338 (0.173) 0.345 (0.172)
CAD (REML) 0.075 (0.125) 0.007 (0.468) 0.028 (0.160) 0.105 (0.130) 0.444 (0.275) 0.341 (0.272)
CAD (jknife) 0.052 (0.113) 0.058 (0.598) 0.024 (0.163) 0.125 (0.103) 0.449 (0.352) 0.301 (0.307)
CD (REML) 0.192 (0.082) 1.517 (0.271) -0.036 (0.095) 0.031 (0.076) -0.309 (0.156) -0.395 (0.173)
CD (jknife) 0.201 (0.090) 1.506 (0.367) -0.042 (0.106) 0.044 (0.088) -0.289 (0.196) -0.417 (0.176)
HT (REML) 0.255 (0.105) 0.938 (0.316) -0.030 (0.118) 0.127 (0.095) -0.324 (0.186) 0.034 (0.198)
HT (jknife) 0.253 (0.096) 0.902 (0.431) -0.020 (0.181) 0.122 (0.086) -0.266 (0.169) 0.008 (0.261)
RA (REML) 0.014 (0.176) 1.627 (0.674) 0.283 (0.246) 0.212 (0.193) -0.789 (0.451) -0.346 (0.420)
RA (jknife) 0.026 (0.213) 1.592 (0.952) 0.285 (0.218) 0.250 (0.204) -0.826 (0.347) -0.340 (0.460)
T1D (REML) 0.350 (0.161) 1.062 (0.425) 0.288 (0.183) -0.018 (0.129) -0.083 (0.260) -0.599 (0.308)
T1D (jknife) 0.370 (0.165) 0.992 (0.509) 0.290 (0.194) 0.004 (0.121) -0.126 (0.314) -0.528 (0.287)
T2D (REML) 0.025 (0.081) 0.638 (0.275) -0.033 (0.102) 0.087 (0.085) 0.171 (0.174) 0.111 (0.172)
T2D (jknife) 0.022 (0.063) 0.668 (0.164) -0.048 (0.064) 0.084 (0.094) 0.165 (0.186) 0.110 (0.095)
SP (REML) 0.077 (0.066) 0.443 (0.228) -0.097 (0.077) 0.008 (0.063) 0.373 (0.140) 0.196 (0.141)
SP (jknife) 0.077 (0.067) 0.401 (0.186) -0.063 (0.090) 0.007 (0.052) 0.373 (0.130) 0.206 (0.134)
MS (REML) 0.055 (0.029) 0.777 (0.094) 0.117 (0.040) 0.080 (0.031) 0.015 (0.057) -0.045 (0.057)
MS (jknife) 0.058 (0.026) 0.782 (0.144) 0.115 (0.052) 0.089 (0.039) 0.002 (0.080) -0.048 (0.071)
AS (REML) 0.015 (0.104) 1.063 (0.334) 0.075 (0.135) 0.209 (0.120) -0.236 (0.206) -0.126 (0.202)
AS (jknife) 0.019 (0.107) 1.065 (0.437) 0.073 (0.118) 0.193 (0.178) -0.232 (0.265) -0.120 (0.235)
UC (REML) 0.076 (0.059) 0.935 (0.194) 0.238 (0.079) -0.014 (0.057) -0.056 (0.115) -0.180 (0.124)
UC (jknife) 0.079 (0.058) 0.897 (0.235) 0.250 (0.100) -0.043 (0.052) -0.023 (0.123) -0.161 (0.157)

meta (REML) 0.075 (0.020) 0.795 (0.066) 0.062 (0.026) 0.066 (0.020) 0.015 (0.039) -0.031 (0.040)
4.74e-04 3.64e-22 1.25e-01 4.28e-03 5.48e-12 2.84e-42

meta (jknife) 0.073 (0.019) 0.710 (0.077) 0.047 (0.029) 0.057 (0.022) 0.028 (0.047) -0.002 (0.043)
3.35e-04 5.45e-13 3.98e-01 2.25e-02 4.17e-08 3.18e-33

Table S31. Comparison of analytical and jack-knife % h2g from imputed SNPs. For each trait and
functional category, the % h2g and standard error (in parentheses) is shown from a the standard REML and
a weighted block-jackknife dropping each chromosome in turn. Results from meta-analysis for each method
shown at the bottom, with P -values for enrichment below each entry.
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No fixed-effects PCs as fixed-effects
Phenotype Prevalence REML (se) Regression (se) REML (se) Regression (se)

BD 0.005 0.31 (0.033) 0.40 (0.034) 0.24 (0.035) 0.24 (0.035)
CAD 0.060 0.27 (0.061) 0.28 (0.059) 0.25 (0.062) 0.22 (0.059)
CD 0.001 0.18 (0.025) 0.22 (0.025) 0.17 (0.025) 0.20 (0.025)
HT 0.050 0.58 (0.097) 0.59 (0.093) 0.55 (0.098) 0.50 (0.093)
RA 0.005 0.10 (0.033) 0.11 (0.032) 0.09 (0.033) 0.08 (0.032)
T1D 0.005 0.14 (0.032) 0.15 (0.031) 0.13 (0.032) 0.13 (0.032)
T2D 0.080 0.50 (0.068) 0.62 (0.067) 0.42 (0.070) 0.43 (0.067)
SP 0.010 0.75 (0.013) 10.00 (0.021) 0.18 (0.024) 0.25 (0.055)
MS 0.001 0.29 (0.007) 2.91 (0.008) 0.17 (0.009) 0.21 (0.013)
AS 0.003 0.15 (0.027) 0.16 (0.026) 0.14 (0.027) 0.14 (0.026)
UC 0.001 0.15 (0.016) 0.15 (0.015) 0.14 (0.016) 0.14 (0.015)

Table S32. Total liability-scale h2g from four inference methods. For each trait, the total estimate
of h2g is shown from the standard REML method and Haseman-Elston regression with and without included
fixed-effects. Estimates were transformed to liability-scale using the given prevalence.

63



No fixed-effects PCs as fixed-effects
Phenotype Prevalence REML Regression REML Regression

BD 0.005 0.48 (0.20) 0.63 (0.14) 0.35 (0.27) 0.43 (0.24)
CAD 0.060 -0.08 (0.44) -0.05 (0.39) 0.01 (0.47) -0.10 (0.49)
CD 0.001 1.46 (0.26) 1.49 (0.21) 1.52 (0.27) 1.58 (0.24)
HT 0.050 0.91 (0.29) 1.06 (0.26) 0.94 (0.32) 1.12 (0.31)
RA 0.005 1.37 (0.57) 1.38 (0.52) 1.63 (0.67) 1.76 (0.75)
T1D 0.005 1.21 (0.40) 1.35 (0.36) 1.06 (0.43) 1.27 (0.43)
T2D 0.080 0.70 (0.24) 0.70 (0.18) 0.64 (0.28) 0.52 (0.26)
SP 0.010 0.56 (0.06) 0.75 (0.00) 0.44 (0.23) 0.09 (0.39)
MS 0.001 0.72 (0.06) 0.79 (0.00) 0.78 (0.09) 0.91 (0.11)
AS 0.003 1.09 (0.31) 1.09 (0.28) 1.06 (0.33) 1.07 (0.33)
UC 0.001 0.91 (0.18) 1.00 (0.16) 0.94 (0.19) 1.03 (0.18)

Table S33. Fraction of DHS h2g from four inference methods. For each trait, the DHS estimate of
% h2g is shown from the standard REML method and Haseman-Elston regression with and without included
fixed-effects.
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Annotation Regression % h2g REML % h2g (s.e.)

Coding 10% 8% (2%)
DHS 90% 79% (7%)
Promoter 5% 6% (3%)
UTR 8% 7% (2%)
Intron -4% 2% (4%)
Intergenic -9% -3% (4%)

Table S34. Regression and variance-component estimates of functional enrichment. The meta-
analyzed estimate of % h2g is shown for analyses using regression and variance-components (REML). No
shared-control adjustment was performed.
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polygenic DHS high-effect
Category % SNPs % h2g (se 100 trials) % h2g (se 400 trials)

CODING 0.8% 0.7% (0.9%) 1.6% (0.4%)
UTR 1.1% 1.2% (0.9%) 0.7% (0.5%)
PROMOTER 2.8% 2.7% (1.1%) 3.5% (0.6%)
DHS 16.7% 15.6% (2.7%) 17.1% (1.8%)
INTRON 31.1% 30.2% (2.0%) 29.5% (1.1%)
OTHER 47.5% 49.6% (1.7%) 47.7% (1.1%)

Table S35. Partitioned h2g with simulated case-control ascertainment. We simulated case-control
ascertainment under two disease architectures and estimated % h2g to asess ascertainment induced biases.
Phenotypes were simulated on imputed chr1 SNPs (10% of genome) of the 33,000 sample combined WTCCC2
cohort, using 830 causal variants with no functional enrichment and h2g = 0.50. “Polygenic” columns present
results from simulation with randomly selected causal variants. “DHS high-effect” columns present results
from simulation with only 16 causal DHS variants (each explaining 1% of the h2g), and 814 randomly selected
non-DHS causal variants. Neither disease architecture lead to significant deviations from null enrichment.
Ascertainment was induced by setting the top 1% of phenotypes to be cases (327 samples) and randomly
selecting 654 non-cases to be controls, yielding a trait with 1% prevalance and 1:2 case:control ascertainment.
Category-specific GRMs were then constructed for each ascertained cohort and h2g was evaluated on the
liability scale. Restricting to chromosome 1 resulted in an M/N equal to that of a ∼10,000 sample cohort
(where M is the effective number of SNPs, and N is the number of samples).
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polygenic

Category empirical sd REML se

CODING 8.0% 7.1%
UTR 8.0% 8.4%
PROMOTER 10.5% 10.0%
DHS 25.1% 27.3%
INTRON 18.4% 16.3%
OTHER 15.7% 17.6%

Table S36. Empirical and analytical standard error of partitioned h2g with case-control ascer-
tainment. The emperical standard deviation and REML analytical standard-error shown for estimates of
% h2g for a simulated 1:2 case:control ascertained trait with prevalance of 1% (see Table S35 for simulation
details). Under this quasi-polygenic architecture with 830 causal variants, the analytical SE is 0.2% higher
on average. Estimates shown over 100 random simulations.
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Joint GRM: h2g (se)

known,non-coding + non-coding 0.018 (0.004)
known,non-coding + non-coding 0.287 (0.028)
known,coding + known,non-coding + non-coding 0.006 (0.004)
known,coding + known,non-coding + non-coding 0.018 (0.004)
known,coding + known,non-coding + non-coding 0.286 (0.028)

Table S37. Components of heritability for known Schizophrenia loci. h2g for multiple joint estimates
at known schizophrenia loci are reported for the underlined component in the homogenous Swedish cohort.
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Joint GRM ĥ2g (se) ĥ2gLD (se)

Common coding 10.7% (0.7%) 11.8% (0.9%)
Rare coding (non-singleton) 1.7% (1.6%) 0.7% (2.0%)

Joint GRM + non-coding ĥ2g (se) ĥ2gLD (se)

Common coding -1.2% (0.7%) -1.1% (0.9%)
Rare coding (non-singleton) -0.6% (1.7%) -2.3% (2.1%)

Table S38. Fraction of simulated common non-coding heritability inferred by coding variants.
Another potential source of confounding when estimating exome h2g is heritability from nearby non-coding
variants that is tagged by exonic variants due to LD. Because our interest is in identifying the purely exonic
contribution to phenotype, we consider the heritability from these non-coding variants to “contaminate” our
estimates. Using the GWAS chip data from this cohort allows us to quantify the amount of contamination
expected due to common non-coding SNPs. We simulated a standard polygenic phenotype with h2 = 0.50
coming exclusively from 5,000 randomly selected GWAS chip non-coding SNPs and then inferred h2g using
variance-components constructed from coding SNPs. No coding SNPs were used to generate the phenotypes,
and if no contamination was present we expect the inferred h2g to equal zero.Bottom panel shows results when
a third variance-component corresponding to non-coding variants is estimated jointly in the model. Values
reported represent the fraction of simulated heritability inferred averaged over 50 trials (with standard error
in parenthesis). We found that all coding variants together accounted for an average of 17.4% of the non-
coding heritability (Table S38), significantly different from zero. This further broke down to slight but non-
significant contamination of 2.7% at rare coding variants (MAF < 0.01) and a highly significant average of
11.8% from common coding variants (MAF ≥ 0.01), consistent with common variants being generally better
tags of nearby common variation. Given the small physical size of the exome, contamination of 11.8% of the
non-coding heritability could substantially bias the estimates from coding variants when estimated directly
from exome chip data. To account for this contamination, we model an additional component consisting of the
non-coding GWAS variants. When we conditioned in this way and estimate using a three variance-component
model, we see statistically zero heritability attributed to the rare and common coding components. Because
we only have genome-wide GWAS chip data available, which does not include rare variants and these variants
are notoriously difficult to impute, the non-coding component is unlikely to account for contamination from
rare non-coding variants. However, these variants would need to be physically close and in similar frequency
to be strongly tagged by the rare coding variants we examined.
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Causal variants

GRM genotypes Rare coding Common coding

non-coding 0.051 (0.012) 0.426 (0.006)
rare coding 0.509 (0.011) 0.043 (0.015)
common coding 0.024 (0.003) 0.514 (0.008)

Causal Variants

Joint GRM genotypes Rare coding Common coding

rare coding + non-coding 0.486 (0.003) 0.002 (0.001)
common coding + non-coding 0.025 (0.002) 0.485 (0.003)
rare coding + common coding 0.486 (0.004) 0.001 (0.001)
rare coding + common coding 0.000 (0.001) 0.482 (0.004)

Table S39. ĥ2g of phenotypes simulated from coding variants. We set out to estimate the fraction
of exome h2 that is tagged by non-coding SNPs from the GWAS chip and 1,000 Genomes imputation. We
simulate two groups of standard additive phenotypes from the rare and common exome variants, respectively,
and infer h2g,non-coding of these phenotypes from the non-coding SNPs. ĥ2g inferred from different classes of
GRMs is shown, with standard error over 10 trials in parenthesis. Lower panel shows results from multiple
GRMs fit jointly, with bolded GRM corresponding to the reported variance-component estimate. The ratio
of ĥ2g,non-coding to simulated h2g,exome gives us an estimate of the fraction of exome heritability tagged by

non-coding variants. In 10 simulations from chromosome 22 with h2g,exome = 0.5 the average ratio is 0.85
for common coding variants and 0.11 for rare coding variants (Table S39). However, the tagging between
components is fully accounted for by a joint, three component model (Table S40).
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Simulated h2g Jointly inferred ĥ2g (se)

rare coding common coding all non-coding rare coding common coding all non-coding

0.25 0.25 0.25 0.247 (0.003) 0.262 (0.002) 0.256 (0.003)

Table S40. Joint h2g from simulated phenotype in Swedish schizophrenia cohort.
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fmax

GRM Singleton 0.001 0.005 0.010 0.050

Collapsed -0.009 (0.002) -0.002 (0.002) -0.002 (0.003) -0.000 (0.003) 0.009 (0.004)
Collapsed + non-coding -0.007 (0.002) -0.004 (0.002) -0.004 (0.003) -0.004 (0.003) 0.001 (0.003)

Table S41. Collapsed ĥ2g of phenotypes simulated from non-coding variants. An infinitesimal trait

with h2g = 0.50 was simulated from non-coding variants and ĥ2g was inferred from coding variants collapsed
below designated minor allele frequency fmax. Mean and standard error are reported over 50 random trials.
See Table S25 for method details.
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Fraction causal

fmax Effect distribution 100% 50% 10% 1%

0.001 Uniform 0.49 (0.002) 0.33 (0.003) 0.21 (0.002) 0.17 (0.005)
0.001 Allelic 0.39 (0.003) 0.28 (0.003) 0.20 (0.003) 0.17 (0.007)
0.001 Normalized 0.33 (0.002) 0.22 (0.003) 0.16 (0.002) 0.16 (0.006)

0.005 Uniform 0.47 (0.002) 0.33 (0.005) 0.22 (0.002) 0.19 (0.006)
0.005 Allelic 0.37 (0.003) 0.28 (0.004) 0.21 (0.004) 0.18 (0.007)
0.005 Normalized 0.28 (0.003) 0.19 (0.004) 0.14 (0.002) 0.14 (0.006)

0.010 Uniform 0.47 (0.003) 0.34 (0.005) 0.24 (0.002) 0.20 (0.006)
0.010 Allelic 0.38 (0.002) 0.29 (0.006) 0.22 (0.003) 0.20 (0.007)
0.010 Normalized 0.24 (0.004) 0.17 (0.003) 0.13 (0.002) 0.15 (0.007)

0.050 Uniform 0.42 (0.003) 0.35 (0.006) 0.27 (0.003) 0.23 (0.008)
0.050 Allelic 0.35 (0.003) 0.30 (0.006) 0.28 (0.003) 0.23 (0.010)
0.050 Normalized 0.22 (0.003) 0.16 (0.005) 0.12 (0.002) 0.14 (0.006)

Table S42. Collapsed ĥ2g of phenotypes simulated from rare coding variants. A quasi-infinitesimal
trait was simulated from specified exome-wide causal fraction of coding variants and varying fmax and total
h2g = 0.5. Effect-sizes were sampled from a standard normal distribution on the normalized-variant scale

or the allelic-variant scale, and forced to be uni-directional within each gene. The collapsed ĥ2g was then
estimated from coding variants at the given fmax. No more than half of the true h2g can be recovered from
collapsing under any disease architecture. See Table S25 for method details.

73



Fraction causal

fmax Effect distribution 100% 50% 10% 1%

0.001 Uniform 1.51 0.80 0.40 0.31
0.001 Allelic 1.00 0.63 0.38 0.31
0.001 Normalized 0.77 0.44 0.27 0.26

0.005 Uniform 1.54 0.92 0.49 0.42
0.005 Allelic 1.12 0.70 0.46 0.39
0.005 Normalized 0.72 0.41 0.24 0.26

0.010 Uniform 1.58 0.97 0.56 0.45
0.010 Allelic 1.14 0.76 0.51 0.46
0.010 Normalized 0.57 0.34 0.22 0.29

0.050 Uniform 1.31 0.96 0.72 0.59
0.050 Allelic 0.97 0.80 0.73 0.62
0.050 Normalized 0.48 0.31 0.20 0.26

Table S43. Power of collapsed vs. non-collapsed ĥ2g for rare coding variants. The ratio of LRT
statistics from collapsed / non-collapsed SNPs is reported for simulations with rare coding variants. Values
< 1 indicate greater power for direct (rather than collapsed) estimates. See Table S25 for method details.
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