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Han Xu,8 Chongzhi Zang,8 Stephan Ripke,9,10 Brendan Bulik-Sullivan,9,10 Eli Stahl,11

Schizophrenia Working Group of the Psychiatric Genomics Consortium, SWE-SCZ Consortium,
Anna K. Kähler,12 Christina M. Hultman,12 Shaun M. Purcell,9,10,11 Steven A. McCarroll,10

Mark Daly,6,9,10 Bogdan Pasaniuc,13 Patrick F. Sullivan,12,14 Benjamin M. Neale,6,9,10 Naomi R. Wray,2

Soumya Raychaudhuri,3,4,5,6,15 and Alkes L. Price1,6,*

Regulatory and coding variants are known to be enriched with associations identified by genome-wide association studies (GWASs) of

complex disease, but their contributions to trait heritability are currently unknown. We applied variance-component methods to

imputed genotype data for 11 common diseases to partition the heritability explained by genotyped SNPs (h2
g ) across functional cate-

gories (while accounting for shared variance due to linkage disequilibrium). Extensive simulations showed that in contrast to current

estimates from GWAS summary statistics, the variance-component approach partitions heritability accurately under a wide range of

complex-disease architectures. Across the 11 diseases DNaseI hypersensitivity sites (DHSs) from 217 cell types spanned 16% of imputed

SNPs (and 24% of genotyped SNPs) but explained an average of 79% (SE ¼ 8%) of h2
g from imputed SNPs (5.13 enrichment; p ¼ 3.7 3

10�17) and 38% (SE¼ 4%) of h2
g from genotyped SNPs (1.63 enrichment, p¼ 1.03 10�4). Further enrichment was observed at enhancer

DHSs and cell-type-specific DHSs. In contrast, coding variants, which span 1% of the genome, explained<10% of h2
g despite having the

highest enrichment. We replicated these findings but found no significant contribution from rare coding variants in independent

schizophrenia cohorts genotyped on GWAS and exome chips. Our results highlight the value of analyzing components of heritability

to unravel the functional architecture of common disease.
Introduction

Recent work by ENCODE and other projects1,2 has shown

that specific classes of variants can have complex and

diverse impacts on cell function and phenotype.3–10

Although the importance of coding variation has long

been understood, these projects identified other genomic

regions that can contribute to function and highlighted

the role of regulatory variants. With many potentially

informative functional categories and competing biolog-

ical hypotheses, quantifying the contribution of variants

in these categories to heritability of complex traits would

inform trait biology and focus genetic mapping.

The availability of significantly associated variants from

hundreds of genome-wide association studies (GWASs)11

has opened one avenue for quantifying enrichment.

Indeed, 11% of GWAS hits lie in coding regions,11 57%

of noncoding GWAS hits lie in broadly defined DNaseI hy-

persensitivity sites (DHSs; spanning 42% of the genome),3

and still additional GWAS hits tag these regions. The full
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distribution of GWAS association statistics exhibits en-

riched p values in coding regions and UTRs.12 Analysis of

DHS subclasses and other histone marks has revealed a

complex pattern of cell-type-specific relationships with

known disease associations.6 Recent work has also shown

that functional enrichment can be leveraged for increasing

association mapping power.13

Although relative enrichment has been documented,

the question of how much each category contributes

to disease heritability remains unanswered.14,15 Recently,

investigators have used variance-component methods to

estimate the total additive variance explained by all

genotyped SNPs (h2
g ),

16,17 and to estimate the h2
g of many

quantitative and dichotomous traits.18–22 We propose

joint estimation of h2
g from functional-category-specific

variance components for assessing enrichment. In contrast

to analyses of top GWAS hits, the variance-component

approach leverages the entire polygenic architecture of

each trait and accounts for pervasive linkage disequi-

librium (LD) across functional categories. Indeed, our
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simulations showed that this approach provides accurate

genome-wide estimates of functional enrichment in

diverse genetic architectures. We applied variance-compo-

nent methods to functional categories in GWAS- and

exome-chip data from over 100,000 samples in 11 traits.
Material and Methods

Estimating Enrichment of h2
g with Variance

Components
For a single component of genotyped (or imputed) SNPs, we

define h2
g , an underlying parameter in the population, as the r2

between the true phenotype and the best linear prediction over

those SNPs. With multiple components, the goal of the parti-

tioned analysis is to quantify the h2
g directly explained by SNPs

in each functional category while excluding tagging of SNPs in

other categories. We thus define the h2
g for each functional cate-

gory as the r2 between the true phenotype and the prediction

only from SNPs in that functional category when all functional

categories are jointly analyzed for a best linear prediction.

When SNPs are in LD, this definition remains valid as long as

the individual causal effect sizes are independent, as we would

expect in highly polygenic traits. For disease traits, we model

the phenotype (and corresponding h2
g ) by using the liability-

threshold model, in which individuals whose underlying unob-

served continuous liability exceeds a threshold are labeled as

disease case subjects.19,23

We estimate h2
g jointly across multiple variance components,

each constructed from variants belonging to nonoverlapping

functional categories. The underlying model assumes that SNP

effect sizes are drawn from a normal distribution with category-

specific variance. (We note that the normality assumption is unre-

alistic; previous work in the single-variance-component case has

indicated that this does not introduce bias, although modeling a

more realistic mixture distribution can increase precision.24

Because of computational constraints, we do not consider mixture

distributions here.) The model relates the observed phenotypic

covariance to a weighted sum of genetic relationship matrices

computed from SNPs in each category. The joint estimate allows

all components to compete for shared variance due to LD.

Formally, for a functional categories each containing the set of

SNPs Si (of sizeMi), wemodel the phenotype as a sum of individual

SNP effect sizes:

y ¼
Xa

i¼1

X
s˛Si

Wsb
i
s þ e;

where Ws is the genotype at SNP s, bis is the effect size at SNP s in

category i and is drawn from category-specific normal distribution

bi � Nð0; s2i Þ, and e is the residual effect e � Nð0; s2e Þ. We assume

that for each annotation i, SNPs normalized to have mean 0 and

variance 1 are contained in the matrix Wi. The variance of the

phenotype is then modeled as

VðyÞ ¼
Xa

i¼1

Kis
2
i þ e;

where each Ki represents a genetic-relationship matrix (GRM)

computed directly from the SNPs in annotation i as

Ki ¼ WiW
0
i

�
Mi:
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The corresponding s are then jointly inferred with the REML algo-

rithm in GCTA (Genome-wide Complex Trait Analysis),16,17

yielding

h2
gi ¼

s2
giPa

j¼1s
2
gi þ s2

e

:

The inverse of the final average-information matrix yields an es-

timate of the corresponding error-covariance matrix of the vari-

ance-component estimates.25 We use the error-covariance matrix

and delta method26 to compute SEs on h2
g and the percentage of

h2
g while accounting for error correlations (referred to here as

the analytical SE27). All estimates of h2
g were transformed to the li-

ability scale19 with the prevalence values in Table S1 (available

online). We evaluated the accuracy of the analytical SE for both

quantitative and ascertained traits and found it to correspond

well to the true SD under reasonable polygenicity (see Appendix

A). Meta-analysis estimates were computed with inverse-variance

weighting:28 given individual study estimates h2
gi, analytical SEi,

and corresponding weight wi ¼ 1=SE2
i , the meta-analysis mean is

equal to

P
iwi 3h2

giP
iwi

;

and the meta-analysis SE is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=

P
iwi

p
.

Enrichment is computed for each category i as the ratio of the

percentage of h2
gi (the percentage of h

2
g in category i) to the percent-

age of SNPi (the percentage of SNPs in category i) and is tested for

significance by Z score relative to a null of 1:0 with the (likewise-

rescaled) analytical SE. Under the assumption that all causal vari-

ants are typed, this statistic is equivalent to the relative risk that a

SNP in category i is causal in comparison to an average SNP. To

achieve unbiasedness, the estimate of h2
g is not constrained to lie

inside the plausible 0–1 bound, which can lead to negative esti-

mates in rare instances.
Estimating Enrichment from Summary Statistics
We considered alternative methods for estimating functional

enrichment from summary association statistics. The simplest

approach is to directly count the number of individual genome-

wide-significant variants in each functional annotation and

compare to the null expectation from all SNPs (or random SNPs

matched on certain features). This approach can either include

all significant markers or restrict to the most significant variant

in each locus. The genome-wide-significant-SNP approach has

been extended to the full distribution of association statistics for

quantifying overall p value enrichment.3 Over increasingly restric-

tive p value thresholds, the fraction of SNPs passing a given

threshold and belonging to each category is computed and

normalized by the category-specific genome-wide fraction. The

distributions are then inspected visually for enrichment or

assessed by permutation. For completeness, we considered two

additional methods—stratified quantile-quantile (Q-Q) plots12

and Bayesian hierarchical modeling (fgwas)13—which assess func-

tional enrichment but are primarily focused on improving associ-

ation mapping power (see Discussion).
Data Sets Analyzed
11 Diseases from WTCCC1 and WTCCC2

We analyzed seven traits from Wellcome Trust Case Control Con-

sortium 1 (WTCCC1) and four traits from WTCCC2 for a total
er 6, 2014



47,000 samples (Table S1). Estimates of h2
g are particularly sensitive

to individually small artifacts or batch effcts,19,29 and we followed

the rigorous quality-control (QC) protocol outlined previously21

by removing any SNPs that were below a minor allele frequency

(MAF) of 0.01, were above 0.002 missingness, or deviated from

Hardy-Weinberg equilibrium at a p value below 0.01. For each

case-control cohort, we removed SNPs that had differential miss-

ingness with a p value below 0.05. We excluded one of any pair

of samples with kinship entries R 0.0519 and performed five

rounds of outlier removal whereby all individuals more than

6 SDs away from the mean along any of the top 20 eigenvec-

tors were removed and all eigenvectors were recomputed30

(Figure S1). For all autoimmune diseases analyzed (rheumatoid

arthritis [RA], Crohn disease [CD], type 1 diabetes [T1D], ulcerative

colitis [UC], multiple sclerosis [MS], and ankylosing spondylitis

[AS]), we also excluded from the analysis any SNPs in the well-

studied major histocompatibility complex (MHC) locus (chr6:

26–34 Mb), which is known to have a complex LD structure,

and many heterogeneous variants of strong effect for these traits.

TheWTCCC1 samples were phased and imputed as described in

Gusev et al.21 TheWTCCC2 samples were split into two cohorts by

platform, and each cohort was imputed separately according to

the following protocol. All samples in a cohort were phased

together in 10 Mb blocks with HAPI-UR (Haplotype Inference for

Unrelated Samples)31 (see Web Resources) and three rounds of

phasing and consensus voting. All phased samples in a cohort

were then imputed in 1 Mb blocks with IMPUTE232 (see Web Re-

sources) and the 1000 Genomes33 Phase I integrated haplotypes

(September 2013 release; see Web Resources) with no singletons.

Where relevant, the Oxford recombination map34 was used.

Markers with an information (info) score greater than 0.5 were

retained. Finally, SNPs were excluded if they met any of the

following criteria in any case or control population: Hardy-Wein-

berg p value < 0.05, per-locus missingness > 0.05, MAF < 0.01, or

case-control differential missingness p value < 0.05.

Schizophrenia Cohort from the Psychiatric Genomics Consortium

We analyzed 24,926 schizophrenia (SP) subjects and 33,271 con-

trol individuals from 33 cohorts from the Psychiatric Genomics

Consortium (PGC2); they were typed on a variety of platforms,

quality controlled, and imputed to the 1000 Genomes reference

panel as previously described35 (Tables S1 and S2). Because of

computational constraints, we split the cohort into four subgroups

of individuals typed on similar platforms; each contained roughly

10,000–20,000 samples. We performed all analyses on the inter-

section of well-imputed SNPs within each subgroup, ranging

from four to fivemillion, and reportedmeta-analyzed results. Indi-

vidual study identifiers and 20 multidimensional-scaling compo-

nents were included as fixed-effect covariates in all analyses.

Swedish SP Exome Chip

We analyzed 12,674 Swedish samples typed on GWAS and exome

chips (Tables S1 and S3). The exome chip yielded 238,652 SNPs

(including monomorphic sites), of which 10,567 were also typed

on a mix of Affymetrix GWAS chips (exome-chip calls were re-

tained). The GWAS-chip data contained an intersection of

163,051 SNPs typed on all platforms in addition to per-platform

imputation from 1000 Genomes for a total of 5,053,934 SNPs

imputed on all platforms. Principal-component analysis (PCA) of

the GWAS data revealed a large cluster of ‘‘homogenous’’ Swedish

samples and clines related to Northern Swedish and Finnish

admixture (Figure S2). After excluding samples that (1) were not

typed on both GWAS and exome chips, (2) failed QC, (3) were

PCA outliers by 6 SDs, or (4) were in a pair with GRM values >
The American
0.05 (close relatives), we retained a total of 8,967 samples, of

which 6,375 were of ‘‘homogenous’’ Swedish ancestry. In all of

our analyses, rare variants had a MAF < 0.01, and common

variants had a MAF R 0.01. Simulations were performed on the

homogenous samples (without principal components). We per-

formed analyses of real phenotypes on the homogeneous samples

and included the top 20 principal components as covariates (to ac-

count for any residual population structure; analyses on the full

cohort are reported in Tables S23 and S25).
Functional Annotations
We annotated the genome by using six primary categories (Table

S4): (1) coding, (2) UTR, (3) promoter, (4) DHS in any of 217 cell

types, (5) intronic, and (6) intergenic. Each SNP was then assigned

a unique annotation defined by the first of these categories with

which it was annotated, resulting in six nonoverlapping variance

components (the DHS category was thus restricted to distal re-

gions). Each resulting category exhibited similar average allele fre-

quency and imputation accuracy, although the DHS category had

systematically lower LD36 (Table S5). We also computed the ‘‘effec-

tive’’ number of SNPs in each category by using an LD-based

metric that does not depend on sample size.36,37 Table S6 shows

that this metric was not substantially different from the actual per-

centage of SNPs used in imputed data, given that DHSs harbored

slightly more effective SNPs (15.7% SNPs versus 18.9% effective

SNPs) as a result of lower LD. For the imputed categories analyzed

here, the differences in the percentage of SNPs, percentage of effec-

tive SNPs, and percentage of physical size were relatively minor. A

greater difference was observed for genotyped SNPs: 23.6% of DHS

SNPs corresponded to 33.6% of effective SNPs, suggesting that

DHS enrichments from genotyped data might be indicative of

better tagging.

For the DHS annotation, we used DNase sequencing libraries

downloaded from ENCODE and Epigenome Roadmap projects

in May 2012 and merged biological replicates into a single library

(GEO accession numbers are available in Table S7). We used

BOWTIE v.1.038 to align raw read sequences to UCSC Genome

Browser hg19 and used MACS v.2.0 with false-discovery rate <

0.01 (the default cutoff) and Benjamini–Hochberg correction39

to call DHS peaks. For the primary analysis, all peaks were merged

into a single DHS annotation spanning 16% of the genome. We

note that 98% of the primary DHS annotation was covered by

the DHSs released by Maurano et al.3 (spanning 37% of the

genome), and 67% of the primary DHS annotation was covered

by the DHSs analyzed in Thurman et al.4 (spanning 15% of the

genome). For the cell-type-specific analysis, duplicate lines were

merged to form a final set of 83 unique cell types. The resulting

annotations are available for download (see Web Resources).

Segway-chromHMM combined genome segmentations40 were

downloaded for six cell lines (see Web Resources). All regions clas-

sified as enhancers or weak enhancers were then combined into a

single enhancer annotation. DNaseI digital genomic footprinting

(DGF) regions were downloaded for 57 cell lines (see Web Re-

sources). All regions from the narrow-peak classification were

then merged into a single DGF annotation.
Simulation Framework
The goal of our simulations was to demonstrate that the parti-

tioned h2
g properly recovers the heritability explained by causal

variants in a given functional category under a variety of disease

architectures. We performed simulations in genotyped and
Journal of Human Genetics 95, 535–552, November 6, 2014 537



Figure 1. Estimates of Functional Enrichment under the Null
We simulated a polygenic disease architecture in imputed data
with no functional enrichment (see text). Simulated phenotypes
were tested with the variance-component method (top) from
3,000 simulations and with p value enrichment (bottom) from
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imputed data in 4,414 samples from theWTCCC1 coronary artery

disease (CAD) case-control cohort together with the six main

functional annotations to evaluate robustness and accuracy of

the proposed variance-component method and the p-value-

enrichment approach; we note that the genome-wide-signifi-

cant-SNP approach is subsumed by the latter and is not reported

separately in most analyses. For each simulation, 10% of the (gen-

otyped or imputed) SNPs were randomly sampled to be causal, and

normally distributed effect sizes were assigned to each SNP such

that each explained equal variance in expectation. Additive phe-

notypes were then constructed, and random noise was added for

an overall h2
g of 0.50. Except when evaluating h2

g between geno-

typed and imputed SNPs, we did not hide causal variants from

the analyses, corresponding to the assumption that all causal var-

iants are typed. We evaluated the variance-component model by

using multiple components with GCTA in the unconstrained

mode. For approaches based on summary statistics, we computed

Z scores, SEs, and p values for the univariate regression of each SNP

to a simulated phenotype.
Results

Simulations

We first evaluated the calibration of the methods in simu-

lations of no enrichment by assuming a MAF-independent

architecture where causal variants were uniformly sampled

from the genome (seeMaterial andMethods). We observed

no significant deviations from the null for any categories

estimated by variance components or p value enrichment

(Figure 1). To evaluate possible biases due to MAF-depen-

dent architectures,21,41,42 we also considered a low-fre-

quency architecture where only SNPs with a MAF below

0.05 can be causal and a DHS-low-frequency architecture

where causal DHS variants are drawn from MAF below

0.05 and all other variants are drawn from any MAF (Fig-

ures S3 and S4). Results were generally similar to the

MAF-independent architecture, although variance-compo-

nent estimates exhibited slight but statistically significant

deviations for the promoter and UTR categories, which

were very small and in tight LD with each other.

We next considered simulations with maximal enrich-

ment, where all causal variants were drawn from a single

functional category. MAF-independent results for the cod-

ing and DHS categories are shown in Figure 2 (see Figure S5

for other results). The variance-component estimate of the

percentage of h2
g was again around 100% for the true causal

category and 0% for all others. The plots of p value enrich-

ment correctly demonstrated significant enrichment for

five of the categories, but not the DHS category, which,

when causal, was not significantly different from the

null. This lack of enrichment at DHSs and not at other

large categories was most likely due to the uniquely lower
100 simulations. In the variance-component subplot, the thin
line represents the median, boxes represent the first and third
quartiles, and whiskers represent the 1.53 interquartile range
from the first to the third quartile. A subplot of p value enrichment
shows 1.963 SE as shaded regions.
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Figure 2. Estimates of Functional Enrichment from a Single Causal Category
We simulated a polygenic disease architecture in imputed data with causal SNPs drawn from a single functional category, corresponding
to complete enrichment. Simulated phenotypes were tested with the variance-component method (top) from 200 simulations and with
p value enrichment (bottom) from 100 simulations. In the variance-component subplot, the thin line represents the median, boxes
represent the first and third quartiles, and whiskers represent the 1.53 interquartile range from the first to the third quartile. Subplots
of p value enrichment show 1.963 SE across simulations as shaded regions. For each method, only the coding-causal and DHS-causal
scenarios are shown (additional simulations appear in Figures S6 and S7).
LD of DHS SNPs (Table S5). For the small categories (cod-

ing, UTR, and promoter), true causals in one category

always yielded false p value enrichment in the others

because of their close proximity and high LD (Figure 2; Fig-

ures S6 and S7). In the MAF-dependent scenarios, the vari-

ance-component estimate of h2
g was nearly unbiased: it had

slight but significant inflation at the coding and UTR cate-

gories when they contained 100% of h2
g (Figure S8). Plots of

p value enrichment exhibited similar patterns as in the

MAF-independent simulations, and the DHS category

was further falsely depleted (Figure S7).

To investigate the differences between genotype- and

imputation-based estimates, we partitioned h2
g of cate-

gory-specific phenotypes simulated from imputed SNPs
The American
by using components constructed from genotyped SNPs

only. If the genotypes are reasonable proxies for imputed

variants, 100% of h2
g should again be partitioned into

each truly causal category. Instead, we observed significant

deviations for all of the categories, and h2
g was partitioned

into nearby categories as a result of incomplete tagging

(Figures S9 and S10). In particular, less than half of the h2
g

at imputed DHSs was partitioned into the DHS category

in genotype data. Thus, estimates produced with only gen-

otyped SNPs can severely underestimate enrichment. The

difference between genotyped and imputed simulations

suggests that estimates from imputed SNPs could also un-

derestimate the true enrichments or depletions for rare

causal variants that are absent from 1000 Genomes or are
Journal of Human Genetics 95, 535–552, November 6, 2014 539



poorly imputed. We investigated this possibility by using

the exome-chip SP data (see below). We separately assessed

the impact of imputation error by simulating phenotypes

with induced genotype noise proportional to the per-SNP

imputation quality score (info score; Supplementary infor-

mation S3 in Marchini et al.43) but observed no significant

biases in null or causal simulations (Tables S8 and S9), most

likely as a result of the stringent postimputation QC.

We evaluated multiple other complex architectures with

respect to LD (see Appendix A) but observed significant

bias in only one deliberately severe scenario: causal vari-

ants sampled from intronic and intergenic regions either

directly adjacent to or proximal to a DHS (within 1 kb of

a DHS boundary). Although no substantial false DHS

heritability was observed in genotyped SNPs, the imputed

DHS component picked up 50% (0–500 bp) and 20% (500–

1,000 bp) of the non-DHS h2
g (Figure S11). Given our

findings that genotyped SNPs are expected to greatly un-

derestimate DHS enrichment, we consider genotyped and

imputed estimates to be lower and upper bounds, respec-

tively, on the true causal enrichment.

Heritability of Functional Categories across

11 Diseases

We analyzed a total of 11 WTCCC1 and WTCCC2 pheno-

types.44–46 After QC,21 the seven WTCCC1 traits each

included an average of 1,700 affected subjects and a set

of 2,700 shared control subjects; the four WTCCC2 traits

included 1,800–9,300 affected subjects and 5,300 shared

control subjects (see Material and Methods; Table S1). In

all analyses of autoimmune traits, SNPs in the well-studied

MHC region were excluded, although inclusion of the

MHC as a separate component did not significantly affect

the results. Each cohort was imputed to the 1000 Genomes

reference panel, yielding four to six million SNPs per trait

after QC (see Material and Methods; Table S1). This anal-

ysis is expected to be skewed toward the autoimmune

traits, which composed 6/11 traits analyzed and 20,461/

30,158 affected subjects analyzed. We computed meta-

analysis values by using inverse-variance weighting with

the analytical SE to account for different levels of error

across h2
g estimates. After meta-analysis, resulting SEs

were adjusted for the use of shared controls by genomic

control (unless otherwise stated), and p values were

computed by a simple Z score comparing the mean enrich-

ment and adjusted SE to a null of 1.0 enrichment. Esti-

mating enrichment from shifted functional annotations

yielded null enrichments and p values (Tables S10 and

S11), confirming that this null is comparable to random

SNP comparisons used in previous work.3,11,40,47

Combined results meta-analyzed across all traits are re-

ported in Figure 3 (Tables S10, S12, and S13). In genotyped

data, DHS variants (spanning 24% of genotyped SNPs)

were the most significantly enriched and explained an

average of 38% (SE ¼ 4%) of the total h2
g , a 1.63 enrich-

ment (p ¼ 1.0 3 10�4). Coding variants were the only

other category significantly enriched (after six tests were
540 The American Journal of Human Genetics 95, 535–552, Novemb
accounted for) and explained 4% (SE ¼ 1%; p ¼ 1.1 3

10�3). All enrichments or depletions were stronger when

imputed SNPs were analyzed in terms of both significance

and information content, consistent with our previous

simulations (Figures S9 and S10; Table S16). Variants in

DHSs again exhibited the greatest h2
g and most significant

enrichment: imputed DHS SNPs explained an average of

79% (SE ¼ 8%) of the total h2
g , a 5.13 enrichment (p ¼

3.7 3 10�17). The enrichment varied across traits

(Figure S12; Table S14), and there was a nominally signifi-

cant difference between the six autoimmune traits (AS,

CD, MS, RA, T1D, and UC) and the five nonautoimmune

traits (SP, bipolar disorder, CAD, hypertension, and type

2 diabetes [T2D]) at 5.53 and 3.33, respectively (p ¼
0.01 for difference without accounting for shared control

subjects). Coding variants exhibited the greatest overall

enrichment at 13.83 (p ¼ 1.8 3 10�3) but accounted for

8% of h2
g because of the much smaller category size. Corre-

spondingly, we observed a significant depletion for both

intronic regions (0.13; p ¼ 4.9 3 10�9) and intergenic re-

gions (�0.13; p < 10�20) and h2
g that was not significantly

different from 0. We note that compared to genotyped

SNPs, imputation in these traits generally does not explain

additional h2
g ,
21 but it can more precisely partition heri-

tability into functional categories. We performed addi-

tional simulations mimicking the enrichment observed

in imputed data with 8,300 causal variants (as inferred in

a large GWAS of a polygenic trait48) and found that 79%

of heritability was explained by imputed DHS SNPs, 8%

was explained by imputed coding SNPs, and the remainder

was uniformly drawn from the other variant categories.

This ‘‘realistic’’ scenario yielded much weaker estimates of

enrichment from genotyped SNPs, and they were similar

to estimates from genotyped SNPs in real data (Figure 3).

We considered alternative estimation procedures to rule

out potential biases. Although we allowed individual

values of h2
g to fluctuate outside the 0–1 bound on vari-

ance to achieve unbiased estimates prior to averaging

across traits,49 a constrained analysis yielded similar re-

sults (see Table S15). Individual point estimates escaping

the 0–1 bound were consistent with our imputed simula-

tions under realistic enrichment, which showed that the

percentage of h2
g for DHSs exceeded 1.0 10% of the time,

whereas the percentage of h2
g for intronic and intergenic

regions fell below 0.0 30% and 23% of the time, respec-

tively, for a typical 7,000-sample cohort. Using flat instead

of inverse-variance weighting yielded a comparable esti-

mate such that DHS SNPs explained an average of 85%

(SE ¼ 15%) of h2
g . With the flat weighting, the SD of

imputed DHS estimates across different traits was 48%,

which corresponds to a SD of 32% in the true unobserved

values after the analytical SE of each estimate is accounted

for (Table S14). We further evaluated the robustness of

these estimates and found that biases arising from

analytical SEs, ancestry, or case-control ascertainment

were unlikely to significantly affect the enrichment (see

Appendix A).
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Figure 3. Functional Partitioning of SNP Heritability across 11 Traits
(Top panels) Joint estimates of the percentage of h2

g from six functional components are shown in filled bars (meta-analyzed over 11
traits). The null expectation, equal to the percentage of SNPs in each category, is shown by dashed, unfilled bars, and p values report
the difference from this expectation. Fold enrichment relative to the null expectation is shown in parentheses below each category.
The left panel shows results from analyses of genotyped SNPs only, and the right panel shows analysis of genotyped and 1000 Genomes
imputed SNPs. Error bars show 1.963 SE after adjustment for shared controls.
(Bottom panels) Partitioned h2

g in simulations of a ‘‘realistic’’ trait where DHS and coding variants explained 79% and 8% of h2
g , respec-

tively (with no enrichment elsewhere). Filled bars show the mean inferred percentage of h2
g from genotyped (left) and imputed (right)

SNPs over 100 simulations. Patterned bars show the simulated true partition. Error bars show 1.963 SE (on average, SEs on imputed data
were 2.23 higher than SEs on genotype data as a result of the abundance of new variants).
To investigate whether enrichment in h2
g from all SNPs at

known loci was consistent with the genome-wide esti-

mates, we partitioned the h2
g explained by SNPs within 1

Mb of published GWAS loci for each trait (NHGRI GWAS

catalog;11 see Web Resources) (Figure S13). Because some
The American
traits had a small number of loci, the DHS component

was jointly analyzed with only a single other component

containing all non-DHS SNPs. We again observed a highly

significant DHS enrichment in imputed data and a sig-

nificant difference between the genotyped and imputed
Journal of Human Genetics 95, 535–552, November 6, 2014 541



Figure 4. Enrichment from GWAS Summary Statistics
(Left panel) Estimates of p value enrichment are averaged over 11
analyzed traits and are restricted to minimum p value thresholds
(x axis) for which at least one association meeting the threshold
was observed in every trait.
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estimates (p ¼ 7.3 3 10�14). We observed a marginally sig-

nificant difference between the DHS enrichment at known

loci versus genome-wide in the imputed data (3.63 versus

5.53, p ¼ 0:003). Although it does not pass multiple-test

correction, this p value suggests that genome-wide-signifi-

cant SNPs of large effects might be less enriched with DHS

variants than the rest of the genome.

We have shown by simulation that estimates from gen-

otyped SNPs are expected to provide a lower bound on

enrichment or depletion and that estimates from imputed

SNPs are biased upward only when causal variants are very

close to the annotation boundary. For brevity, subsequent

results focus primarily on the analysis of imputed SNPs.

Comparison to Estimates of Enrichment from

Summary Statistics

We compared our imputed variance-component estimates

of 5.13 DHS enrichment for the 11 traits to the DHS

enrichment of genome-wide-significant variants identified

in these data or from published loci (NHGRI GWAS

catalog;11 see Web Resources). The enrichments from

genome-wide-significant variants were much smaller

(0.913 and 1.743 for variants in these data and published

loci, respectively; Table S17). This is roughly consistent

with previous results indicating that 57% of noncoding

GWAS hits (from any trait) lie in broadly defined DHSs

spanning 42% of the genome (1.43 noncoding enrich-

ment; 1.23 overall enrichment) and that this percentage

increases to 77% of noncoding GWAS hits when SNPs in

perfect LD with a DHS SNP are included (1.83 noncoding

enrichment; 1.63 overall enrichment).3 Similarly, 30% of

the noncoding GWAS hits analyzed in Maurano et al.3

lay in our DHS annotation, yielding a comparable 1.83

noncoding enrichment. Extending to the full distribution

of association statistics did not reveal significant DHS

enrichment in any of these traits (Figure 4, left panel;

Figure S14). This is consistent with our previous simula-

tions showing the variance-component approach to be

more effective than the p-value-enrichment approach at

identifying DHS enrichment from complex-disease archi-

tectures (Figure 2).

We sought to further confirm this observation by ex-

tending our simulations to a single large cohort with real-

istic levels of enrichment on the basis of the above results.

We simulated the ‘‘realistic’’ level of enrichment (see

above) in 33,000 combined WTCCC2 samples, corre-

sponding to a large GWAS. We then conducted a standard

GWAS on the simulated traits and plotted functional

enrichment by using p value enrichment (see Material

and Methods). The strategy yielded enrichment at coding
(Middle panel) p value enrichment from a ‘‘realistic’’ simulation.
(Right panel) Variance-component enrichment from a ‘‘realistic’’
simulation. Realistic traits were simulated with DHS and coding
variants explaining 79% and 8% of h2

g , respectively, and with
computed GWAS statistics in a cohort of 32,000 samples. Shaded
regions and error bars represent the SE from meta-analysis (left)
and 50 replicates (middle and right).
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Figure 5. Hierarchical Analysis of Functional Enrichment
DHS variants were further partitioned into three subcategories: predicted enhancers (A), cell-type-specific DHSs (B), and DGF targets (C).
Each block contains (on the top line) the functional category and fraction of the genome (in parentheses) and (on the bottom line) the
fraction enriched in relation to the rest of the genome and the p value of enrichment in relation to the parent category (in parentheses).
DHS enrichment of 4.73 nonsignificantly differed from 5.13 in Figure 3 as a result of additional free parameters.
variants through the full distribution of association statis-

tics (Figure 4, middle panel). However, proximal categories

such as UTR and promoter, which were truly depleted, also

appeared enriched through tagging of significant coding

variants. DHS variants were the least-enriched noninter-

genic category, even though they made the single largest

contribution to heritability. This was likely due to lower

power to detect DHS SNPs as a result of their lower average

effect size (relative to that of coding SNPs) and less LD. On

the other hand, applying the variance-component strategy

to the simulated cohorts correctly recovered the enrich-

ment factors (Figure 4, right panel). These simulations

further demonstrate that GWAS p values, although

partially informative, can yield false-positive and false-

negative enrichment to make functional interpretation

difficult, motivating further development of methods

that can produce robust estimates of partitioned heritabil-

ity from summary statistics.

Analysis of PGC2 SP Data

We replicated our functional-enrichment results in an in-

dependent cohort of 58,197 samples from PGC2 (Tables

S1 and S2). In the PGC2 data, the imputed DHS

enrichment was significant at 3.23 (SE ¼ 0.29, p ¼ 1.4 3

10�13), and the intergenic category was significantly

depleted at 0.33 (SE¼ 0.06, depletion p< 13 10�20; Table

S18). For comparison, the WTCCC2 analysis restricted to

SP produced a nonsignificant DHS enrichment of 2.63

(SE ¼ 1.47, p ¼ 0.28) and intergenic h2
g of 0.43 (SE ¼

0.27, depletion p ¼ 0.02; Table S14). The consistency of
The American
WTCCC2 and PGC2 estimates indicates that platform arti-

facts are unlikely to be a major confounder. Moreover, the

substantially lower SE in this large cohort demonstrates the

effectiveness of our methods at characterizing a single

complex trait. As in our previous simulations, p value

enrichment did not identify substantial enrichment at

DHS variants (Figure S15).

Partitioning h2
g within DHSs

We further partitioned DHS enrichment in the WTCCC1

data into functional subcategories to assess significance

in relation to all DHSs. We used Segway-chromHMM com-

bined classifications of enhancer regions40 to partition

DHSs (15.7% of the genome) into those that overlapped

predicted enhancers (3.2% of the genome) and those

that did not (Figure 5A). The enhancer DHSs explained

31.7% (SE ¼ 3.3%) of the total h2
g , yielding an enrichment

of 9.83 versus all SNPs (1.93 versus all DHSs; p ¼ 5.1 3

10�4). We also partitioned DHSs into regions that were

called in two or fewer cell types (‘‘specific’’; after merging

similar tissues) and those that were not (Figure 5B). We

observed a significant enrichment for cell-type-specific

DHSs (6.13 versus all SNPs; 1.33 versus all DHSs; p ¼
3.2 3 10�3). The enrichment was not significant when

we repeated this analysis for enhancer and nonenhancer

DHSs separately. We next split the DHSs into SNPs overlap-

ping and not overlapping the ENCODE database of DGF

regions (8.5% of the genome), which are expected to

precisely map sites where regulatory factors bind to the

genome50 (Figure 5C). We observed no difference in h2
g
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Table 1. Cell-Type- and Phenotype-Specific DHS Enrichment

Tissue Type Cell Type

Autoimmune Nonautoimmune

PublishedGenotyped Imputed Genotyped

Blood Primary T helper 1 cells 5.8 (4.2 3 10�6) 10.2 (1.3 3 10�12) 2.1 (3.5 3 10�1) Maurano et al.3 (CD)

leukemia cells 3.5 (6.7 3 10�6) 4.7 (5.3 3 10�10) 1.0 (9.8 3 10�1) –

lymphoblastoid cells 3.3 (1.1 3 10�5) 4.9 (5.4 3 10�11) 1.0 (9.4 3 10�1) Maurano et al.3 (MS)

CD8þ primary cells 3.0 (3.0 3 10�4) 5.4 (1.8 3 10�10) 1.0 (9.6 3 10�1) Trynka et al.6 (RA)

Fetal kidney fetal right renal pelvic cells 5.4 (1.4 3 10�4) 8.2 (5.7 3 10�8) 1.5 (7.4 3 10�1) –

Bone marrow CD14þ monocytes 4.1 (1.6 3 10�4) 5.7 (2.2 3 10�7) 1.3 (7.6 3 10�1) Maurano et al.3 (MS)

Fetal thymus Fetal thymus cells 2.6 (4.0 3 10�4) 4.5 (3.2 3 10�9) 0.8 (6.6 3 10�1) –

Fold enrichment of h2
g reported for cell-type-specific DHSs observed as significant in genotype data (after adjustment for 83 cell types tested). Wemeasured enrich-

ment in comparison to h2
g at DHSs to account for the background DHS enrichment. Results are shown separately frommeta-analyses of six autoimmune traits and

five nonautoimmune traits. Instances where enrichment was also observed in Trynka et al.6 or Maurano et al.3 are indicated.
between these DHSs and other DHSs (1.03, p ¼ 0.90).

However, DGF annotations were collected for only a subset

of DHS cell types analyzed, and analysis in additional cell

types is needed. Lastly, we partitioned the h2
g by using an

expanded DHS annotation (including regions overlapping

coding regions, UTRs, and promoters) into the remaining

five major categories (Table S19), which yielded 34.43

enrichment at DHS coding variants versus all SNPs (5.33

versus all DHSs, p ¼ 1.35 3 10�3) and 13.23 enrichment

at DHS promoter variants versus all SNPs (2.33 versus all

DHSs, p ¼ 7.90 3 10�3). Notably, unlike the non-DHS in-

trons, DHS introns did not show substantial depletion

(0.93 versus all DHSs, p ¼ 0.037).

To investigate the role of specific cell types, we separately

estimated enrichment in h2
g for DHSs in each of 83 unique

cell types (see Material and Methods). For each trait and

cell type, we estimated h2
g jointly from three components

corresponding to DHSs observed in that cell type, other

DHSs not observed in that cell type, and all other SNPs;

we assessed enrichment in relation to all DHSs. On the

basis of our previous observation of heterogeneity, we

performed meta-analyses across the six autoimmune traits

(excluding the MHC) and across the five nonautoimmune

traits. We observed seven cell types that were significantly

enriched in autoimmune traits in genotype data (we

conservatively adjusted for 83 tests, although the cell types

are highly correlated), and none were significantly en-

riched in nonautoimmune traits (Table 1). Four of these

seven cell types have previously been implicated in auto-

immune diseases: Trynka et al.6 found that GWAS hits

for RA were enriched within H3K36me3 peaks from

CD8þ primary cells (at p ¼ 0.0042), and Maurano et al.3

found that nominally significant SNPs in a GWAS of CD

were enriched within DHS peaks from primary T helper 1

cells and that nominally significant SNPs in a GWAS of

MS were enriched in DHS peaks from lymphoblastoid

and monocyte CD14þ cells. The remaining three signifi-

cant cell types were leukemia cells, fetal pelvis cells, and

fetal thymus cells (additional nominally significant cell
544 The American Journal of Human Genetics 95, 535–552, Novemb
types are listed in Table S20). The enrichment was typically

observed in all autoimmune traits individually; CDwas the

least enriched on average (2.83), and UC was the most en-

riched on average (5.13; Table S21). As before, the signal

was stronger and more significant when we included

imputed SNPs (Table 1).

On the basis of the hypothesis that most regulatory sites

lie at the center of the called DHS peaks, we considered the

enrichment after progressively narrowing the DHS annota-

tions. Specifically, we trimmed the ends of each DHS peak

(without removing any individual peaks) to a maximum

length set such that the resulting overall DHS annotation

covered 1%, 5%, or 10% of the physical genome. We

then tested these three narrowed annotations in two

models: (1) a univariate model in which h2
g was inferred

from only the narrowed DHS component, thereby

including any tagged heritability from other functional

categories; and (2) a six-component model in which the

full DHS component was replaced with the narrowed

DHS component and the remaining DHS SNPs were

distributed into the intron and other components. We

found the DHS centers to be particularly strongly enriched

(Table S22); the 1% annotation explained 19.8% of the to-

tal h2
g in the multivariate model (p ¼ 2.6 3 10�6) and

61.0% of the total h2
g in the univariate model. For compar-

ison, the coding component covering roughly 1% of the

genome explained 30.0% of the total h2
g in the univariate

model. The monotonic increase in h2
g from narrowed an-

notations is further evidence of enrichment at the DHS

centers. We caution that this experiment might have

been particularly susceptible to bias from causal variants

very close to the annotation boundary.

Unbiased Estimates of h2
g with Rare and Common

Variants

We separately analyzed a cohort of 2,500 SP subjects and

3,875 control subjects who were of homogenous Swedish

origin and had been typed on both GWAS and exome

chips (see Material and Methods; Tables S1 and S3) to
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Table 2. h2
g of SP from Exome Chip

Variant Class h2
g Percentage of h2

g

Separately

All 0.370 5 0.040 –

Noncoding 0.317 5 0.042 –

Coding 0.158 5 0.034 –

Jointly

Noncoding 0.291 5 0.028 79% 5 8%

Coding 0.079 5 0.034 (p ¼ 1.2 3 10�2) 21% 5 6%

Coding (rare) 0.037 5 0.029 (p ¼ 1.0 3 10�1) 10% 5 7%

Coding (common) 0.042 5 0.017 (p ¼ 7.7 3 10�3) 11% 5 4%

Estimates of h2
g (adjusted for biases due to LD; see Figure S17 and Table S23)

are reported from variance components in the homogenous Swedish subpop-
ulation. The top section shows estimates that include tagging of variants in
other classes. The bottom section shows joint estimates accounting for tagged
variance due to LD. The p values from a likelihood-ratio test are shown in
parentheses.
investigate the possible contribution of rare coding vari-

ants to missing heritability,51 defined as the gap between

our genome-wide estimates of h2
g and the total narrow-

sense heritability. The exome-chip variants were primarily

rare and consisted of 18% singletons and 64% nonsingle-

tons with a MAF below 0.01. A concern is that h2
g estimates

from exome-chip data can be substantially biased as a

result of the abundance of rare variants.21,41,42 To address

this, we performed simulations across the full causal-allele

frequency spectrum and found that joint estimates from

two frequency-stratified42 components computed from

rare (MAF % 0.01) and common (MAF > 0.01) SNPs elim-

inated most of the observed bias. Subsequently adjusting

each component for LD completely eliminated bias for

normalized effect sizes (Figure S17) and yielded the most

accurate estimate for standard effect sizes (Figure S18).

We report estimates from joint components with (Table 2)

and without (Table S23) LD adjustment.

We partitioned the heritability explained by GWAS-chip

and exome-chip data into three separate variance compo-

nents: noncoding, rare coding (MAF< 0.01), and common

coding variants. This partitioned analysis identified a total

h2
g of 0.079 (SE ¼ 0.034) from all coding variants (Table 2);

only the h2
g of 0.042 (SE ¼ 0.017) from common coding

variants was significantly different from 0 (p ¼ 7.7 3

10�3; rare coding p ¼ 0:10). Moreover, the estimate of

DHS enrichment from common SNPs was unaffected by

the inclusion of rare coding variants (Table S24), confirm-

ing that DHS enrichment was not an artifact of untagged

coding variation in this cohort. The h2
g from rare variants

remained nonsignificant even after we partitioned accord-

ing to PolyPhen-2 scores,52 restriction to putative SP-asso-

ciated genes (see Appendix A), or gene collapsing (Tables

S25 and S41–S43). This does not invalidate the use of

collapsed-gene burden tests for association and genetic

mapping because the individual collapsed gene is still a
The American
fundamentally informative unit of association. It does,

however, demonstrate that the maximum variance that

can be explained by such methods is guaranteed to be sub-

stantially lower than that of association with the full

model, as has been shown in previous analyses of burden

tests.53 For singleton variants, we can place a 95% upper

bound on collapsed h2
g at 0.014. We caution that our

exome-chip results pertain to rare variants included in

the chip design (ascertained from 12,000 samples) but do

not extend to extremely rare variants. However, our find-

ings are consistent with a recent analysis of SP exome

sequencing data, which identified a significant but modest

rare-coding burden (0.4%–0.6% of total variance) in a sub-

set of ~2,500 genes.54

Fine Mapping with Functional Priors

Estimates of functional h2
g enrichment can guide fine-map-

ping analysis, where the goal is to identify a minimal set of

SNPs that include the underlying causal variant(s).55 To

investigate thepotential benefits of finemappingon theba-

sis of our estimates of functional enrichment, we applied

these estimates as priors for fine mapping in four traits

(RA, T2D, CAD, and SP) with publicly available imputed

summary statistics (Table S26; see Web Resources). We

used corresponding estimates of functional enrichment in

the WTCCC1 data for RA, T2D, and CAD (while implicitly

assuming a best-case scenario in which functional enrich-

ment was accurately estimated for each trait) and used esti-

mates of functional enrichment in PGC2 data for SP. Given

that SNPs at genome-wide-significant loci explain only a

small proportion of the trait variance, we do not expect par-

tial sample overlap tobe a significant confounder.Although

fine-mapping analysis ideally involves targeted sequencing

orgenotyping,Maller et al.55 observed that the latterhad lit-

tle impact on their fine-mapping analysis in comparison to

imputed data, sowe expect imputedmarkers to be a reason-

ableproxy. Each locuswasdefinedas theunionof1Mbwin-

dows aroundanySNPwith apvalue<5310�8. Association

statistics consisting of individual SNP effect sizes and SEs

were converted to Bayes factors as described in Pickrell13

and Wakefield56 and were multiplied by either a flat prior

or the genome-wide functional prior (computed as the esti-

mated h2
g per SNP of the SNP category in the corresponding

trait). We then computed the credible set for each locus for

each scenario by including SNP Bayes factors from highest

to lowest until the sum of the Bayes factors in the set was

at least 95% of the sum of the Bayes factors at the locus.

On average, we found that the six main functional priors

reduced the credible set of causal variants by 30% across

the four traits (Table 3). The largest reduction of 63% was

observed in RA, where the total credible set for five loci

(excluding the MHC) was reduced from 69 SNPs to 26. For

comparison, including only coding-variant enrichment as

a prior reduced the credible sets by 5% on average and

had no reduction for RA. We showed by simulation that

the credible sets were well calibrated with the correct priors

andmiscalibrated by less than 10%when the priors were at
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Table 3. Credible Sets of Causal SNPs at Known Associated Loci

Phenotype No. of Loci Total SNPs Flat Prior Coding Prior Main Functional Priors Main and Enhancer Priors

RA 5 8,393 69 69 26 26

T2D 13 24,799 101 90 84 83

CAD 16 27,685 112 112 90 86

CAD (metabo-chip) 34 7,498 325 325 264 260

PGC2 146 582,401 5,696 5,660 4,756 not available

For each trait, genome-wide-significant loci from meta-analysis association statistics were reduced to 95% credible sets with and without functional priors. The
right-most four columns describe the number of SNPs in the credible set obtained from each prior type. ‘‘Flat prior’’ corresponds to standard analysis with no
functional information. ‘‘Coding prior’’ uses only enrichment at coding variants. ‘‘Main functional priors’’ include all six priors from the main functional analysis.
‘‘Main and enhancer priors’’ include all six main priors and the enhancer-DHS prior.
the extremes of the meta-analysis estimates (Table S27),

demonstrating that this functional fine-mapping strategy

might become robust and effective as individual trait sam-

ple sizes reach the current meta-analysis sample size. How-

ever, we caution that our estimates of functional enrich-

ment for individual traits, except SP, are not tight enough

for this strategy to be actionable at the current time.
Discussion

The importance of regulatory and cell-type-specific varia-

tion in common disease has previously been recog-

nized,3–10 but in contrast to previous work, we provide a

quantification of this contribution to disease heritability.

We have demonstrated by extensive simulations that our

variance-component strategy yields robust estimates that

account for LD between categories and complex-disease ar-

chitecture. Across 11 traits, we found that regulatory re-

gions marked by DHSs explained an average of 79% of

imputed h2
g and 38% of genotyped h2

g . We replicated our re-

sults in a large SP cohort, yielding a single-trait estimate of

3.23 (SE ¼ 0.29, p ¼ 1.4 3 10�13) from imputed SNPs, and

found that the contribution from rare, exome-chip vari-

ants was nonsignificant and did not affect the enrichment.

Given that GWASs primarily identify noncoding vari-

ants, many hypotheses have been developed to explain

the architecture of complex traits, including noncoding

RNA, DNA methylation, alternative splicing, and unanno-

tated transcripts.14,57 Several previous studies have demon-

strated an excess of significant GWAS associations in

regulatory categories.5,6,11,58 In particular, Ernst et al.59

observed 23 enrichment in cell-type-relevant enhancers,

Schaub et al.8 identified 1.123 enrichment at DHSs, and

Maurano et al.3 identified 1.43�1.83 enrichment at

DHSs (relative to noncoding SNPs) and enrichment at

cell-type-relevant DHSs. In our analyzed cohorts, known

variants were1.73 enriched with DHSs, but there was less

enrichment at variants identified only in these cohorts.

In contrast, our findings constrain most of h2
g to the 16%

of SNPs that lie in the DHS marks tested (or to SNPs that

lie very close to DHSs; see below), particularly in those

that overlap enhancers, and suggest that the other pro-
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posed mechanisms are unlikely to make substantial inde-

pendent contributions. A deeper analysis of DHSs nar-

rowed to cover 1% of the genome still explained 20% of

h2
g directly (and 61% in total), potentially motivating a

DHS-targeted genotyping chip analogous to the exome

chip.60 More generally, our approach provides a means of

assessing biological hypotheses of contributions to disease

heritability.

Unlike previous methods, our approach infers disease-

relevant biological function from all SNPs simultaneously

instead of one GWAS hit at a time. Overmultiple simulated

disease architectures, we show that variance-component

methods are more accurate in partitioning heritability

than summary-statistic-based approaches, such as p value

enrichment, despite the appeal of analyses of summary sta-

tistics in many contexts.61–64 For completeness, we also

considered two additional methods, stratified Q-Q plots12

and Bayesian hierarchical modeling (fgwas),13 which

assess functional enrichment but are primarily focused

on strong associations and improving mapping power.

These methods did not produce consistent estimates of

h2
g enrichment either in simulations or in real data

(Figure S19–S29), although we note that they have

different objectives. In addition to having implications

for mapping power,12,13,65–68 functional enrichment has

direct implications for fine mapping55,69,70 and risk predic-

tion. Enrichments at the level we observed could substan-

tially reduce the set of potential causal variants in the four

traits we tested by downweighing SNPs in low-heritability

categories. On the other hand, the improvement in poly-

genic risk prediction was limited because of pervasive LD

across categories (Table S28).

Several limitations of our approach remain as avenues for

future work. The variance-component method might still

be subject to subtle biases21,41,42 under disease architectures

or annotations with complex LD structure, although our

analyses indicate that it is generally less biased than pub-

lished methods. In particular, we found that imputed data

might lead to an overestimate of category enrichment

from causal variation very close to that category. For

computational reasons, we did notmake use of themixture

of the normal-effect-size approach, which has been shown

to increase precision.24 The method also requires
er 6, 2014



individual-level genotype data and is computationally

infeasible for extremely large cohorts or a very largenumber

of components, motivating further work on methods that

analyze summary statistics. A limitationof assessing enrich-

ment from GWAS platforms is that we cannot account for

untagged causal variation, which represents roughly half

of total narrow-sense heritability.71 Although we have

shown that rare coding variants are unlikely to alter the

DHS enrichment, themissing heritability could lie in other

categories. The precision of inferred enrichment is also

limited by the underlying annotations and variants. It is

possible that certain biological features could be subject to

systematically poorer variant calling or imputation and

exhibit decreased h2
g as a result of artifacts,72 although we

did not observe substantial differences in the categories

we analyzed. Because of the data available, our meta-anal-

ysis estimates were weighted toward autoimmune traits

both in thenumberof individual studies and in total sample

size; estimates of DHS enrichment were higher in autoim-

mune than in nonautoimmune traits, which could be

partly due to the abundance of hematopoietic cell types

in available DHS annotations. Except for SP, for which

many samples are available,we couldnotprovideprecise es-

timates for single traits. However, we have shown by simu-

lation that the individual estimates and errors were well

calibrated, justifying meta-analysis of estimates that are

not constrained to the plausible 0–1 range (an established

strategy49). Further partitioning of DHSs can yield addi-

tional enrichment, and it is likely that other functional cat-

egories—including additional chromatin marks, histone

modifications, formaldehyde-assisted isolation of regulato-

ry elements, transcription factor binding sites,73 gene

expression,58,74,75 and measures of conservation7—will be

highly informative.
Appendix A

LD

We further interrogated the role of LD and violations of

model assumptions in the variance-component estimate.

We considered two contrived annotations constructed

from either the 16% of SNPs with the most LD partners

or the 16% of SNPs with the fewest LD partners to mimic

a high or low LD category, respectively, approximately

equal in SNP number to the DHS category. Testing the uni-

formly drawn MAF-independent architecture, we again

observed no enrichment for either the high-LD (1.023,

SE ¼ 0.01) or the low-LD (1.023, SE ¼ 0.03) annotations

over 1,000 trials. Finally, we considered a disease architec-

ture in which causal variants were strongly enriched at the

centers of DHSs such that variants in the middle 7% of

the DHS (1% of the genome) explained 25% of the h2
g

and the remaining DHS variants explained 75% of the

h2
g . We observed a slight deflation of the DHS estimate,

but no significant false enrichment, at the neighboring cat-

egories (Figure S20).
The American
Jackknife Estimates of SEs

The analytical SE used for significance testing was accurate

in our simulations (Table S29) and has previously been

shown to be robust in real data21,27 but can be biased

when the number of causal variants is very small.41 We as-

sessed this directly with a weighted-block jackknife esti-

mate76 of the enrichment in the real traits by dropping

each chromosome in turn, constructing new GRMs, and

recomputing the percentage of h2
g for each functional cate-

gory (and the corresponding enrichment). The jackknife

estimate of the enrichment and its variance was then

computed as described in Busing et al.76 Although there

is a demonstrable relationship between chromosome

length and h2
g , we do not expect to observe such a relation-

ship with respect to the percentage of h2
g because of the

normalization. However, this estimate of the variance

does capture true biological variation in enrichment across

chromosomes and is therefore conservative. Although we

observed little difference between the jackknife and stan-

dard estimates in genotyped data (Table S30), the jackknife

estimate of the imputed percentage of h2
g (71%, SE ¼ 7.7%;

Table S31) was indeed more conservative than the analyt-

ical estimate (79%, SE ¼ 6.6%), but the enrichment was

still highly significant (p¼ 5.53 10�13), and the overall re-

sults were not substantially affected. Because the jackknife

makes no assumptions about the underlying distribution

of enrichment, this consistency with the analytical esti-

mate supports the use of REML SEs for case-control data

(see also simulations below).

Ancestry

We found little population structure in all of the traits

except for MS and SP (Figure S1), which have been previ-

ously reported as structured. For the MS cohort, we have

shown previously21 that rigorous ancestry matching did

not substantially change the total or partitioned h2
g . For

the SP cohort, we relied on the consistently replicated

enrichmentacross thePGC2andSwedishSPcohorts,which

havebeen rigorously quality controlled for the avoidance of

population stratification. Recently, Janss et al.77 demon-

strated that h2
g can vary significantly when principal com-

ponents are also included as fixed effects as a function of

thenumber of included eigenvectors. To assess thepresence

of this bias in our Swedish SP data, we recomputed the joint

variance-component estimates of bh2

g while including an

increasing number of eigenvectors as fixed effects. We

observed no significant fluctuation of bh2

g such that the esti-

mates over 1–20 eigenvector covariates had a SD of 0.002,

suggesting a tight estimate unbiased by the fixed effects.

Case-Control Ascertainment

Recent work37,78,79 has shown that liability-scale estimates

of h2
g from REML can be biased downward in dichotomous

traits with strong case-control ascertainment. Golan and

Rosset78 and Hayeck et al.79 propose an alternative esti-

mator based on Haseman-Elston (H-E) regression80 and

show that it eliminates bias. In brief, this approach
Journal of Human Genetics 95, 535–552, November 6, 2014 547



regresses the product of normalized phenotypes on the ge-

netic covariance (off-diagonal GRM entries) for all unique

pairs of samples; the resulting slope is used as an estimate

of the observed-scale h2
g and is converted to the liability

scale. This method can be extended naturally to multiple

components, where the product of phenotypes is regressed

onto GRM entries from each analyzed component in a

multiple linear regression. Here, we compared the method

and transformation of Golan and Rosset78 to the REML

estimator described in the main text. We also evaluated

the impact of incorporating principal components as fixed

effects to account for genetic ancestry. This is particularly

important for the SP and MS cohorts (see below), which

were ascertained in a way that induces correlations be-

tween ancestry and phenotype. All analyses were per-

formed with the same set of GRMs computed from 1000

Genomes imputed data, and the H-E regression (and

H-E regression with fixed effects) was implemented as

described in Golan and Rosset.78 In all instances, we used

analytical error-covariance estimates and rescaled them

with the delta method to compute SEs. (We note that the

SE for H-E regression makes strongly violated assumptions

about independence, and they are therefore only pre-

sented for completeness). We observed little difference be-

tween variance-component methods and H-E regression

methods, and H-E regression yielded an average estimate

1.053 greater than that of REML and an overall r2 ¼ 0.95

between the two methods (across 11 traits; Table S32).

The relative performance was similar when we considered

only the percentage of h2
g from the DHS component (Table

S33) such that H-E regression yielded average estimates

1.043 higher than those of REML and an overall r2 ¼
0.94. When principal components where included as fixed

effects, meta-analysis across traits within each method did

not yield significant differences (Table S34); H-E regression

identified DHS enrichment of 5.83 (SE ¼ 0.45), and REML

identified DHS enrichment of 5.13 (SE ¼ 0.42). When we

did not include principal components as fixed effects, we

observed a large difference between variance components

and H-E regression in the SP and MS cohorts, where liabil-

ity-scale H-E regression estimates of liability-scale h2
g were

10.00 and 2.91, respectively (Table S32), outside the plau-

sible 0–1 bound and vastly larger than REML estimates

without fixed effects. This suggests that H-E-regression-

based estimates might be particularly sensitive to the con-

founding effects of ancestry.

Lastly, we repeated our null simulations by using the

merged WTCCC2 cohort of ~33,000 samples, allowing us

to simulate a case-control ascertainment (327 case and

654 control subjects) at a prevalence of 0.01 (see Table

S35 for simulation details). When we generated ~1,000

samples on chromosome 1 only, this simulated cohort

had an effective SNP-sample ratio (the key quantity driving

the effects of case-control ascertainment37) corresponding

to that of ~10,000 samples genome-wide. We tested a

‘‘polygenic’’ scenario where causal variants were sampled

uniformly, as well as a ‘‘high-effect’’ scenario where DHS
548 The American Journal of Human Genetics 95, 535–552, Novemb
variants had 103 the effect of other SNPs, and found no

significant deviation from the null estimate (Table S35)

or the analytical SE (Table S36). Although ascertainment

has previously been shown to induce correlation between

causal variants, our simulations indicate that this does not

bias estimates of enrichment for the prevalence and sam-

ple size simulated here.
Detailed Analyses of Rare-Variant h2
g

Having identified no significant rare-variant h2
g at any

coding regions, we were interested in quantifying this phe-

nomenon at the set of loci known to be associated with SP.

To do so, we constructed six variance components only

from SNPs at the 22 loci identified by the PGC1 in a large

meta-analysis48 and estimated h2
g jointly with a compo-

nent for the remaining noncoding variants genome-wide

(to account for tagging). As expected, we found the union

of all noncoding GWAS variants at these loci to harbor sig-

nificant heritability of 0.018 (SE¼ 0.004) (Table S37). How-

ever, we did not see any significant heritability from the

coding variants at these classes when they were modeled

jointly with the other component. This is consistent

with our genome-wide finding that common noncoding

variants explained a substantial fraction of trait heritability

and tagged nearly half of the common coding variation.

We also partitioned h2
g at the set of 1,796 ‘‘composite’’

genes reported by Purcell et al.54 to exhibit enrichment

of rare disruptive mutations, modeled jointly with

exome-chip variants in the remaining genes and noncod-

ing GWAS-chip variants as separate components. However,

no significant h2
g was observed at either the entire set of

composite variants (h2
g ¼ 0.014, SE ¼ 0.012) or the rare

composite variants (h2
g ¼ 0.008, SE ¼ 0.012).

We observed a significant enrichment in h2
g at 4,919

(nonsingleton) loss-of-function variants, which collec-

tively accounted for 6.0% of (nonsingleton) exonic

SNPs but explained 24.3% of the exonic h2
g (permuted

p ¼ 0.02 after MAF matching). We saw no significant

enrichment of h2
g at coding sites that were predicted to

be functionally important by PolyPhen-2.52 Comparing

likelihoods between the model where variants were split

into (1) probably damaging and damaging, (2) benign

and other, and (3) noncoding components and the model

with only (1) coding and (2) noncoding components

yielded no significant difference by a 1-degree-of-freedom

likelihood-ratio test (p ¼ 0.13).
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CARDIoGRAM CAD summary statistics, http://www.

cardiogramplusc4d.org/downloads/

DIAGRAM T2D summary statistics, http://diagram-consortium.

org/downloads.html

DNaseI Digital Genomic Footprinting (DGF) annotations,

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeUwDgf/

Exome Chip Design, http://genome.sph.umich.edu/wiki/

Exome_Chip_Design

fgwas, https://github.com/joepickrell/fgwas

Functional annotations, http://www.hsph.harvard.edu/alkes-price/

software/

Genome-wide Complex Trait Analysis (GCTA), http://www.

complextraitgenomics.com/software/gcta/

HAPI-UR, http://genetics.med.harvard.edu/reich/Reich_Lab/

Software.html

IMPUTE2, https://mathgen.stats.ox.ac.uk/impute/impute_v2.html

NHGRI GWAS catalog, http://www.genome.gov/gwastudies/

Oxford recombination map, http://hapmap.ncbi.nlm.nih.gov/

downloads/recombination/

Psychiatric Genomic Consortium, SwedenþSCZ1 schizophrenia

summary statistics, http://www.med.unc.edu/pgc/downloads

RA summary statistics, http://www.broadinstitute.org/ftp/pub/

rheumatoid_arthritis/Stahl_etal_2010NG/

Segway-chromHMM combined enhancer annotations, ftp://ftp.

ebi.ac.uk/pub/databases/ensembl/encode/

integration_data_jan2011/byDataType/segmentations/jan2011
References

1. Bernstein, B.E., Stamatoyannopoulos, J.A., Costello, J.F., Ren,

B., Milosavljevic, A., Meissner, A., Kellis, M., Marra, M.A.,

Beaudet, A.L., Ecker, J.R., et al. (2010). The nih roadmap

epigenomics mapping consortium. Nat. Biotechnol. 28,

1045–1048.

2. Bernstein, B.E., Birney, E., Dunham, I., Green, E.D., Gunter, C.,

and Snyder, M.; ENCODE Project Consortium (2012). An inte-

grated encyclopedia of DNA elements in the human genome.

Nature 489, 57–74.

3. Maurano, M.T., Humbert, R., Rynes, E., Thurman, R.E., Hau-

gen, E.,Wang, H., Reynolds, A.P., Sandstrom, R., Qu, H., Brody,

J., et al. (2012). Systematic localization of common disease-

associated variation in regulatory DNA. Science 337, 1190–

1195.

4. Thurman, R.E., Rynes, E., Humbert, R., Vierstra, J., Maurano,

M.T., Haugen, E., Sheffield, N.C., Stergachis, A.B., Wang, H.,

Vernot, B., et al. (2012). The accessible chromatin landscape

of the human genome. Nature 489, 75–82.

5. Degner, J.F., Pai, A.A., Pique-Regi, R., Veyrieras, J.-B., Gaffney,

D.J., Pickrell, J.K., De Leon, S., Michelini, K., Lewellen, N.,

Crawford, G.E., et al. (2012). DNase I sensitivity QTLs are a

major determinant of human expression variation. Nature

482, 390–394.

6. Trynka, G., Sandor, C., Han, B., Xu, H., Stranger, B.E., Liu, X.S.,

and Raychaudhuri, S. (2013). Chromatin marks identify crit-

ical cell types for fine mapping complex trait variants. Nat.

Genet. 45, 124–130.

7. Ward, L.D., and Kellis, M. (2012). Evidence of abundant pur-

ifying selection in humans for recently acquired regulatory

functions. Science 337, 1675–1678.

8. Schaub, M.A., Boyle, A.P., Kundaje, A., Batzoglou, S., and

Snyder, M. (2012). Linking disease associations with regulato-
550 The American Journal of Human Genetics 95, 535–552, Novemb
ry information in the human genome. Genome Res. 22, 1748–

1759.

9. Stergachis, A.B., Haugen, E., Shafer, A., Fu, W., Vernot, B., Rey-

nolds, A., Raubitschek, A., Ziegler, S., LeProust, E.M., Akey,

J.M., and Stamatoyannopoulos, J.A. (2013). Exonic transcrip-

tion factor binding directs codon choice and affects protein

evolution. Science 342, 1367–1372.

10. McVicker, G., van de Geijn, B., Degner, J.F., Cain, C.E., Bano-

vich, N.E., Raj, A., Lewellen, N., Myrthil, M., Gilad, Y., and

Pritchard, J.K. (2013). Identification of genetic variants that

affect histone modifications in human cells. Science 342,

747–749.

11. Hindorff, L.A., Sethupathy, P., Junkins, H.A., Ramos, E.M.,

Mehta, J.P., Collins, F.S., and Manolio, T.A. (2009). Potential

etiologic and functional implications of genome-wide associ-

ation loci for human diseases and traits. Proc. Natl. Acad.

Sci. USA 106, 9362–9367.

12. Schork, A.J., Thompson, W.K., Pham, P., Torkamani, A., Rod-

dey, J.C., Sullivan, P.F., Kelsoe, J.R., O’Donovan, M.C., Furberg,

H., Schork, N.J., et al.; Tobacco and Genetics Consortium;

Bipolar Disorder Psychiatric Genomics Consortium; Schizo-

phrenia Psychiatric Genomics Consortium (2013). All SNPs

are not created equal: genome-wide association studies reveal

a consistent pattern of enrichment among functionally anno-

tated SNPs. PLoS Genet. 9, e1003449.

13. Pickrell, J.K. (2014). Joint analysis of functional genomic data

and genome-wide association studies of 18 human traits. Am.

J. Hum. Genet. 94, 559–573.

14. Mudge, J.M., Frankish, A., and Harrow, J. (2013). Functional

transcriptomics in the post-ENCODE era. Genome Res. 23,

1961–1973.

15. Kellis, M., Wold, B., Snyder, M.P., Bernstein, B.E., Kundaje, A.,

Marinov, G.K., Ward, L.D., Birney, E., Crawford, G.E., Dekker,

J., et al. (2014). Defining functional DNA elements in the

human genome. Proc. Natl. Acad. Sci. USA 111, 6131–6138.

16. Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders,

A.K., Nyholt, D.R., Madden, P.A., Heath, A.C., Martin, N.G.,

Montgomery, G.W., et al. (2010). Common SNPs explain a

large proportion of the heritability for human height. Nat.

Genet. 42, 565–569.

17. Yang, J., Lee, S.H., Goddard, M.E., and Visscher, P.M. (2011).

GCTA: a tool for genome-wide complex trait analysis. Am. J.

Hum. Genet. 88, 76–82.

18. Yang, J., Manolio, T.A., Pasquale, L.R., Boerwinkle, E., Capor-

aso, N., Cunningham, J.M., de Andrade, M., Feenstra, B., Fein-

gold, E., Hayes, M.G., et al. (2011). Genome partitioning of

genetic variation for complex traits using common SNPs.

Nat. Genet. 43, 519–525.

19. Lee, S.H., Wray, N.R., Goddard, M.E., and Visscher, P.M.

(2011). Estimating missing heritability for disease from

genome-wide association studies. Am. J. Hum. Genet. 88,

294–305.

20. Lee, S.H., DeCandia, T.R., Ripke, S., Yang, J., Sullivan, P.F., God-

dard, M.E., Keller, M.C., Visscher, P.M., and Wray, N.R.;

Schizophrenia Psychiatric Genome-Wide Association Study

Consortium (PGC-SCZ); International Schizophrenia Con-

sortium (ISC); Molecular Genetics of Schizophrenia Collabo-

ration (MGS) (2012). Estimating the proportion of variation

in susceptibility to schizophrenia captured by common

SNPs. Nat. Genet. 44, 247–250.

21. Gusev, A., Bhatia, G., Zaitlen, N., Vilhjalmsson, B.J., Diogo, D.,

Stahl, E.A., Gregersen, P.K., Worthington, J., Klareskog, L.,
er 6, 2014

http://www.cardiogramplusc4d.org/downloads/
http://www.cardiogramplusc4d.org/downloads/
http://diagram-consortium.org/downloads.html
http://diagram-consortium.org/downloads.html
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwDgf/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwDgf/
http://genome.sph.umich.edu/wiki/Exome_Chip_Design
http://genome.sph.umich.edu/wiki/Exome_Chip_Design
https://github.com/joepickrell/fgwas
http://www.hsph.harvard.edu/alkes-price/software/
http://www.hsph.harvard.edu/alkes-price/software/
http://www.complextraitgenomics.com/software/gcta/
http://www.complextraitgenomics.com/software/gcta/
http://genetics.med.harvard.edu/reich/Reich_Lab/Software.html
http://genetics.med.harvard.edu/reich/Reich_Lab/Software.html
https://mathgen.stats.ox.ac.uk/impute/impute_v2.html
http://www.genome.gov/gwastudies/
http://hapmap.ncbi.nlm.nih.gov/downloads/recombination/
http://hapmap.ncbi.nlm.nih.gov/downloads/recombination/
http://www.med.unc.edu/pgc/downloads
http://www.broadinstitute.org/ftp/pub/rheumatoid_arthritis/Stahl_etal_2010NG/
http://www.broadinstitute.org/ftp/pub/rheumatoid_arthritis/Stahl_etal_2010NG/
ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/segmentations/jan2011
ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/segmentations/jan2011
ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/segmentations/jan2011


Raychaudhuri, S., et al. (2013). Quantifying missing heritabil-

ity at known GWAS loci. PLoS Genet. 9, e1003993.

22. Lee, S.H., Ripke, S., Neale, B.M., Faraone, S.V., Purcell, S.M.,

Perlis, R.H., Mowry, B.J., Thapar, A., Goddard, M.E., Witte,

J.S., et al.; Cross-Disorder Group of the Psychiatric Genomics

Consortium; International Inflammatory Bowel Disease Ge-

netics Consortium (IIBDGC) (2013). Genetic relationship

between five psychiatric disorders estimated from genome-

wide SNPs. Nat. Genet. 45, 984–994.

23. Falconer, D.S. (1965). The inheritance of liability to certain

diseases, estimated from the incidence among relatives.

Ann. Hum. Genet. 29, 51–76.

24. Zhou, X., Carbonetto, P., and Stephens, M. (2013). Polygenic

modeling with bayesian sparse linear mixed models. PLoS

Genet. 9, e1003264.

25. Fischer, T.M., Gilmour, A.R., and van der Werf, J.H. (2004).

Computing approximate standard errors for genetic parame-

ters derived from random regression models fitted by average

information REML. Genet. Sel. Evol. 36, 363–369.

26. Lynch, M., and Walsh, B. (1998). Genetics and Analysis of

Quantitative Traits (Sunderland: Sinauer Associates).

27. Visscher, P.M., Hemani, G., Vinkhuyzen, A.A.E., Chen, G.-B.,

Lee, S.H., Wray, N.R., Goddard, M.E., and Yang, J. (2014). Sta-

tistical power to detect genetic (co)variance of complex traits

using SNP data in unrelated samples. PLoS Genet. 10,

e1004269.

28. Nakaoka, H., and Inoue, I. (2009). Meta-analysis of genetic

association studies: methodologies, between-study heteroge-

neity and winner’s curse. J. Hum. Genet. 54, 615–623.

29. Clayton, D.G., Walker, N.M., Smyth, D.J., Pask, R., Cooper,

J.D., Maier, L.M., Smink, L.J., Lam, A.C., Ovington, N.R., Ste-

vens, H.E., et al. (2005). Population structure, differential

bias and genomic control in a large-scale, case-control associ-

ation study. Nat. Genet. 37, 1243–1246.

30. Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E.,

Shadick, N.A., and Reich, D. (2006). Principal components

analysis corrects for stratification in genome-wide association

studies. Nat. Genet. 38, 904–909.

31. Williams, A.L., Patterson, N., Glessner, J., Hakonarson, H., and

Reich, D. (2012). Phasing of many thousands of genotyped

samples. Am. J. Hum. Genet. 91, 238–251.

32. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J., and

Abecasis, G.R. (2012). Fast and accurate genotype imputation

in genome-wide association studies through pre-phasing. Nat.

Genet. 44, 955–959.

33. Abecasis, G.R., Auton, A., Brooks, L.D., DePristo, M.A., Dur-

bin, R.M., Handsaker, R.E., Kang, H.M., Marth, G.T., and

McVean, G.A.; 1000 Genomes Project Consortium (2012).

An integrated map of genetic variation from 1,092 human ge-

nomes. Nature 491, 56–65.

34. Myers, S., Bottolo, L., Freeman, C., McVean, G., and Donnelly,

P. (2005). A fine-scale map of recombination rates and hot-

spots across the human genome. Science 310, 321–324.

35. Schizophrenia Working Group of the Psychiatric Genomics

Consortium (2014). Biological insights from 108 schizo-

phrenia-associated genetic loci. Nature 511, 421–427.

36. Bulik-Sullivan, B., Loh, P.-R., Finucane, H., Ripke, S., Yang, J.,

Patterson, N., Daly, M.J., Price, A.L., and Neale, B.M.; Schizo-

phrenia Working Group Psychiatric Genomics Consortium

(2014). LD score regression distinguishes confounding from

polygenicity in genome-wide association studies. bioRxiv

http://dx.doi.org/10.1101/002931.
The American
37. Yang, J., Zaitlen,N.A., Goddard,M.E., Visscher, P.M., and Price,

A.L. (2014). Advantages and pitfalls in the application of

mixed-model association methods. Nat. Genet. 46, 100–106.

38. Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009).

Ultrafast and memory-efficient alignment of short DNA se-

quences to the human genome. Genome Biol. 10, R25.

39. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S.,

Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li,

W., and Liu, X.S. (2008). Model-based analysis of ChIP-Seq

(MACS). Genome Biol. 9, R137.

40. Hoffman, M.M., Ernst, J., Wilder, S.P., Kundaje, A., Harris,

R.S., Libbrecht, M., Giardine, B., Ellenbogen, P.M., Bilmes,

J.A., Birney, E., et al. (2013). Integrative annotation of chro-

matin elements from ENCODE data. Nucleic Acids Res. 41,

827–841.

41. Speed, D., Hemani, G., Johnson, M.R., and Balding, D.J.

(2012). Improved heritability estimation from genome-wide

SNPs. Am. J. Hum. Genet. 91, 1011–1021.

42. Lee, S.H., Yang, J., Chen, G.-B., Ripke, S., Stahl, E.A., Hultman,

C.M., Sklar, P., Visscher, P.M., Sullivan, P.F., Goddard, M.E.,

and Wray, N.R. (2013). Estimation of SNP heritability from

dense genotype data. Am. J. Hum. Genet. 93, 1151–1155.

43. Marchini, J., and Howie, B. (2010). Genotype imputation

for genome-wide association studies. Nat. Rev. Genet. 11,

499–511.

44. Wellcome Trust Case Control Consortium (2007). Genome-

wide association study of 14,000 cases of seven common dis-

eases and 3,000 shared controls. Nature 447, 661–678.

45. Sawcer, S., Hellenthal, G., Pirinen, M., Spencer, C.C., Patso-

poulos, N.A., Moutsianas, L., Dilthey, A., Su, Z., Freeman, C.,

Hunt, S.E., et al.; International Multiple Sclerosis Genetics

Consortium; Wellcome Trust Case Control Consortium 2

(2011). Genetic risk and a primary role for cell-mediated

immune mechanisms in multiple sclerosis. Nature 476,

214–219.

46. Barrett, J.C., Lee, J.C., Lees, C.W., Prescott, N.J., Anderson,

C.A., Phillips, A., Wesley, E., Parnell, K., Zhang, H., Drum-

mond, H., et al.; UK IBD Genetics Consortium; Wellcome

Trust Case Control Consortium 2 (2009). Genome-wide asso-

ciation study of ulcerative colitis identifies three new suscepti-

bility loci, including the HNF4A region. Nat. Genet. 41,

1330–1334.

47. Karczewski, K.J., Dudley, J.T., Kukurba, K.R., Chen, R., Butte,

A.J., Montgomery, S.B., and Snyder, M. (2013). Systematic

functional regulatory assessment of disease-associated vari-

ants. Proc. Natl. Acad. Sci. USA 110, 9607–9612.

48. Ripke, S., O’Dushlaine, C., Chambert, K., Moran, J.L., Kähler,

A.K., Akterin, S., Bergen, S.E., Collins, A.L., Crowley, J.J.,

Fromer, M., et al.; Multicenter Genetic Studies of Schizo-

phrenia Consortium; Psychosis Endophenotypes Interna-

tional Consortium;Wellcome Trust Case Control Consortium

2 (2013). Genome-wide association analysis identifies 13 new

risk loci for schizophrenia. Nat. Genet. 45, 1150–1159.

49. Wright, F.A., Sullivan, P.F., Brooks, A.I., Zou, F., Sun, W., Xia,

K., Madar, V., Jansen, R., Chung, W., Zhou, Y.-H., et al.

(2014). Heritability and genomics of gene expression in pe-

ripheral blood. Nat. Genet. 46, 430–437.

50. Neph, S., Vierstra, J., Stergachis, A.B., Reynolds, A.P., Haugen,

E., Vernot, B., Thurman, R.E., John, S., Sandstrom, R., John-

son, A.K., et al. (2012). An expansive human regulatory

lexicon encoded in transcription factor footprints. Nature

489, 83–90.
Journal of Human Genetics 95, 535–552, November 6, 2014 551

http://dx.doi.org/10.1101/002931


51. Gibson, G. (2011). Rare and common variants: twenty argu-

ments. Nat. Rev. Genet. 13, 135–145.

52. Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gera-

simova, A., Bork, P., Kondrashov, A.S., and Sunyaev, S.R.

(2010). A method and server for predicting damaging

missense mutations. Nat. Methods 7, 248–249.

53. Liu, D.J., and Leal, S.M. (2012). Estimating genetic effects and

quantifying missing heritability explained by identified rare-

variant associations. Am. J. Hum. Genet. 91, 585–596.

54. Purcell, S.M., Moran, J.L., Fromer, M., Ruderfer, D., Solovieff,

N., Roussos, P., O’Dushlaine, C., Chambert, K., Bergen, S.E.,

Kähler, A., et al. (2014). A polygenic burden of rare disruptive

mutations in schizophrenia. Nature 506, 185–190.

55. Maller, J.B., McVean, G., Byrnes, J., Vukcevic, D., Palin, K., Su,

Z., Howson, J.M.M., Auton, A., Myers, S., Morris, A., et al.;

Wellcome Trust Case Control Consortium (2012). Bayesian

refinement of association signals for 14 loci in 3 common dis-

eases. Nat. Genet. 44, 1294–1301.

56. Wakefield, J. (2009). Bayes factors for genome-wide associa-

tion studies: comparison with P-values. Genet. Epidemiol.

33, 79–86.

57. Edwards, S.L., Beesley, J., French, J.D., and Dunning, A.M.

(2013). Beyond GWASs: illuminating the dark road from asso-

ciation to function. Am. J. Hum. Genet. 93, 779–797.

58. Nicolae, D.L., Gamazon, E., Zhang, W., Duan, S., Dolan, M.E.,

and Cox, N.J. (2010). Trait-associated SNPs are more likely to

be eQTLs: annotation to enhance discovery from GWAS.

PLoS Genet. 6, e1000888.

59. Ernst, J., Kheradpour, P., Mikkelsen, T.S., Shoresh, N., Ward,

L.D., Epstein, C.B., Zhang, X., Wang, L., Issner, R., Coyne,

M., et al. (2011). Mapping and analysis of chromatin state

dynamics in nine human cell types. Nature 473, 43–49.

60. Huyghe, J.R., Jackson, A.U., Fogarty, M.P., Buchkovich, M.L.,
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Supplemental Figures

Figure S1. Principal components analysis of WTCCC samples. Two most significant principal
components are plotted for each disease cohort, with cases and controls color coded red and black respectively.
Each sub-panel label specifies the variance in phenotype explained by all 20PCs in parentheses. MS and SP
cohorts are known to be highly structured due to environment and ascertainment.
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Figure S2. Principal components analysis of Swedish samples. Two main principal components are
shown for analysis of GWAS data from the full Swedish Schizophrenia cohort. Homogenous Swedish samples
are highlighted in blue.
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Figure S3. Observed variance-component enrichment from simulated null architecture. Dis-
tribution of enrichment estimate over 1000 simulations with three different disease architectures performed
in genotyped SNPs (top) and imputed SNPs (bottom). All phenotypes simulated without category-specific
enrichment, red line showing expected enrichment of 1.0×. Red asterisk indicates significant difference from
expectation (by z-test, accounting for 36 comparisons).
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Figure S4. Enrichment of summary statistics under the null. Results for MAF-independent (left)
and low-frequency (right) architectures shown for stratified QQ-plots (top) and P -value enrichment plots
(bottom).
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Figure S5. Partitioning of h2g with imputed SNPs and MAF-independent causals. Estimate of
h2g from imputed SNPs in each functional category for phenotypes simulated from imputed SNPs with any
frequency. Each section of the figure describes results from 200 simulations where all h2g was induced in the
titular functional category (highlighted in blue).
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Figure S6. Observed P -value enrichment from simulated enrichment (MAF-independent).
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Figure S7. Observed P -value enrichment from simulated enrichment (low-frequency).
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Figure S8. Partitioning of h2g with imputed SNPs and low-frequency causals. Estimate of h2g
from imputed SNPs in each functional category for phenotypes simulated from imputed SNPs with MAF
< 0.05. Each section of the figure describes results from 200 simulations where all h2g was induced in the
titular functional category (highlighted in blue).
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Figure S9. Partitioning of h2g simulated in MAF-independent imputed data. Estimate of h2g from
genotyped SNPs in each functional category for phenotypes simulated from imputed SNPs from any MAF.
Each section of the figure describes average results from simulations where all h2g was induced in the titular
functional category (highlighted in blue). Estimate h2g is spread across multiple functional categories due to
incomplete tagging. Error-bars indicate standard error from 200 simulations.
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Figure S10. Partitioning of h2g simulated in low-frequency imputed data. Estimate of h2g from
genotyped SNPs in each functional category for phenotypes simulated from imputed SNPs with MAF < 0.05.
Each section of the figure describes average results from simulations where all h2g was induced in the titular
functional category (highlighted in blue). Estimate h2g is spread across multiple functional categories due to
incomplete tagging. Error-bars indicate standard error from 200 simulations.

10



C
O

D
IN

G

U
T

R

P
R

O
M

O
T

E
R

D
H

S

IN
T

R
O

N

O
T

H
E

R

0
50

10
0

0bp − 500bp
Genotyped

%
 S

N
P

−
H

er
ita

bi
lit

y

C
O

D
IN

G

U
T

R

P
R

O
M

O
T

E
R

D
H

S

IN
T

R
O

N

O
T

H
E

R

0
50

10
0

500bp − 1000bp
Genotyped

%
 S

N
P

−
H

er
ita

bi
lit

y

C
O

D
IN

G

U
T

R

P
R

O
M

O
T

E
R

D
H

S

IN
T

R
O

N

O
T

H
E

R

0
50

10
0

0bp − 500bp
1000G

%
 S

N
P

−
H

er
ita

bi
lit

y

C
O

D
IN

G

U
T

R

P
R

O
M

O
T

E
R

D
H

S

IN
T

R
O

N

O
T

H
E

R

0
50

10
0

500bp − 1000bp
1000G

%
 S

N
P

−
H

er
ita

bi
lit

y

Figure S11. Partitioning of h2g from causal variants at the DHS boundary. Causal variants were
sampled from non-DHS intronic and intergenic regions within 0-500bp (left, 29% of imputed SNPs) and
500-1,000bp (right, 15% of imputed SNPs) of any DHS region boundary. Box-plots shown % h2g estimates
over 200 simulations with MAF-independent causal variants. Phenotypes and GRMs from genotyped SNPs
(top) and from imputed SNPs (bottom).
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Figure S12. Individual trait analysis of coding and DHS variants. Forest plot of % h2g inferred
for each trait over coding SNPs (top) and DHS SNPs (bottom). Total h2g shown for each trait and SNP
platform in second column.
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Figure S13. Functional enrichment of SNP-heritability in DHS regions. The ratio of observed %
heritability over corresponding % of SNPs is reported as meta-analysis over all traits for four locus types.
Light blue bars detail analysis of typed SNPs and dark blue bars detail analysis of typed and 1,000 Genomes
imputed SNPs. “Known Loci” categories corespond to analysis restricted to 1MB regions around published
genome-wide significant loci for the corresponding trait. We note that the choice of region size may impact
the absolute enrichment, with larger regions expected to appear more like the genome-wide enrichment
and yield a conservative estimate of the difference. This region size is expected to yield a representative
estimate1. SP, HT, and BD had too few known loci or could not converge in the local analyses and were
excluded from all computations, resulting in slightly different overall values from Figure 1. Error bars define
95% confidence interval after adjusting for shared controls.
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Figure S14. P -value enrichment in 11 traits. Fold-enrichment of P -values meeting a given significance
threshold in each functional category. Enrichment plotted for all thresholds that contain at least 100 SNPs.
Average over 11 traits shown in top-left for thresholds observed in all traits, with shaded region corresponding
to standard error.
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Figure S15. P -value enrichment in PGC2. Fold-enrichment of P -values meeting a given significance
threshold in each functional category.
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Figure S16. Power to detect significant h2g enrichment. Phenotypes were simulated with DHS and
coding enrichment matching the observed meta-analysis values in a 33,000 sample cohort. Power was then
inferred as the fraction of 100 simulations where enrichment was significant at P < 0.05 over increasing
sample sizes.
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Figure S17. Heritability estimates in simulation with normalized allelic effect-sizes. Distribution
of h2g inferred by four variance-component models is shown over a range of disease architectures. Additive
phenotypes with h2 = 0.5 were simulated from 1,000 randomly selected causal variants with maximum allele
frequency from 0.01 to 0.1 (x-axis). Normalized SNP effect-sizes were drawn from the standard normal such
that each SNP explains equal variance in expectation. Box-plots show inferred h2g over 40 random simulations.
For the joint component model the sum of both inferred h2g values is reported. A red asterisk indicates
significant difference from 0.5 by z-test after correcting for ten architectures tested. Under the un-adjusted
single-component model we observe both kinds of bias depending on the causal allele frequency cutoff. When
causal variants are primarily rare (MAF ≤ 0.02) the mean estimate is significantly deflated down to 0.45,
whereas when causal variants are more common (MAF ≤ 0.1) the mean estimate is significantly deflated up
to 0.59. LD adjustment1 of the single component appears to fix the downwards bias, with mean estimate
no lower than 0.49 (not significantly different from 0.50) but does not completely mitigate the upwards bias,
with a mean estimate up to 0.57. Splitting the data into two components for rare and common SNPs entirely
removes the upwards bias but introduces downwards bias in most instances where causal variants can be
common. Combining the two strategies and using two internally LD-adjusted1 components yields completely
unbiased estimates with no disease architecture exhibiting h2g significantly different from 0.5.
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Figure S18. Heritability estimates in simulation with standard allelic effect-sizes. Distribution
h2g inferred by four variance-component models is shown over a range of disease architectures. Additive
phenotypes with h2 = 0.5 were simulated from 1,000 randomly selected causal variants with maximum
allele frequency from 0.01 to 0.1 (x-axis). Allelic effect-sizes were drawn from the standard normal such
that common SNPs explain more variance in expectation. Box-plots show inferred h2g over 40 random
simulations. For the joint component model the sum of both inferred h2g values is reported. A red asterisk
indicates significant difference from 0.5 by z-test after correcting for ten architectures tested.

We considered weather the SNPs used to construct the GRM should be normalized by their observed variance or the expected
variance 2p(1− p) based on the minor allele frequency p. We performed simulations for the two normalization schemes and two
effect-size distributions. Under the infinitesimal model where every variant explains the same amount of phenotypic variance
in expectation, we observed no differences between the normalizations for any class of SNPs. Under the neutral model where
effect-size is proportional to the minor allele frequency, we observed a significant difference between the two normalizations
when rare variants were included in the analysis, with the 2p(1 − p) scaling resulting in a significant upwards bias. These
findings indicate that rare variants have slight but consistent deviations from Hardy-Weinberg equilibrium that can affect the
variance-component estimate under the 2p(1−p) normalization. To account for this, we use the observed variance to normalize
markers in all analyses of rare variants.

18



−10

−5

0

5

10

15

20

Variance−components

%
 h

g 
/ %

 S
N

P

C
od

in
g

U
T

R

P
ro

m
ot

er

D
H

S

In
tr

on

In
te

rg
en

ic 0 2 4 6 8 10

0

2

4

6

8

10

P−Value Enrichment

Minimum −log10(PV)

F
ol

d 
en

ric
hm

en
t

●

●

●

●

●

●

Coding
UTR
Promoter
DHS
Intron
Intergenic

0 1 2 3 4 5 6 7

0

2

4

6

8

10

Stratified QQ−Plot

Expected (−logP)

O
bs

er
ve

d 
(−

lo
gP

)

●

●

●

●

●

●

Coding
UTR
Promoter
DHS
Intron
Baseline

0

5

10

15

20

FGWAS

P
(c

au
sa

l) 
/ S

N
P

C
od

in
g

U
T

R

P
ro

m
ot

er

D
H

S

In
tr

on

In
te

rg
en

ic

●

●

●

●
● ●

Figure S19. Estimates of functional enrichment under the null. We simulated a polygenic disease
architecture with MAF-independent imputed causal SNPs uniformly drawn from all functional categories,
corresponding to no enrichment. Simulated phenotypes were tested using the variance-component method
(top left) from 3000 simulations; P -value enrichment (top right) from 100 simulations; stratified QQ-plot
(bottom left) from 100 simulations; FGWAS (bottom right) from 100 converged simulations (out of ∼ 800
total). FGWAS plot contains mean (red point); 1.96× standard error (black line); and density function for
the full distribution shown in gray. All methods showed no enrichment except FGWAS, which exhibited
upward bias at smaller categories due to enrichment being restricted to the 0-1 scale.
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Figure S20. Partitioning of h2g with DHS centers enriched. Causal effect-sizes were sampled such
that center of DHS (1% of genome) explains 25% of h2 and remainder of DHS (15% of genome) explains
75% of h2. Box-plots shown %h2 over 200 simulations with MAF-independent causal variants.
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Figure S21. Estimates of functional enrichment from single causal category. We simulated a
polygenic disease architecture with MAF-independent imputed causal SNPs drawn from a single functional
category, corresponding to complete enrichment of the respective category. Simulated phenotypes were tested
using the variance-component method (top left) from 1000 simulations; P -value enrichment (top right) from
100 simulations; stratified QQ-plot (bottom left) from 100 simulations; FGWAS (bottom right) from 100
converged simulations (out of ∼ 800 total). FGWAS plot contains mean (red point); 1.96× standard error
(black line); and density function for the full distribution shown in gray. Stratified QQ-plot and P -value
enrichment sub-plots show 1.96× standard error as shaded regions. In the DHS-causal scenario, GWAS-
based methods underestimated the enrichment; while in the Coding-causal scenario, GWAS-based methods
overestimated enrichment from other correlated categories. For each method, only the Coding causal and
DHS causal scenarios are shown, additional simulations appear in Fig. S6, S7, S23, S24, S26, S27.
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Figure S22. Stratified QQ-plot from realistic simulations. Stratified QQ-plots2 display association statistics from
variants in LD with each functional category in a probability plot, and assess significant enrichment of a given category visually
or by a non-parametric test. The method accounts for LD by computing the sum of r2 correlations between each GWAS SNP
and all neighboring variants (within 1Mbp, including the SNP itself) belonging to a given functional category. A GWAS SNP
is then considered part of a category if the corresponding score is ≥ 1 and QQ-lines are computed, separately, for each SNP in
a category. We implemented this method as described in Schork et al.2, using the European 1000 Genomes samples as the LD
reference. As required, intergenic variants were defined as those having a score of zero to every other category, and we refer to
them as “baseline” here to distinguish from the functionally intergenic category. Association statistics for each category were
divided by the λGC observed in the baseline variants. Realistic traits were simulated in a 33,000 sample cohort with 8,300
causal SNPs where DHS and coding variants explaining 79% and 8% of h2g, respectively (no enrichment for other categories).
Phenotypes and GWAS summary statistics were computed in a cohort of 32,000 samples. DHS appears to be the least enriched
non-baseline category, while UTR, Promoter, and Intron appear falsely enriched due to LD to the truly causal Coding category.
Shaded regions show standard error from 50 replicates. Under the null, the method correctly identified no enrichment for
any disease architecture (Fig. S19). Under the causal category scenario, the stratified QQ-plots exhibited similar patterns of
false-positive enrichment for correlated categories and false-negative estimates for DHS (Fig. S21, S23, S24). While the truly
causal category generally had the highest deviation from the null in all instances except DHS-causal, it was not significantly
distinguishable from the other truly null categories. Patterns were similar for the low-frequency architecture, with the DHS
category further falsely depleted.
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Figure S23. Stratified QQ-plots enrichment from simulated enrichment (MAF-independent).
Each sub-figure shows stratified QQ-plot estimate when only the title category is causal. Non-intergenic
categories appear falsely enriched in most instances. See Figure S22 for method and simulation details.
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Figure S24. Stratified QQ-plots enrichment from simulated enrichment (low-frequency). Each
sub-figure shows stratified QQ-plot estimate when only the title category is causal. Non-intergenic categories
appear falsely enriched in most instances. See Figure S22 for method and simulation details.
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Figure S25. Enrichment from FGWAS under the null. Recently, Pickrell et al.3 proposed a Bayesian hierarchical
model that iteratively estimates category-specific enrichment priors and individual SNP association posteriors, implemented in
the FGWAS software (see Web Resources). It’s important to note that the main focus of this work was to identify functional
enrichment at strongly associated variants, which is a fundamentally different question from enrichment in polygenic h2g. With
this in mind, we provide comparisons to FGWAS here for completeness, and as a measure of the expected difference between
polygenic architecture and the strong associations. We computed the estimates of P(causal), the probability that a SNP from
the given annotation is causal, by running FGWAS in the “-print -p 0” mode to return individual SNP posteriors and then
summing the posteriors over all SNPs in a given annotation divided by the sum of posteriors over all SNPs. We also report the
odds-ratio estimate of enrichment inferred by FGWAS where appropriate. We ran FGWAS on our simulated phenotypes with
window size set such that one causal variant is present in expectation (-k 500), to match the methodological assumptions. Due
to computational constraints, FGWAS was only evaluated on chromosome 1 and any non-converging runs were excluded. In
the null simulations, FGWAS was significantly upwardly biased for the smaller categories, perhaps due to the underlying metric
having high variance and being restricted to the 0-1 scale or due to the large number of simulations not converging (Fig. S25A).
The low-frequency and mixed architectures were generally similar to the MAF-independent architecture (Fig. S25B,C). For the
causal simulations, the P(causal) at the true causal category was typically the highest but still underestimated by over 50%,
with the larger non-causal categories also falsely identified as causal (Fig. S21, S26). This was most apparent when DHS is truly
causal, with the intron and intergenic categories being indistinguishable from DHS. On the other hand, under the low-frequency
architecture, estimates of P(causal) were not substantially different from the null; matching the overall category size regardless
of true enrichment (Fig. S27). The FGWAS estimate has previously been shown to be unbiased when annotations are randomly
sampled from the genome4, and we suspect that the complex LD between contiguous categories results in the bias observed
here. Each subplot shows estimates of enrichment from simulated phenotypes with no enrichment under different causal-variant
architectures. Depending on the causality, smaller categories (Coding, UTR, Promoter) yield upward bias due to individual
estimates being bounded to 0-1. The fraction of simulations that converged was 15%, 38%, and 16% respectively.

25



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CODING

P
(c

au
sa

l)

C
O

D
IN

G

U
T

R

P
R

O
M

O
T

E
R

D
H

S

IN
T

R
O

N

O
T

H
E

R

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

UTR

P
(c

au
sa

l)

C
O

D
IN

G

U
T

R

P
R

O
M

O
T

E
R

D
H

S

IN
T

R
O

N

O
T

H
E

R

●

●

●

● ●
●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PROMOTER

P
(c

au
sa

l)

C
O

D
IN

G

U
T

R

P
R

O
M

O
T

E
R

D
H

S

IN
T

R
O

N

O
T

H
E

R

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DHS

P
(c

au
sa

l)

C
O

D
IN

G

U
T

R

P
R

O
M

O
T

E
R

D
H

S

IN
T

R
O

N

O
T

H
E

R

●
● ●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

INTRON

P
(c

au
sa

l)

C
O

D
IN

G

U
T

R

P
R

O
M

O
T

E
R

D
H

S

IN
T

R
O

N

O
T

H
E

R

●
● ●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

OTHER
P

(c
au

sa
l)

C
O

D
IN

G

U
T

R

P
R

O
M

O
T

E
R

D
H

S

IN
T

R
O

N

O
T

H
E

R

●

●
●

●

●

●

Figure S26. FGWAS estimates from simulated enrichment (MAF-independent). Each sub-
figure shows the FGWAS estimate whe only the title category is causal. Though the truly causal category is
typically identified as most enriched, other categories (particularly the larger DHS/Intron/Intergenic) exhibit
upward bias. The fraction of simulations that converged was 10% on average per category. See Figure S25
for method and simulation details.
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Figure S27. FGWAS estimates from simulated enrichment (low-frequency). Each sub-figure
shows the FGWAS estimate whe only the title category is causal. Unlike the MAF-independent architecture,
estimates of causality are not substantially different from the null category size. The fraction of simulations
that converged was 30% on average per category. See Figure S25 for method and simulation details.
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Figure S28. Enrichment from GWAS summary-statistics across 11 traits. Enrichment estimates
from three GWAS-based methods are shown averaged over 11 traits (top) and for PGC2 Schizophrenia
(bottom). Estimates for most enriched category were inconsistent across methods both in the WTCCC
traits and in PGC. Shaded regions for P -value enrichment and QQ-plot, gray bars for FGWAS correspond
to 1.96× standard error. FGWAS did not converge for BD, HT, and SP and they were excluded from the
plot. We did not observe a clear consensus across the methods, with P -value enrichment showing promoter
variants as significantly enriched; stratified QQ-plots showing significant enrichment in all non-intergenic
categories; and FGWAS identifying coding variants as significantly enriched (Fig. 4A, S28). Likewise, in
analyses of PGC2, none of the GWAS-based methods identified substantial enrichment at DHS variants
(Fig. S28) nor did they agree on the most enriched category: promoter/coding for P -value enrichment;
coding/UTR for stratified qq-plot; and promoter for FGWAS. This is consistent with our findings in realistic
simulations, with stratified QQ-plots having similar results to P -value enrichment (Fig. 4B, S22, results from
FGWAS were not shown due to lack of convergence).
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Figure S29. Partitioning of h2g with true DHS and coding enrichment. Inferred h2g enrichment from
disease architecture mimicking observed DHS and coding enrichment in real data. Due to computational
restrictions, enrichment was estimated from a random 15,000 samples of the 33,000 sample simulated GWAS
cohort. Colored bars show the induced enrichment. Boxplots show the distribution of inferred enrichment
over 50 trials.
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Phenotype Label Prevalence Cases Controls Genotyped SNPs Imputed SNPs

WTCCC2:

Schizophrenia SP 0.010 2698 5458 394992 4345606
Ankylosing spondylitis AS 0.003 1783 5239 408616 6162624
Multiple sclerosis MS 0.001 9315 5211 396469 5795523
Ulcerative colitis UC 0.001 2495 5428 447905 4620390

WTCCC:

Bipolar disorder BD 0.005 1550 2666 143054 4192374
Coronary artery disease CAD 0.060 1746 2668 139567 4190156
Crohns disease CD 0.001 1542 2662 146952 4199232
Hypertension HT 0.050 1730 2669 139541 4185735
Rheumatoid arthritis RA 0.005 1664 2664 143732 4190217
Type 1 diabetes T1D 0.005 1746 2668 139206 4184291
Type 2 diabetes T2D 0.080 1641 2671 142027 4195404

Other:

Schizophrenia PGC2 0.010 24926 33271 Varies 4-5 million
Schizophrenia SWE ex-chip 0.010 5010 6197 238652 NA

Table S1. Datasets analyzed. Number of samples and markers for each dataset analyzed.
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Cohort Cases Controls

boco 1754 2121
buls 192 595
denm 462 449
dubl 259 828
edin 363 281
ersw 260 311
lie5 486 383
mgs2 2583 2444
pewb 564 1779
ucla 688 598

clo3 2105 1975
cou3 530 678
egcu 234 1152
ersw 265 319
swe5 1764 2581
swe6 975 1145
umeb 341 577
umes 193 704

buls 195 608
butr 608 613
cims 67 65
clm2 3426 4085
lie2 133 269
msaf 325 139
pewb 574 1812
pews 150 236

aarh 876 871
boco 1773 2161
fii6 360 1082
gras 1067 1169
lacw 157 245
lie5 497 389
ucla 700 607

Table S2. PGC2 datasets analyzed.
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Variant class Homogenous All

All coding 104,240 110,331
Singleton coding 19,860 19,329
Rare coding (MAF < 0.01, non-singleton) 64,040 70,569
Common coding (MAF ≥ 0.01) 20,340 20,433

Table S3. Summary of exome-chip data. Number of polymorphic variants by coding class and sub-
cohort in the Swedish schizophrenia samples.
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Category Description % physical % 1000G % array % imputed

Coding (non-UTR) Overlaps a coding exon. 1.1% 0.9% 0.9% 0.5%
UTR Overlaps a 5’ or 3’ untranslated region. 1.0% 0.9% 1.0% 0.8%
Promoter Within 2kbp of a transcription start site. 2.5% 2.6% 2.2% 2.2%
DHS Overlaps DHS region observed in any cell-type. 14.6% 16.4% 23.3% 15.7%
Intron Overlaps an intron. 29.1% 28.6% 26.8% 28.8%
Intergenic All other intergenic variants. 51.8% 50.5% 44.8% 52.0%

Table S4. Coding and regulatory annotation categories. Description of functional categories and
fraction occupied, respectively, by physical genome; all 1000 Genomes SNPs; average array SNPs; average
imputed 1000G SNPs.

33



WTCCC1 Genotyped: Affymetrix

Annotation MAF INFO LD score Cons

Coding 0.2330 NA 116.4 1.076
UTR 0.2388 NA 104.1 0.560
Promoter 0.2435 NA 118.6 0.231
DHS 0.2462 NA 92.6 0.346
Intron 0.2450 NA 111.0 0.177
Intergenic 0.2489 NA 116.9 0.135

WTCCC2 Imputed: Affymetrix

Annotation MAF INFO LD score Cons

Coding 0.1700 0.9730 111.0 1.191
UTR 0.1773 0.9749 100.2 0.620
Promoter 0.1780 0.9739 114.5 0.266
DHS 0.1836 0.9775 89.0 0.388
Intron 0.1817 0.9776 108.2 0.194
Intergenic 0.1846 0.9773 111.6 0.148

WTCCC2 Imputed: Illumina

Annotation MAF INFO LD score Cons

Coding 0.1672 0.9745 91.7 1.525
UTR 0.1735 0.9758 85.8 0.816
Promoter 0.1749 0.9751 97.1 0.358
DHS 0.1798 0.9778 79.2 0.498
Intron 0.1780 0.9791 94.7 0.254
Intergenic 0.1810 0.9780 101.3 0.188

Table S5. Functional category features. For each genotyping platform and functional category, the
following features are reported: minor allele frequency (MAF), imputation quality (INFO), average number
of LD partners (LD score), and GERP conservation score (Cons).
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Imputed Genotyped
Annotation % SNPs % Effective SNPs % SNPs % Effective SNPs

Coding 0.5% 0.5% 1.0% 2.3%
UTR 0.8% 0.8% 1.0% 2.4%
Promoter 2.2% 2.0% 2.3% 4.8%
DHS 15.7% 18.9% 23.6% 33.6%
Intron 28.6% 29.8% 27.1% 23.2%
Other 52.2% 47.9% 45.0% 33.7%

DHS-Cell-Unique 4.0% 4.4% NA NA
DHS-DGF 7.8% 9.5% NA NA
DHS-Enhancer 3.2% 4.2% NA NA
DHS-Narrowed 1% 1.1% 1.3% NA NA
DHS-Narrowed 5% 5.2% 6.1% NA NA
DHS-Narrowed 10% 10.3% 12.1% NA NA

Table S6. Effective % of SNPs in analyzed categories. For each functional category analyzed, effective
number of imputed SNPs was computed using LD in 1000G EUR samples5,6; defined as the number of SNPs
divided by the average sum of r2 between a SNP in the category and every other SNP in a 1Mbp window.
Lower panel shows estimates from functional categories analyzed only in imputed data.
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Table S7. Cell types analyzed. Excel spreadsheet detailing cell types and tissues used for cell-type
specific DHS analysis.
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1x noise 2x noise

Category % SNPs % h2g (se) SD REML SE % h2g (se) SD REML SE

CODING 0.6% 0.2% (0.5%) 5.5% 5.0% 0.4% (0.6%) 5.8% 5.2%
DHS 15.8% 16.0% (1.9%) 19.4% 17.9% 18.5% (1.7%) 17.2% 18.4%
PROMOTER 2.4% 1.4% (0.7%) 7.0% 6.5% 2.6% (0.7%) 6.9% 6.7%
UTR 0.9% 1.4% (0.5%) 4.8% 5.1% 1.5% (0.6%) 5.7% 5.3%
INTRON 29.1% 29.0% (1.1%) 10.8% 10.4% 28.7% (1.1%) 10.8% 10.7%
OTHER 51.3% 52.0% (1.1%) 11.4% 11.2% 48.3% (1.1%) 11.3% 11.4%

Table S8. Partitioned null h2g with simulated imputation noise. Null phenotypes were simulated from
SNPs with realistic imputation noise (proportional to imputation INFO score) added and % h2g inferred using
functional components without noise; corresponding to a scenario where genotypes are imputed with some
inaccuracy. Under the assumption that INFO score is a reasonable proxy for imputation accuracy, substantial
differences in imputation between categories would be expected to yield biased estimates. However, no
significant deviations from the null were observed. As in previous simulations, a polygenic quantitative trait
was constructed from 8,300 randomly selected causal variants for individuals in the WTCCC2:AS cohort.
For each causal SNP s and corresponding INFO (imputation accuracy) score is, normally distributed noise
was added to create a new SNP s′ such that s had an R2 of is with s′. A polygenic trait with h2g = 0.50
and no functional enrichment was then simulated from the noisy genotypes (identical to a model where
phenotypes come from clean genotypes and the GRM is constructed from noisy ones). The “2x noise”
column corresponds to a more extreme simulation where the added noise was double that observed in the
real data (new is = 1−2(1−is)). The emperical standard deviation (SD) and the average analytical standard
error (REML SE) is also shown for each scenario and do not deviate substantially. All estimates computed
from 100 random simulations.
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1x noise 2x noise
Category % h2g (se) % h2g (se)

CODING 99.5% (0.8%) 100.3% (0.9%)
DHS 95.7% (2.4%) 95.4% (2.4%)

Table S9. Partitioned causal h2g with simulated imputation noise. Simulations as described in
Table S8 but with 100% h2g in the listed category.
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Category λGC % h2g se P -value adjusted se adjusted P -value

Coding 1.26 7.5% 2.0% 4.74e-04 2.2% 1.83e-03
UTR 1.34 6.6% 2.0% 4.28e-03 2.4% 1.36e-02
Promoter 1.45 6.2% 2.6% 1.25e-01 3.1% 2.02e-01
DHS 1.32 79.5% 6.6% 3.64e-22 7.6% 3.74e-17
Intron 1.39 1.5% 3.9% 5.48e-12 4.7% 4.89e-09
Intergenic 1.70 -3.1% 4.0% 2.84e-42 5.3% 1.53e-25

Table S10. Meta-analysis adjusted for shared controls. We evaluated potential biases due to the use
of shared controls by shifting the functional categories and performing the entire genotyped meta-analysis
procedure to compute an empirical null distribution. Specifically, over 1,000 consecutive indices, we shifted
all functional annotations ahead by 2MB (moving regions that crossed the chromosome boundary into the
next chromosome) thereby preserving the total h2g, total sample relatedness, and relative dependence between
categories but permuting any relationship to true function. For each shifted annotation, we re-computed
GRMs from the genotyped data and estimated functional enrichment within each trait, as well as the meta-
analysis value across all 11 traits, yielding 1, 000 × 6 shifted meta-analysis estimates. We observed no
enrichment or inflation of P -values within each study (Table S11), further supporting the robustness of the
empirical standard error. We did observe inflation in the meta-analysis P -values ranging from λGC of 1.26
(coding) to 1.70 (intergenic). We adjusted the standard errors observed in real data by the corresponding√
λGC, which yielded adjusted P -values that remained significant for all categories but UTR (Table S10).

For each functional category, the empirical inflation of p-values due to shared controls (λGC) is reported.
The raw meta-analysis estimate of h2g, standard error, and enrichment P -value is shown for imputed SNPs;
followed by the corresponding λGC adjusted estimates.

39



Category avg. enrichment avg. Z-score

Coding 0.98 -0.04
UTR 1.01 -0.04
Promoter 1.04 -0.01
DHS 0.99 -0.02
Intron 1.00 0.00
Intergenic 1.00 0.00

Table S11. Estimates of enrichment from shifted regions. For each category, the average enrichment
and Z-score observed in h2g estimates on real phenotypes and shifted functional annotations. Results averaged
across 1,000 shifts and all traits.
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Genotyped Imputed

Annotation % h2g (s.e.) Enrichment (s.e) P -value % h2g (s.e.) Enrichment (s.e.) P -value

Coding 4% (1%) 4.12 (0.96) 1.1e-03 8% (2%) 13.84 (4.12) 1.8e-03
DHS 38% (4%) 1.63 (0.16) 1.0e-04 79% (8%) 5.07 (0.48) 3.7e-17
Promoter 5% (1%) 2.19 (0.62) 5.2e-02 6% (3%) 2.79 (1.41) 2.0e-01
UTR 4% (1%) 3.51 (0.95) 8.2e-03 7% (2%) 8.42 (3.01) 1.4e-02
Intron 23% (3%) 0.83 (0.11) 1.2e-01 2% (5%) 0.05 (0.16) 4.9e-9
Intergenic 25% (4%) 0.56 (0.08) 2.7e-08 -3% (5%) -0.06 (0.10) ¡1e-20

Table S12. Components of heritability from regulatory elements in GWAS data (meta-
analysis). Shared controls correction applied (see also Table S13, S10).
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Genotyped Imputed

Annotation % h2g (s.e.) Enrichment (s.e) P -value % h2g (s.e.) Enrichment (s.e.) P -value

Coding 4% (1%) 4.12 (0.85) 2.59e-04 8% (2%) 13.84 (3.67) 4.74e-04
DHS 38% (3%) 1.63 (0.14) 7.98e-06 79% (7%) 5.07 (0.42) 3.64e-22
Promoter 5% (1%) 2.19 (0.51) 1.94e-02 6% (3%) 2.79 (1.17) 1.25e-01
UTR 4% (1%) 3.51 (0.82) 2.21e-03 7% (2%) 8.42 (2.60) 4.28e-03
Intron 23% (2%) 0.83 (0.09) 6.40e-02 2% (4%) 0.05 (0.14) 5.48e-12
Intergenic 25% (3%) 0.56 (0.06) 4.11e-13 -3% (4%) -0.06 (0.08) 2.84e-42

Table S13. Components of heritability from regulatory elements in GWAS data (meta-
analysis). Meta-analysis estimates computed using inverse-variance weighting without shared controls
correction.
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Bipolar disorder
(h2 = 0.6-0.7) Genotyped h2g = 0.26 (0.032) Imputed h2g = 0.24 (0.035)

Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value

Coding 3.5% (2.4%) 4.2 2.6e-01 4.9% (7.2%) 9.0 5.5e-01
UTR 3.6% (2.5%) 3.8 2.8e-01 11.6% (7.6%) 15.3 1.5e-01
Promoter -1.0% (3.3%) -0.5 3.4e-01 -11.0% (9.4%) -5.1 1.6e-01
DHS 34.0% (10.3%) 1.4 3.1e-01 34.6% (26.5%) 2.2 4.7e-01
Intron 22.9% (8.0%) 0.9 6.2e-01 27.0% (15.3%) 0.9 9.2e-01
Intergenic 37.0% (8.9%) 0.8 3.3e-01 33.0% (16.2%) 0.6 2.3e-01

Coronary artery disease
(h2 = 0.3-0.6) Genotyped h2g = 0.31 (0.057) Imputed h2g = 0.25 (0.062)

Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value

Coding 1.7% (3.2%) 2.2 7.7e-01 7.5% (12.5%) 14.0 5.7e-01
UTR 5.6% (3.7%) 5.9 2.1e-01 10.5% (13.0%) 13.8 4.6e-01
Promoter 4.5% (5.1%) 2.0 6.6e-01 2.8% (16.0%) 1.3 9.7e-01
DHS 41.1% (15.4%) 1.8 2.5e-01 0.7% (47.1%) 0.0 7.5e-01
Intron 24.5% (12.0%) 0.9 8.4e-01 44.4% (27.5%) 1.5 5.7e-01
Intergenic 22.6% (13.8%) 0.5 9.3e-02 34.1% (27.2%) 0.7 5.0e-01

Crohn’s disease
(h2 = 0.6-0.8) Genotyped h2g = 0.18 (0.024) Imputed h2g = 0.17 (0.025)

Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value

Coding 3.7% (2.5%) 4.6 2.5e-01 19.2% (8.2%) 35.9 2.3e-02
UTR -0.8% (2.5%) -0.8 4.8e-01 3.1% (7.6%) 4.1 7.6e-01
Promoter 7.3% (4.0%) 3.3 2.0e-01 -3.6% (9.5%) -1.7 5.4e-01
DHS 58.4% (11.9%) 2.5 3.4e-03 151.7% (27.1%) 9.7 5.2e-07
Intron 14.9% (8.8%) 0.6 1.7e-01 -30.9% (15.6%) -1.1 1.3e-04
Intergenic 16.5% (10.3%) 0.4 4.9e-03 -39.5% (17.3%) -0.8 1.1e-07

Hypertension
(h2 = 0.3-0.7) Genotyped h2g = 0.37 (0.053) Imputed h2g = 0.33 (0.059)

Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value

Coding 6.2% (2.9%) 7.6 6.4e-02 25.4% (10.5%) 47.2 1.8e-02
UTR 5.5% (3.0%) 5.6 1.3e-01 12.7% (9.5%) 16.7 2.1e-01
Promoter 4.9% (4.2%) 2.2 5.1e-01 -3.0% (11.7%) -1.4 6.6e-01
DHS 28.3% (11.7%) 1.2 6.8e-01 93.8% (31.6%) 6.0 1.3e-02
Intron 19.4% (9.4%) 0.7 4.2e-01 -32.4% (18.6%) -1.1 1.1e-03
Intergenic 35.6% (10.5%) 0.8 3.4e-01 3.4% (19.8%) 0.1 1.3e-02

Rheumatoid arthritis
(h2 = 0.6) Genotyped h2g = 0.11 (0.031) Imputed h2g = 0.09 (0.033)

Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value

Coding -0.6% (5.0%) -0.8 7.7e-01 1.4% (17.7%) 2.6 9.6e-01
UTR 7.1% (5.7%) 7.3 2.9e-01 21.1% (19.3%) 27.9 2.9e-01
Promoter 1.9% (7.5%) 0.9 9.8e-01 28.3% (24.6%) 13.2 2.9e-01
DHS 46.4% (23.4%) 2.0 3.3e-01 162.7% (67.4%) 10.4 2.9e-02
Intron 6.5% (18.9%) 0.2 2.8e-01 -78.9% (45.1%) -2.8 1.7e-02
Intergenic 38.8% (20.1%) 0.8 7.3e-01 -34.6% (42.0%) -0.7 3.8e-02

Type 1 diabetes
(h2 =0.9) Genotyped h2g = 0.13 (0.030) Imputed h2g = 0.13 (0.032)
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Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value

Coding 7.9% (4.6%) 9.5 1.3e-01 35.0% (16.1%) 65.3 3.2e-02
UTR 5.1% (4.4%) 5.2 3.5e-01 -1.8% (12.9%) -2.4 8.4e-01
Promoter 11.0% (6.7%) 5.0 1.9e-01 28.8% (18.3%) 13.5 1.4e-01
DHS 28.2% (18.0%) 1.2 7.9e-01 106.2% (42.5%) 6.8 3.3e-02
Intron 36.7% (14.7%) 1.4 5.1e-01 -8.3% (26.0%) -0.3 1.5e-01
Intergenic 11.2% (17.1%) 0.2 4.4e-02 -59.9% (30.8%) -1.1 2.7e-04

Type 2 diabetes
(h2 = 0.3-0.6) Genotyped h2g = 0.37 (0.065) Imputed h2g = 0.42 (0.070)

Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value

Coding -2.0% (3.0%) -2.4 3.5e-01 2.5% (8.1%) 4.7 8.1e-01
UTR -0.7% (3.2%) -0.7 6.0e-01 8.7% (8.5%) 11.4 3.5e-01
Promoter -3.5% (4.7%) -1.6 2.3e-01 -3.3% (10.3%) -1.5 6.0e-01
DHS 69.3% (16.0%) 3.0 4.0e-03 63.8% (27.5%) 4.1 8.0e-02
Intron 26.1% (11.4%) 1.0 9.4e-01 17.1% (17.4%) 0.6 5.1e-01
Intergenic 10.7% (13.6%) 0.2 1.0e-02 11.1% (17.2%) 0.2 1.7e-02

Multiple sclerosis
(h2 = 0.3-0.8) Genotyped h2g = 0.19 (0.009) Imputed h2g = 0.17 (0.009)

Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value

Coding 6.4% (1.7%) 3.6 6.2e-03 5.5% (2.9%) 9.4 9.5e-02
UTR 3.9% (1.4%) 3.2 6.3e-02 8.1% (3.1%) 9.4 1.9e-02
Promoter 6.1% (2.0%) 2.4 7.4e-02 11.7% (4.0%) 5.0 1.8e-02
DHS 33.1% (5.3%) 1.3 1.1e-01 77.7% (9.4%) 4.9 5.5e-11
Intron 24.1% (4.0%) 0.9 3.1e-01 1.5% (5.7%) 0.1 9.1e-07
Intergenic 26.4% (4.2%) 0.6 3.2e-04 -4.5% (5.7%) -0.1 1.0e-16

Ankylosing spondylitis
(h2 > 0.90) Genotyped h2g = 0.18 (0.028) Imputed h2g = 0.14 (0.027)

Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value

Coding 6.9% (4.8%) 3.9 2.9e-01 1.5% (10.4%) 2.6 9.3e-01
UTR 11.4% (4.6%) 9.2 2.7e-02 20.9% (12.0%) 24.5 9.6e-02
Promoter 5.2% (5.7%) 2.0 6.5e-01 7.5% (13.5%) 3.2 7.1e-01
DHS 41.8% (16.1%) 1.7 2.8e-01 106.3% (33.4%) 6.7 6.8e-03
Intron 14.9% (11.7%) 0.5 2.6e-01 -23.6% (20.6%) -0.8 1.1e-02
Intergenic 19.8% (12.7%) 0.5 8.6e-02 -12.6% (20.2%) -0.2 1.5e-03

Schizophrenia
(h2 = 0.7-0.8) Genotyped h2g = 0.20 (0.025) Imputed h2g = 0.18 (0.024)

Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value

Coding 1.9% (2.9%) 2.6 6.8e-01 7.7% (6.6%) 14.2 2.8e-01
UTR 2.5% (3.1%) 2.6 6.2e-01 0.8% (6.3%) 1.0 1.0e 00
Promoter 7.4% (4.4%) 3.4 2.4e-01 -9.7% (7.7%) -4.2 1.2e-01
DHS 37.6% (13.3%) 1.6 2.7e-01 44.4% (22.8%) 2.8 2.1e-01
Intron 26.6% (9.4%) 1.0 9.8e-01 37.3% (14.0%) 1.3 5.3e-01
Intergenic 23.9% (10.6%) 0.5 3.5e-02 19.6% (14.1%) 0.4 2.2e-02

Ulcerative colitis
(h2 = 0.5) Genotyped h2g = 0.17 (0.017) Imputed h2g = 0.14 (0.016)

Function % h2g (s.e.) Enrichment P -value % h2g (s.e.) Enrichment P -value
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Coding 4.7% (2.5%) 6.2 1.2e-01 7.6% (5.9%) 14.5 2.3e-01
UTR 4.3% (2.6%) 4.5 2.1e-01 -1.4% (5.7%) -1.7 7.0e-01
Promoter 8.7% (3.7%) 4.0 7.3e-02 23.8% (7.9%) 10.6 6.5e-03
DHS 43.3% (10.9%) 1.9 6.5e-02 93.5% (19.4%) 6.0 6.0e-05
Intron 21.2% (7.6%) 0.8 4.5e-01 -5.6% (11.5%) -0.2 2.8e-03
Intergenic 17.9% (8.7%) 0.4 1.1e-03 -18.0% (12.4%) -0.3 1.5e-08

Table S14. Components of heritability from regulatory elements in GWAS data. Family-based
h2 (from literature), total h2g, and function-specific h2g of liability is reported for eleven traits. Enrichment
computed over the % of SNPs in each category and P -value computed from Z-score. For auto-immune traits
(CD,RA,T1D,MS,AS,UC) the well-studied MHC locus was removed from analyses. By inverse-variance meta-
analysis, the average total genotyped h2g = 0.17 (0.01) and imputed h2g = 0.19 (0.01) for a nominally significant
difference of P=0.03. Using flat weights instead yielded % h2g DHS = 85% with standard deviation of 48%
(corresponding to both trait and sampling variation) and root mean squared analytical standard error of 36%
(corresponding to estimated sampling variation only), yielding a standard deviation of

√
0.482 − 0.362 = 32%

in the true unobserved values. All traits with % h2g estimates > 100% (CD, RA, T1D, AS) have compensatory
components with negative estimates.
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Constrained Standard

Category fraction h2g (se) enrichment (se) PV fraction h2g (se) enrichment (se) PV

Coding 0.052 (0.019) 9.521 (3.418) 1.27e-02 0.075 (0.020) 13.838 (3.673) 4.74e-04
UTR 0.053 (0.019) 6.801 (2.443) 1.76e-02 0.066 (0.020) 8.417 (2.596) 4.28e-03
Promoter 0.069 (0.025) 3.126 (1.109) 5.52e-02 0.062 (0.026) 2.792 (1.168) 1.25e-01
DHS 0.710 (0.064) 4.532 (0.407) 3.82e-18 0.795 (0.066) 5.072 (0.421) 3.64e-22
Intron 0.061 (0.038) 0.211 (0.131) 1.74e-09 0.015 (0.039) 0.053 (0.137) 5.48e-12
Intergenic 0.046 (0.039) 0.088 (0.075) 9.68e-34 -0.031 (0.040) -0.059 (0.078) 2.84e-42

Table S15. Constrained REML estimate of h2g. Comparison of constrained analysis (where components
estimating h2g below zero are dropped from the analysis) and the standard un-constrained results. All values
computed from meta-analysis over 11 traits. No shared-controls correction applied.
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Enrichment Coding DHS Promoter UTR Intron Intergenic Entropy (H)

Promoter (imputed) 0.00% 2.35% 0.14% 0.01% 7.94% 25.98% 0.65
Coding (imputed) 0.04% 2.28% 0.05% 0.01% 7.69% 25.17% 0.64
All categories (genotyped) 0.02% 6.02% 0.11% 0.03% 6.49% 13.03% 0.62
DHS (imputed) 0.00% 12.45% 0.01% 0.00% 2.02% 6.60% 0.52
All categories (imputed) 0.04% 12.45% 0.14% 0.05% 0.44% -1.59% 0.30

Table S16. Theoretical entropy of functional partitions. Our estimates of the relative significance
of different h2g enrichment scenarios were directly dependent on the standard error and overall sample size
analyzed. Here, we consider an alternative figure of merit which relies only on the fraction of h2g in each
category. We borrow from information theory the concept of entropy, which is a measure of uncertainty in
the distribution of a random variable. Given P (Xi), the probability mass function of a random variable,

entropy can be quantified as H = −
a∑

i=1

P (Xi)log(P (Xi)). Depending on the distribution and log-base, this

is equivalent to the number of bits required to encode an observation, with higher entropy implying lower
predictability. Applying this to functional categories, we define P (Xi) as the joint probability that a SNP
falls into the given category and is causal. Assuming that %h2gi corresponds to the probability of causality

in category i, we compute P (Xi) = %SNPi ×%h2gi. We then compute the entropy as outlined previously.
Table S16 demonstrates the resulting entropy from multiple enrichment scenarios observed in the 11 traits,
with entropy inversely correlated to the individual category significance. Highest entropy was computed
for an enrichment scenario that only accounted for the (least significant) promoter category, and lowest
entropy was observed for an enrichment scenario that accounted for all six categories. Interestingly, the six-
category genotyped enrichment yielded higher entropy than a hypothetical DHS-only imputed enrichment.
This formulation of “functional entropy” provides a standard metric for comparing real and hypothetical
enrichment scenarios completely independent of sample size and data platform. Each row indicates a different
enrichment scenarios observed in the 11 traits, with the rows listing individual annotations corresponding
to an enrichment only at that category and no enrichmet in other categories. Each column then lists the
probability of a SNP being causal (% h2g × % SNP for that category), as well as the resulting entropy
computed as H = −

∑
p× log(p).
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A: 1000G imputed B: Genome-wide significant C: Known from NHGRI

Category % SNPs % SNPs (enrichment) % SNPs (enrichment1)

Coding 0.5% 1.7% (3.16) 8.5% (16.98)
UTR 0.8% 1.7% (2.20) 2.6% (3.25)
Promoter 2.2% 2.3% (1.04) 7.5% (3.39)
DHS 15.7% 14.3% (0.91) 27.4% (1.74)
Intron 28.8% 30.7% (1.07) 25.5% (0.88)
Intergenic 52.0% 49.3% (0.95) 28.6% (0.55)

1Does not account for null distribution of NHGRI SNPs.

Table S17. Functional enrichment from GWAS hits. Fraction of SNPs partitioned into each category
shown for (A) all 1000 Genomes imputed SNPs; (B) genome-wide significant imputed SNPs (single best
association in 1MB locus); and (C) known associated SNPs from NHGRI catalog. Enrichments computed
relative to 1000G imputed fractions, all values computed from union of 11 traits.
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Annotation % h2g (s.e.) Enrichment (s.e) P -value

Coding 0.026 (0.014) 4.206 (2.192) 1.44e-01
UTR 0.075 (0.014) 8.934 (1.653) 1.59e-06
Promoter 0.040 (0.017) 1.814 (0.760) 2.84e-01
DHS 0.509 (0.047) 3.154 (0.291) 1.40e-13
Intron 0.193 (0.028) 0.651 (0.096) 2.82e-04
Intergenic 0.149 (0.029) 0.294 (0.057) 1.94e-35

Table S18. Components of heritability from regulatory elements in PGC2 schizophrenia.
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Category % category % h2g % DHS h2g (se) % DHS SNP enrichment to DHS (se) PV

DHS-Coding 27.4% 5% (1%) 5% (1%) 0.9% 5.30 (1.34) 1.35e-03
DHS-UTR 31.2% 5% (1%) 4% (1%) 1.4% 2.62 (0.93) 8.16e-02
DHS-Promoter 29.8% 9% (2%) 9% (2%) 3.9% 2.25 (0.47) 7.90e-03
DHS-Intron NA 40% (3%) 35% (2%) 39.6% 0.87 (0.06) 3.74e-02
DHS-Intergenic NA 51% (4%) 48% (2%) 54.2% 0.89 (0.04) 1.05e-02
non-DHS NA -16% (5%) NA NA NA NA

Table S19. Functional enrichment of main categories within DHS category. The extended DHS
category was sub-partitioned into five annotations, and h2g reported. % category reports the percent of main
category covered by DHS. The remaining non-DHS category was significantly negative (P = 0.002), likely
due to underestimating standard errors.
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Genotyped Imputed Genotyped
Tissue type Cell type Autoimmune Autoimmune Non-autoimmune

Blood T Cell 5.8 (4.2e-06) 10.2 (1.3e-12) 2.1 (3.5e-01)
Blood Leukemia Cells 3.5 (6.7e-06) 4.7 (5.3e-10) 1.0 (9.8e-01)
Blood Lymphoblastoid Cell 3.3 (1.1e-05) 4.9 (5.4e-11) 1.0 (9.4e-01)
Fetal Kidney Fetal Right Renal Pelvis 5.4 (1.4e-04) 8.2 (5.7e-08) 1.5 (7.4e-01)
Bone Marrow Monocyte 4.1 (1.6e-04) 5.7 (2.2e-07) 1.3 (7.6e-01)
Blood CD8 Primary Cell 3.0 (3.0e-04) 5.4 (1.8e-10) 1.0 (9.6e-01)
Fetal Thymus Fetal Thymus Cell 2.6 (4.0e-04) 4.5 (3.2e-09) 0.8 (6.6e-01)
Blood CD4 Primary Cell 2.3 (9.5e-04) 3.1 (6.5e-06) 0.9 (8.7e-01)
Blood CD14 Primary Cell 2.7 (1.1e-03) 3.2 (2.8e-04) 1.3 (7.4e-01)
Liver Hliver Cell 3.7 (1.4e-03) 6.4 (2.8e-08) -0.3 (2.1e-01)
Fetal Kidney Fetal Left Renal Cortex Cell 4.8 (2.0e-03) 8.3 (2.6e-07) 1.6 (7.1e-01)
Bone Marrow Blast Cell 2.9 (2.1e-03) 5.1 (9.1e-09) 2.4 (9.0e-02)
Fetal Muscle Fetal Back Muscle Cell 5.6 (6.5e-03) 9.5 (2.5e-08) 2.9 (2.3e-01)
Blood CD34 Primary Cell 1.7 (9.9e-03) 1.7 (1.5e-02) 0.7 (3.9e-01)
Blood CD34 Mobilized Primary Cell 0.1 (3.0e-02) 0.3 (1.2e-01) 1.2 (6.6e-01)
Bone Marrow Erythroleukemic Cell 2.3 (3.8e-02) 3.2 (4.7e-04) 0.5 (5.4e-01)
Fetal Lung Fetal Left Lung Cell 0.2 (3.9e-02) -0.1 (1.6e-02) 1.1 (8.4e-01)
Blood Lymphocyte 1.7 (4.0e-02) 2.4 (3.5e-04) 0.7 (4.7e-01)
Fetal Kidney Fetal Left Renal Pelvis 2.3 (4.7e-02) 3.2 (3.7e-03) 0.9 (8.8e-01)
Fetal Large Intestine Fetal Large Intestine Cell 1.6 (4.9e-02) 2.7 (2.2e-06) 0.9 (6.9e-01)

Table S20. Cell-type and phenotype specific DHS enrichment. Fold-enrichment of h2g relative
to SNPs reported for cell-types DHSs observed as significant in genotype data (without adjusting for 83
cell-types tested). Enrichment was measured in comparison to h2g at DHS regions, accounting for the
background DHS enrichment. Results shown separately from meta-analysis of 6 autoimmune traits and
5 non-autoimmune traits. No shared-controls adjustment applied.
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Cell type AS CD MS RA T1D UC

Monocyte 9.3% (2.8) 9.2% (3.1) 14.8% (4.5) 20.7% (7.0) 11.6% (3.8) 13.8% (4.7)
Fetal Right Renal Pelvis 5.5% (2.7) 5.0% (3.3) 13.7% (7.0) 12.2% (7.8) 6.0% (3.9) 11.6% (7.6)
Lymphoblastoid Cell 35.1% (4.2) 15.2% (2.1) 35.8% (4.4) 28.3% (3.8) 12.5% (1.7) 29.9% (4.1)
CD8 Primary Cell 23.3% (3.1) 7.8% (1.2) 33.6% (4.5) 14.4% (2.2) 56.4% (8.7) 28.4% (4.4)
Fetal Thymus Cell 20.3% (2.1) 15.7% (1.8) 34.8% (3.6) -2.3% (-0.3) 23.4% (2.8) 30.5% (3.5)
T Cell 19.2% (7.2) 11.3% (5.0) 15.9% (6.1) 7.9% (3.5) NA 15.1% (7.0)
Leukemia Cells 10.5% (1.5) 19.3% (2.9) 29.8% (4.1) 19.9% (3.0) 30.2% (4.6) 29.5% (4.6)

Mean enrichment: (3.4) (2.8) (4.9) (3.9) (4.2) (5.1)

Table S21. Cell-type and phenotype specific DHS enrichment by trait. For cell-types reported
as significant in Table 1, % h2g and fold-enrichment relative to DHS is shown for each autoimmune trait,
estimated from genotyped data.
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Joint with main categories

% genome % h2g univar % h2g (se) enrichment (se) P -value

1% 0.610 0.198 (0.040) 18.094 (3.655) 2.91e-06
5% 0.853 0.415 (0.070) 7.971 (1.335) 1.76e-07
10% 0.948 0.704 (0.073) 6.884 (0.717) 2.35e-16
16% (all DHS) 0.985 0.795 (0.066) 5.072 (0.421) 3.64e-22

Table S22. h2g from narrowed DHS regions. DHS regions were narrowed (to the center of the region)
to achieve set % of genome, and h2g estimates are reported from a single DHS component (univar) as well as
jointly with the five other main components. For comparison, a randomly sampled 16% of SNPs yielded an
average % h2g univar of 0.86.
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Variant class (and SNPs in LD) All h2g (se) Hom. h2g (se) Hom. h2gLD (se)

All 0.307 (0.027) 0.366 (0.038) 0.370 (0.040)
GWAS chip 0.273 (0.020) 0.314 (0.028) 0.317 (0.042)
Exome chip 0.116 (0.022) 0.157 (0.032) 0.158 (0.034)

Variant class (exclusive) All h2g (se) Hom. h2g (se) Hom. h2gLD (se)

P -value P -value P -value

GWAS chip 0.242 (0.020) 0.282 (0.029) 0.291 (0.028)
Exome chip 0.065 (0.021) 0.084 (0.031) 0.079 (0.034)

2.0× 10−06 2.0× 10−03 1.2× 10−02

Exome chip (rare) 0.014 (0.019) 0.040 (0.028) 0.037 (0.029)
2.1× 10−01 7.7× 10−02 1.0× 10−01

Exome chip (common) 0.051 (0.011) 0.044 (0.015) 0.042 (0.017)
5.2× 10−07 1.3× 10−03 7.7× 10−03

Table S23. Components of heritability of Schizophrenia from exome chip. Estimates of h2g are
reported from variance components in the homogenous Swedish sub-population as well as all samples. Top
panel shows estimates (without accounting for shared variance due to LD between classes) in All samples,
homogenous Swedish sub-population, and LD-adjusted1 estimates (h2gLD) from the homogenous Swedish
sub-population. Bottom panel shows corresponding joint estimates accounting for shared variance due to
LD. In bottom panel, P -values from a likelihood ratio test on the corresponding component are shown below
each row.
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A: GWAS chip + Exome chip

Annotation h2g (se) % h2g (se) % Non-coding SNPs Enrichment (se) P -value

Coding (common) 0.049 (0.015) NA NA NA NA
Coding (rare) 0.037 (0.028) NA NA NA NA
UTR 0.003 (0.007) 1.1% (2.4%) 1.9% 0.59 (1.24) 7.4e-01
Promoter 0.006 (0.008) 2.2% (3.0%) 3.0% 0.73 (1.00) 7.8e-01
DHS 0.114 (0.023) 41.2% (8.0%) 25.7% 1.60 (0.31) 5.3e-02
Intron 0.083 (0.019) 30.2% (6.4%) 26.2% 1.15 (0.25) 5.3e-01
Intergenic 0.070 (0.023) 25.3% (7.4%) 43.2% 0.59 (0.17) 1.6e-02

B: GWAS chip

Annotation h2g (se) % h2g (se) % SNPs Enrichment (se) P -value

Coding 0.014 (0.007) 4.3% (2.3%) 2.0% 2.15 (1.13) 3.1e-01
UTR 0.005 (0.007) 1.6% (2.1%) 1.9% 0.84 (1.12) 8.9e-01
Promoter 0.009 (0.008) 2.8% (2.6%) 2.9% 0.95 (0.90) 9.5e-01
DHS 0.118 (0.023) 37.8% (7.1%) 25.2% 1.50 (0.28) 7.3e-02
Intron 0.092 (0.019) 29.5% (5.8%) 25.7% 1.15 (0.22) 5.1e-01
Intergenic 0.075 (0.023) 24.0% (6.6%) 42.4% 0.57 (0.16) 5.7e-03

C: 1000G imputed + Exome chip

Annotation h2g (se) % h2g (se) % Non-coding SNPs Enrichment (se) P -value

Coding (common) 0.050 (0.016) NA NA NA NA
Coding (rare) 0.035 (0.028) NA NA NA NA
UTR 0.030 (0.016) 11.0% (5.9%) 0.8% 13.26 (7.08) 8.3e-02
Promoter -0.017 (0.019) -6.1% (7.0%) 2.3% -2.63 (2.99) 2.3e-01
DHS 0.144 (0.059) 53.0% (20.4%) 16.9% 3.13 (1.21) 7.7e-02
Intron 0.044 (0.032) 16.0% (11.8%) 28.7% 0.56 (0.41) 2.8e-01
Intergenic 0.071 (0.035) 26.1% (12.6%) 51.2% 0.51 (0.25) 4.7e-02

D: 1000G imputed

Annotation h2g (se) % h2g (se) % SNPs Enrichment (se) P -value

Coding 0.056 (0.014) 17.6% (4.8%) 0.4% 45.89 (12.43) 3.1e-04
UTR 0.023 (0.015) 7.2% (4.7%) 0.8% 8.66 (5.68) 1.8e-01
Promoter -0.024 (0.018) -7.7% (5.7%) 2.3% -3.31 (2.47) 8.2e-02
DHS 0.169 (0.055) 53.6% (16.4%) 16.9% 3.18 (0.97) 2.5e-02
Intron 0.025 (0.030) 7.8% (9.5%) 28.6% 0.27 (0.33) 2.8e-02
Intergenic 0.068 (0.032) 21.6% (10.1%) 51.0% 0.42 (0.20) 3.7e-03

Table S24. Components of heritability from regulatory elements in SWE-SCZ schizophrenia.
Estimates are reported from the homogenous Swedish sub-population.
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Coding fmax Homogenous All

Singleton 0.000 (0.007) 0.000 (0.004)
0.001 0.000 (0.009) 0.000 (0.006)
0.005 0.000 (0.010) 0.004 (0.007)
0.010 0.000 (0.011) 0.006 (0.008)
0.050 0.025 (0.013) 0.031 (0.009)

Table S25. Collapsed-variant ĥ2g of Schizophrenia from exome chip. For a given cohort, the variance
of the heritability estimate tends to grow with the number of markers analyzed. Borrowing from gene-based
burden association tests7,8, we considered a strategy for reducing the variance of this estimate by collapsing
rare variants in a gene into a single polymorphic site when computing the GRM. Over the full data-set,
this procedure collapses the 60,000 effective SNPs into approximately 16,000 genes that contain polymorphic
SNPs. This technique also has the benefit of incorporating singleton variants that violate the traditional
variance-components model normality assumptions. However, as with burden-tests, the model assumes that
all SNPs have identical normalized effect-sizes and will exhibit downwards bias when this assumption is
violated. Formally, the method recodes each gene as a multi-allelic “pseudo-SNP” where samples that carry
a minor allele below frequency threshold fmax are considered carriers of the pseudo-SNP allele equal to the
number of such variants they carry. The pseudo-SNPs are then normalized to have mean=0 and variance=1
and a new GRM is computed over the normalized pseudo-SNPs as in the standard model. The corresponding
measure of h2g,collapsed is estimated from this collapsed variance-component, jointly with a single non-coding

component, which fully accounts for the minimal tagging of h2g from non-coding regions by collapsed variants
(Table S41). Our simulations show that disease architectures with > 50% non-causal (or non-deleterious)
variants capture substantially less heritability as to make this approach underpowered compared to the
standard model considering all SNPs (Table S42, S43). This table reports estimates of heritability from gene-
based collapsed variants computed in two sub-groups of Swedish samples with increasing allele frequency
thresholds. Analytical standard error reported in parenthesis.
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Phenotype Study # SNPs # Samples

RA Stahl et al. 2010 2,556,272 25,708
T2D Morris et al. 2012 2,473,442 149,821
CAD Schunkert et al. 2011 2,420,361 22,233
SCZ PGC2 2014 9,444,246 150,064

Table S26. GWAS summary statistics used for fine-mapping.
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# SNPs in critical set P(causal in critical set)

Sample size No prior1 True prior2 Wrong prior3 No prior1 True prior2 Wrong prior3

4414 1132 309 310 0.95 0.94 0.84
8828 1024 279 280 0.97 0.96 0.87

13242 903 246 245 0.98 0.97 0.88
17656 747 202 201 0.98 0.97 0.89
22070 603 161 163 0.98 0.96 0.88
26484 485 128 125 0.97 0.96 0.88
30898 375 97 95 0.96 0.96 0.87
35312 276 70 72 0.96 0.94 0.86
39726 199 50 52 0.96 0.94 0.85
44140 145 38 39 0.95 0.93 0.83

For (Coding, UTR, Promoter, DHS, Intron, Intergenic) respectively the following models and priors were used:
1Trait = ( 13.8 , 8.4 , 2.8 , 5.1 , 0.05 , 0.001 ); prior = ( 1.0 , 1.0 , 1.0 , 1.0 , 1.0 , 1.0 )

2Trait = prior = ( 13.8 , 8.4 , 2.8 , 5.1 , 0.05 , 0.001 )
3Trait = ( 6.6 , 3.3 , 0.5 , 4.3 , 0.3 , 0.1 ); prior = ( 13.8 , 8.4 , 2.8 , 5.1 , 0.05 , 0.001 )

Table S27. Simulated fine-mapping analyses and calibration. Loci harboring a single typed causal
variant were simulated from imputed SNPs and evaluated for fine-mapping over increasing sample sizes. The
95% critical set of causal variants was then computed with and without SNP priors, with set size and fraction
of instances where the causal variant is in the critical set reported. “No prior” corresponds to a generative
model where enrichment matches mean estimate from imputed data in main text and no prior is used for
fine-mapping. “True prior” corresponds to the same generative model and the true enrichment is used as
prior for fine-mapping. “Wrong prior” corresponds to the same fine-mapping priors but true enrichment
set to the boundary of the confidence interval reported in main text. Each value is the mean from 2,000
simulations.
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Component Univariate R2 Step-wise R2 Step-wise PV Multivariate PV

DHS 0.055 0.055 4.24e-104 7.49e-12
Intron 0.034 0.056 1.60e-03 2.83e-04
Intergenic 0.031 0.059 8.50e-07 6.22e-07
UTR 0.021 0.062 1.05e-07 7.34e-07
Promoter 0.016 0.062 3.46e-01 2.42e-01
Coding 0.009 0.062 2.24e-01 2.24e-01

We computed the expected GBLUP prediction accuracy using the previously derived9,10 relationship that M effective SNPs,
N training samples, and h2g are expected to yield prediction r2 = (h2gh

2
g)/(h2g +M/N). We did not account for ascertainment

because prediction was assessed by cross-validation. For the PGC analysis, the observed-scale h2g = 0.49, N = 10000 and we

assumed M = 60000, which is expected to yield genome-wide r2 = 0.037. Assuming independent variance components, we
similarly estimated expected r2 of the functionally stratified predictor by evaluating (jointly estimated) component-specific h2g
directly in the data, estimating M from the fraction of SNPs in each component, and summing all of the functional expected r2

to compute the genome-wide prediction. For the PGC analysis, this yielded an expected genome-wide r2 = 0.077, or a 2.08×
increase over the standard predictor.

Table S28. BLUP prediction accuracy in PGC. The h2g for a set of SNPs is an upper-bound on the
prediction accuracy of a polygenic score constructed from those SNPs in unrelated samples9–11. To evaluate
the impact of functional partitioning on risk prediction, we compared GBLUP12,13 prediction accuracy using
six jointly estimated functional components vs. a single genome-wide component in the phase 1 subset of the
PGC schizophrenia data (11,000 samples, see Materials and Methods). BLUP coefficients were computed
in GCTA14 (see Web Resources) using the imputed data in a model with a single genome-wide component
and a separate model with the six functional category components and converted into SNP effects. Risk
scores were then computed from the SNPs and effects in each component. We assessed prediction accuracy
using 10-fold cross-validation, where component-specific heritability and BLUP values were only estimated in
the ∼10,000 training samples. To account for population structure we included 10 principal components as
fixed-effects in training the BLUP. We also included the same number of PCs when evaluating the predicted
phenotype in a logistic regression with the true phenotype, reporting the Nagelkerke pseudo-R2 of each
model minus that of the principal components. Results are reported in Table S28. In this table, prediction
R2 and significance is reported for GBLUPs estimated from six functional categories jointly in 10-fold cross-
validation. Univariate R2 column reports the accuracy of a 1-dof predictor from each of the component
individually. Step-wise R2 column reports the accuracy of a multiple-dof prediction with each component
added as an additional predictor in turn. Step-wise PV column reports P -value from the newly added
predictor. Multivariate PV reports P -value from each predictor in the final 6-dof prediction model. In all
instances, principal components were included as additional fixed-effects and subtracted from prediction R2.
Of the six jointly estimated components, DHS yielded the highest individual R2 (0.055) and coding yielded
the lowest (0.009). A single degree of freedom GBLUP prediction from the sum of all six components yielded
a highly significant R2 of 0.061 (P < 10−20). However, GBLUP prediction using a single component was only
slightly less accurate, with R2 = 0.058 (P = 2.6× 10−7 for difference). On the observed-scale OLS R2, this
corresponds to a genome-wide r2 = 0.043 and a stratified r2 = 0.046. Though highly statistically significant,
the observed-scale increase of 1.07× is substantially lower than the 2.08× that would be expected in the
case of independent markers (see Foonote). This indicates that the assumption of component independence
is strongly violated and significant enrichments in component h2g do not necessarily translate into increased
prediction accuracy.
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Genotyped:

causal MAF< 0.50 causal MAF< 0.05 causal MAFDHS < 0.05

Category empirical sd REML se empirical sd REML se empirical sd REML se

Coding 0.009 0.008 0.011 0.010 0.011 0.010
UTR 0.009 0.009 0.011 0.011 0.011 0.011
Promoter 0.015 0.015 0.017 0.016 0.016 0.016
DHS 0.059 0.053 0.050 0.051 0.051 0.051
Intron 0.047 0.047 0.041 0.042 0.042 0.042
Intergenic 0.058 0.058 0.050 0.050 0.051 0.050

Imputed:

causal MAF< 0.50 causal MAF< 0.05 causal MAFDHS < 0.05

Category empirical sd REML se empirical sd REML se empirical sd REML se

Coding 0.033 0.032 0.033 0.032 0.032 0.032
UTR 0.033 0.033 0.033 0.033 0.032 0.033
Promoter 0.042 0.041 0.042 0.041 0.044 0.041
DHS 0.124 0.124 0.125 0.124 0.126 0.124
Intron 0.069 0.068 0.069 0.068 0.067 0.069
Intergenic 0.077 0.075 0.073 0.075 0.077 0.075

Table S29. Empirical and analytical standard error of partitioned h2g. Over 1,000 simulations for
each of three disease architectures, the emperical standard deviation and average REML analytical standard
error is reported for each functional category.
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Phenotype Coding DHS Promoter UTR Intron Intergenic

SP (REML) 0.020 (0.029) 0.376 (0.133) 0.074 (0.044) 0.025 (0.031) 0.266 (0.094) 0.239 (0.106)
SP (jknife) 0.024 (0.027) 0.368 (0.168) 0.085 (0.047) 0.022 (0.019) 0.258 (0.143) 0.244 (0.088)
AS (REML) 0.069 (0.048) 0.418 (0.161) 0.052 (0.057) 0.114 (0.046) 0.149 (0.117) 0.198 (0.127)
AS (jknife) 0.086 (0.048) 0.419 (0.188) 0.040 (0.057) 0.102 (0.052) 0.115 (0.149) 0.238 (0.112)
MS (REML) 0.064 (0.017) 0.331 (0.053) 0.061 (0.020) 0.039 (0.014) 0.242 (0.040) 0.264 (0.042)
MS (jknife) 0.073 (0.023) 0.339 (0.076) 0.050 (0.021) 0.046 (0.012) 0.235 (0.034) 0.258 (0.068)
UC (REML) 0.047 (0.025) 0.433 (0.109) 0.087 (0.037) 0.043 (0.026) 0.212 (0.076) 0.179 (0.086)
UC (jknife) 0.045 (0.027) 0.425 (0.105) 0.085 (0.039) 0.045 (0.028) 0.223 (0.069) 0.177 (0.077)
BD (REML) 0.035 (0.024) 0.340 (0.103) -0.010 (0.033) 0.036 (0.025) 0.229 (0.080) 0.370 (0.089)
BD (jknife) 0.030 (0.027) 0.321 (0.129) -0.021 (0.035) 0.047 (0.022) 0.245 (0.088) 0.377 (0.093)
CAD (REML) 0.017 (0.032) 0.411 (0.154) 0.045 (0.052) 0.056 (0.037) 0.245 (0.120) 0.226 (0.138)
CAD (jknife) 0.018 (0.025) 0.432 (0.137) 0.048 (0.054) 0.058 (0.039) 0.225 (0.105) 0.220 (0.134)
CD (REML) 0.037 (0.025) 0.584 (0.119) 0.073 (0.040) -0.008 (0.025) 0.149 (0.088) 0.165 (0.103)
CD (jknife) 0.036 (0.025) 0.619 (0.113) 0.071 (0.050) 0.005 (0.029) 0.134 (0.107) 0.133 (0.117)
HT (REML) 0.062 (0.029) 0.283 (0.117) 0.049 (0.042) 0.055 (0.030) 0.194 (0.094) 0.356 (0.105)
HT (jknife) 0.062 (0.027) 0.319 (0.110) 0.058 (0.052) 0.057 (0.026) 0.210 (0.083) 0.293 (0.116)
RA (REML) -0.006 (0.049) 0.464 (0.234) 0.019 (0.076) 0.071 (0.057) 0.065 (0.189) 0.388 (0.201)
RA (jknife) -0.017 (0.037) 0.444 (0.325) -0.007 (0.085) 0.069 (0.063) 0.063 (0.193) 0.443 (0.241)
T1D (REML) 0.079 (0.046) 0.282 (0.180) 0.110 (0.067) 0.051 (0.044) 0.367 (0.147) 0.112 (0.171)
T1D (jknife) 0.077 (0.050) 0.301 (0.158) 0.114 (0.076) 0.061 (0.054) 0.361 (0.103) 0.088 (0.161)
T2D (REML) -0.020 (0.030) 0.694 (0.160) -0.035 (0.047) -0.007 (0.032) 0.261 (0.114) 0.107 (0.136)
T2D (jknife) -0.020 (0.041) 0.769 (0.146) -0.030 (0.048) -0.019 (0.040) 0.208 (0.160) 0.096 (0.180)

meta (REML) 0.040 (0.008) 0.384 (0.033) 0.050 (0.012) 0.035 (0.008) 0.226 (0.025) 0.250 (0.028)
2.59e-04 7.98e-06 1.94e-02 2.21e-03 6.40e-02 4.11e-13

meta (jknife) 0.039 (0.009) 0.418 (0.038) 0.043 (0.013) 0.040 (0.008) 0.228 (0.024) 0.238 (0.032)
1.10e-03 1.50e-06 1.07e-01 6.45e-05 6.72e-02 1.78e-11

Table S30. Comparison of analytical and jack-knife % h2g from genotyped SNPs. For each trait
and functional category, the % h2g and standard error (in parentheses) is shown from a the standard REML
and a weighted block-jackknife dropping each chromosome in turn. Results from meta-analysis for each
method shown at the bottom, with P -values for enrichment below each entry.
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Phenotype Coding DHS Promoter UTR Intron Intergenic

BD (REML) 0.049 (0.072) 0.346 (0.265) -0.110 (0.093) 0.116 (0.076) 0.270 (0.153) 0.330 (0.162)
BD (jknife) 0.029 (0.079) 0.244 (0.294) -0.110 (0.119) 0.155 (0.086) 0.338 (0.173) 0.345 (0.172)
CAD (REML) 0.075 (0.125) 0.007 (0.468) 0.028 (0.160) 0.105 (0.130) 0.444 (0.275) 0.341 (0.272)
CAD (jknife) 0.052 (0.113) 0.058 (0.598) 0.024 (0.163) 0.125 (0.103) 0.449 (0.352) 0.301 (0.307)
CD (REML) 0.192 (0.082) 1.517 (0.271) -0.036 (0.095) 0.031 (0.076) -0.309 (0.156) -0.395 (0.173)
CD (jknife) 0.201 (0.090) 1.506 (0.367) -0.042 (0.106) 0.044 (0.088) -0.289 (0.196) -0.417 (0.176)
HT (REML) 0.255 (0.105) 0.938 (0.316) -0.030 (0.118) 0.127 (0.095) -0.324 (0.186) 0.034 (0.198)
HT (jknife) 0.253 (0.096) 0.902 (0.431) -0.020 (0.181) 0.122 (0.086) -0.266 (0.169) 0.008 (0.261)
RA (REML) 0.014 (0.176) 1.627 (0.674) 0.283 (0.246) 0.212 (0.193) -0.789 (0.451) -0.346 (0.420)
RA (jknife) 0.026 (0.213) 1.592 (0.952) 0.285 (0.218) 0.250 (0.204) -0.826 (0.347) -0.340 (0.460)
T1D (REML) 0.350 (0.161) 1.062 (0.425) 0.288 (0.183) -0.018 (0.129) -0.083 (0.260) -0.599 (0.308)
T1D (jknife) 0.370 (0.165) 0.992 (0.509) 0.290 (0.194) 0.004 (0.121) -0.126 (0.314) -0.528 (0.287)
T2D (REML) 0.025 (0.081) 0.638 (0.275) -0.033 (0.102) 0.087 (0.085) 0.171 (0.174) 0.111 (0.172)
T2D (jknife) 0.022 (0.063) 0.668 (0.164) -0.048 (0.064) 0.084 (0.094) 0.165 (0.186) 0.110 (0.095)
SP (REML) 0.077 (0.066) 0.443 (0.228) -0.097 (0.077) 0.008 (0.063) 0.373 (0.140) 0.196 (0.141)
SP (jknife) 0.077 (0.067) 0.401 (0.186) -0.063 (0.090) 0.007 (0.052) 0.373 (0.130) 0.206 (0.134)
MS (REML) 0.055 (0.029) 0.777 (0.094) 0.117 (0.040) 0.080 (0.031) 0.015 (0.057) -0.045 (0.057)
MS (jknife) 0.058 (0.026) 0.782 (0.144) 0.115 (0.052) 0.089 (0.039) 0.002 (0.080) -0.048 (0.071)
AS (REML) 0.015 (0.104) 1.063 (0.334) 0.075 (0.135) 0.209 (0.120) -0.236 (0.206) -0.126 (0.202)
AS (jknife) 0.019 (0.107) 1.065 (0.437) 0.073 (0.118) 0.193 (0.178) -0.232 (0.265) -0.120 (0.235)
UC (REML) 0.076 (0.059) 0.935 (0.194) 0.238 (0.079) -0.014 (0.057) -0.056 (0.115) -0.180 (0.124)
UC (jknife) 0.079 (0.058) 0.897 (0.235) 0.250 (0.100) -0.043 (0.052) -0.023 (0.123) -0.161 (0.157)

meta (REML) 0.075 (0.020) 0.795 (0.066) 0.062 (0.026) 0.066 (0.020) 0.015 (0.039) -0.031 (0.040)
4.74e-04 3.64e-22 1.25e-01 4.28e-03 5.48e-12 2.84e-42

meta (jknife) 0.073 (0.019) 0.710 (0.077) 0.047 (0.029) 0.057 (0.022) 0.028 (0.047) -0.002 (0.043)
3.35e-04 5.45e-13 3.98e-01 2.25e-02 4.17e-08 3.18e-33

Table S31. Comparison of analytical and jack-knife % h2g from imputed SNPs. For each trait and
functional category, the % h2g and standard error (in parentheses) is shown from a the standard REML and
a weighted block-jackknife dropping each chromosome in turn. Results from meta-analysis for each method
shown at the bottom, with P -values for enrichment below each entry.
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No fixed-effects PCs as fixed-effects
Phenotype Prevalence REML (se) Regression (se) REML (se) Regression (se)

BD 0.005 0.31 (0.033) 0.40 (0.034) 0.24 (0.035) 0.24 (0.035)
CAD 0.060 0.27 (0.061) 0.28 (0.059) 0.25 (0.062) 0.22 (0.059)
CD 0.001 0.18 (0.025) 0.22 (0.025) 0.17 (0.025) 0.20 (0.025)
HT 0.050 0.58 (0.097) 0.59 (0.093) 0.55 (0.098) 0.50 (0.093)
RA 0.005 0.10 (0.033) 0.11 (0.032) 0.09 (0.033) 0.08 (0.032)
T1D 0.005 0.14 (0.032) 0.15 (0.031) 0.13 (0.032) 0.13 (0.032)
T2D 0.080 0.50 (0.068) 0.62 (0.067) 0.42 (0.070) 0.43 (0.067)
SP 0.010 0.75 (0.013) 10.00 (0.021) 0.18 (0.024) 0.25 (0.055)
MS 0.001 0.29 (0.007) 2.91 (0.008) 0.17 (0.009) 0.21 (0.013)
AS 0.003 0.15 (0.027) 0.16 (0.026) 0.14 (0.027) 0.14 (0.026)
UC 0.001 0.15 (0.016) 0.15 (0.015) 0.14 (0.016) 0.14 (0.015)

Table S32. Total liability-scale h2g from four inference methods. For each trait, the total estimate
of h2g is shown from the standard REML method and Haseman-Elston regression with and without included
fixed-effects. Estimates were transformed to liability-scale using the given prevalence.
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No fixed-effects PCs as fixed-effects
Phenotype Prevalence REML Regression REML Regression

BD 0.005 0.48 (0.20) 0.63 (0.14) 0.35 (0.27) 0.43 (0.24)
CAD 0.060 -0.08 (0.44) -0.05 (0.39) 0.01 (0.47) -0.10 (0.49)
CD 0.001 1.46 (0.26) 1.49 (0.21) 1.52 (0.27) 1.58 (0.24)
HT 0.050 0.91 (0.29) 1.06 (0.26) 0.94 (0.32) 1.12 (0.31)
RA 0.005 1.37 (0.57) 1.38 (0.52) 1.63 (0.67) 1.76 (0.75)
T1D 0.005 1.21 (0.40) 1.35 (0.36) 1.06 (0.43) 1.27 (0.43)
T2D 0.080 0.70 (0.24) 0.70 (0.18) 0.64 (0.28) 0.52 (0.26)
SP 0.010 0.56 (0.06) 0.75 (0.00) 0.44 (0.23) 0.09 (0.39)
MS 0.001 0.72 (0.06) 0.79 (0.00) 0.78 (0.09) 0.91 (0.11)
AS 0.003 1.09 (0.31) 1.09 (0.28) 1.06 (0.33) 1.07 (0.33)
UC 0.001 0.91 (0.18) 1.00 (0.16) 0.94 (0.19) 1.03 (0.18)

Table S33. Fraction of DHS h2g from four inference methods. For each trait, the DHS estimate of
% h2g is shown from the standard REML method and Haseman-Elston regression with and without included
fixed-effects.
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Annotation Regression % h2g REML % h2g (s.e.)

Coding 10% 8% (2%)
DHS 90% 79% (7%)
Promoter 5% 6% (3%)
UTR 8% 7% (2%)
Intron -4% 2% (4%)
Intergenic -9% -3% (4%)

Table S34. Regression and variance-component estimates of functional enrichment. The meta-
analyzed estimate of % h2g is shown for analyses using regression and variance-components (REML). No
shared-control adjustment was performed.
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polygenic DHS high-effect
Category % SNPs % h2g (se 100 trials) % h2g (se 400 trials)

CODING 0.8% 0.7% (0.9%) 1.6% (0.4%)
UTR 1.1% 1.2% (0.9%) 0.7% (0.5%)
PROMOTER 2.8% 2.7% (1.1%) 3.5% (0.6%)
DHS 16.7% 15.6% (2.7%) 17.1% (1.8%)
INTRON 31.1% 30.2% (2.0%) 29.5% (1.1%)
OTHER 47.5% 49.6% (1.7%) 47.7% (1.1%)

Table S35. Partitioned h2g with simulated case-control ascertainment. We simulated case-control
ascertainment under two disease architectures and estimated % h2g to asess ascertainment induced biases.
Phenotypes were simulated on imputed chr1 SNPs (10% of genome) of the 33,000 sample combined WTCCC2
cohort, using 830 causal variants with no functional enrichment and h2g = 0.50. “Polygenic” columns present
results from simulation with randomly selected causal variants. “DHS high-effect” columns present results
from simulation with only 16 causal DHS variants (each explaining 1% of the h2g), and 814 randomly selected
non-DHS causal variants. Neither disease architecture lead to significant deviations from null enrichment.
Ascertainment was induced by setting the top 1% of phenotypes to be cases (327 samples) and randomly
selecting 654 non-cases to be controls, yielding a trait with 1% prevalance and 1:2 case:control ascertainment.
Category-specific GRMs were then constructed for each ascertained cohort and h2g was evaluated on the
liability scale. Restricting to chromosome 1 resulted in an M/N equal to that of a ∼10,000 sample cohort
(where M is the effective number of SNPs, and N is the number of samples).
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polygenic

Category empirical sd REML se

CODING 8.0% 7.1%
UTR 8.0% 8.4%
PROMOTER 10.5% 10.0%
DHS 25.1% 27.3%
INTRON 18.4% 16.3%
OTHER 15.7% 17.6%

Table S36. Empirical and analytical standard error of partitioned h2g with case-control ascer-
tainment. The emperical standard deviation and REML analytical standard-error shown for estimates of
% h2g for a simulated 1:2 case:control ascertained trait with prevalance of 1% (see Table S35 for simulation
details). Under this quasi-polygenic architecture with 830 causal variants, the analytical SE is 0.2% higher
on average. Estimates shown over 100 random simulations.
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Joint GRM: h2g (se)

known,non-coding + non-coding 0.018 (0.004)
known,non-coding + non-coding 0.287 (0.028)
known,coding + known,non-coding + non-coding 0.006 (0.004)
known,coding + known,non-coding + non-coding 0.018 (0.004)
known,coding + known,non-coding + non-coding 0.286 (0.028)

Table S37. Components of heritability for known Schizophrenia loci. h2g for multiple joint estimates
at known schizophrenia loci are reported for the underlined component in the homogenous Swedish cohort.
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Joint GRM ĥ2g (se) ĥ2gLD (se)

Common coding 10.7% (0.7%) 11.8% (0.9%)
Rare coding (non-singleton) 1.7% (1.6%) 0.7% (2.0%)

Joint GRM + non-coding ĥ2g (se) ĥ2gLD (se)

Common coding -1.2% (0.7%) -1.1% (0.9%)
Rare coding (non-singleton) -0.6% (1.7%) -2.3% (2.1%)

Table S38. Fraction of simulated common non-coding heritability inferred by coding variants.
Another potential source of confounding when estimating exome h2g is heritability from nearby non-coding
variants that is tagged by exonic variants due to LD. Because our interest is in identifying the purely exonic
contribution to phenotype, we consider the heritability from these non-coding variants to “contaminate” our
estimates. Using the GWAS chip data from this cohort allows us to quantify the amount of contamination
expected due to common non-coding SNPs. We simulated a standard polygenic phenotype with h2 = 0.50
coming exclusively from 5,000 randomly selected GWAS chip non-coding SNPs and then inferred h2g using
variance-components constructed from coding SNPs. No coding SNPs were used to generate the phenotypes,
and if no contamination was present we expect the inferred h2g to equal zero.Bottom panel shows results when
a third variance-component corresponding to non-coding variants is estimated jointly in the model. Values
reported represent the fraction of simulated heritability inferred averaged over 50 trials (with standard error
in parenthesis). We found that all coding variants together accounted for an average of 17.4% of the non-
coding heritability (Table S38), significantly different from zero. This further broke down to slight but non-
significant contamination of 2.7% at rare coding variants (MAF < 0.01) and a highly significant average of
11.8% from common coding variants (MAF ≥ 0.01), consistent with common variants being generally better
tags of nearby common variation. Given the small physical size of the exome, contamination of 11.8% of the
non-coding heritability could substantially bias the estimates from coding variants when estimated directly
from exome chip data. To account for this contamination, we model an additional component consisting of the
non-coding GWAS variants. When we conditioned in this way and estimate using a three variance-component
model, we see statistically zero heritability attributed to the rare and common coding components. Because
we only have genome-wide GWAS chip data available, which does not include rare variants and these variants
are notoriously difficult to impute, the non-coding component is unlikely to account for contamination from
rare non-coding variants. However, these variants would need to be physically close and in similar frequency
to be strongly tagged by the rare coding variants we examined.
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Causal variants

GRM genotypes Rare coding Common coding

non-coding 0.051 (0.012) 0.426 (0.006)
rare coding 0.509 (0.011) 0.043 (0.015)
common coding 0.024 (0.003) 0.514 (0.008)

Causal Variants

Joint GRM genotypes Rare coding Common coding

rare coding + non-coding 0.486 (0.003) 0.002 (0.001)
common coding + non-coding 0.025 (0.002) 0.485 (0.003)
rare coding + common coding 0.486 (0.004) 0.001 (0.001)
rare coding + common coding 0.000 (0.001) 0.482 (0.004)

Table S39. ĥ2g of phenotypes simulated from coding variants. We set out to estimate the fraction
of exome h2 that is tagged by non-coding SNPs from the GWAS chip and 1,000 Genomes imputation. We
simulate two groups of standard additive phenotypes from the rare and common exome variants, respectively,
and infer h2g,non-coding of these phenotypes from the non-coding SNPs. ĥ2g inferred from different classes of
GRMs is shown, with standard error over 10 trials in parenthesis. Lower panel shows results from multiple
GRMs fit jointly, with bolded GRM corresponding to the reported variance-component estimate. The ratio
of ĥ2g,non-coding to simulated h2g,exome gives us an estimate of the fraction of exome heritability tagged by

non-coding variants. In 10 simulations from chromosome 22 with h2g,exome = 0.5 the average ratio is 0.85
for common coding variants and 0.11 for rare coding variants (Table S39). However, the tagging between
components is fully accounted for by a joint, three component model (Table S40).
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Simulated h2g Jointly inferred ĥ2g (se)

rare coding common coding all non-coding rare coding common coding all non-coding

0.25 0.25 0.25 0.247 (0.003) 0.262 (0.002) 0.256 (0.003)

Table S40. Joint h2g from simulated phenotype in Swedish schizophrenia cohort.
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fmax

GRM Singleton 0.001 0.005 0.010 0.050

Collapsed -0.009 (0.002) -0.002 (0.002) -0.002 (0.003) -0.000 (0.003) 0.009 (0.004)
Collapsed + non-coding -0.007 (0.002) -0.004 (0.002) -0.004 (0.003) -0.004 (0.003) 0.001 (0.003)

Table S41. Collapsed ĥ2g of phenotypes simulated from non-coding variants. An infinitesimal trait

with h2g = 0.50 was simulated from non-coding variants and ĥ2g was inferred from coding variants collapsed
below designated minor allele frequency fmax. Mean and standard error are reported over 50 random trials.
See Table S25 for method details.
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Fraction causal

fmax Effect distribution 100% 50% 10% 1%

0.001 Uniform 0.49 (0.002) 0.33 (0.003) 0.21 (0.002) 0.17 (0.005)
0.001 Allelic 0.39 (0.003) 0.28 (0.003) 0.20 (0.003) 0.17 (0.007)
0.001 Normalized 0.33 (0.002) 0.22 (0.003) 0.16 (0.002) 0.16 (0.006)

0.005 Uniform 0.47 (0.002) 0.33 (0.005) 0.22 (0.002) 0.19 (0.006)
0.005 Allelic 0.37 (0.003) 0.28 (0.004) 0.21 (0.004) 0.18 (0.007)
0.005 Normalized 0.28 (0.003) 0.19 (0.004) 0.14 (0.002) 0.14 (0.006)

0.010 Uniform 0.47 (0.003) 0.34 (0.005) 0.24 (0.002) 0.20 (0.006)
0.010 Allelic 0.38 (0.002) 0.29 (0.006) 0.22 (0.003) 0.20 (0.007)
0.010 Normalized 0.24 (0.004) 0.17 (0.003) 0.13 (0.002) 0.15 (0.007)

0.050 Uniform 0.42 (0.003) 0.35 (0.006) 0.27 (0.003) 0.23 (0.008)
0.050 Allelic 0.35 (0.003) 0.30 (0.006) 0.28 (0.003) 0.23 (0.010)
0.050 Normalized 0.22 (0.003) 0.16 (0.005) 0.12 (0.002) 0.14 (0.006)

Table S42. Collapsed ĥ2g of phenotypes simulated from rare coding variants. A quasi-infinitesimal
trait was simulated from specified exome-wide causal fraction of coding variants and varying fmax and total
h2g = 0.5. Effect-sizes were sampled from a standard normal distribution on the normalized-variant scale

or the allelic-variant scale, and forced to be uni-directional within each gene. The collapsed ĥ2g was then
estimated from coding variants at the given fmax. No more than half of the true h2g can be recovered from
collapsing under any disease architecture. See Table S25 for method details.
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Fraction causal

fmax Effect distribution 100% 50% 10% 1%

0.001 Uniform 1.51 0.80 0.40 0.31
0.001 Allelic 1.00 0.63 0.38 0.31
0.001 Normalized 0.77 0.44 0.27 0.26

0.005 Uniform 1.54 0.92 0.49 0.42
0.005 Allelic 1.12 0.70 0.46 0.39
0.005 Normalized 0.72 0.41 0.24 0.26

0.010 Uniform 1.58 0.97 0.56 0.45
0.010 Allelic 1.14 0.76 0.51 0.46
0.010 Normalized 0.57 0.34 0.22 0.29

0.050 Uniform 1.31 0.96 0.72 0.59
0.050 Allelic 0.97 0.80 0.73 0.62
0.050 Normalized 0.48 0.31 0.20 0.26

Table S43. Power of collapsed vs. non-collapsed ĥ2g for rare coding variants. The ratio of LRT
statistics from collapsed / non-collapsed SNPs is reported for simulations with rare coding variants. Values
< 1 indicate greater power for direct (rather than collapsed) estimates. See Table S25 for method details.
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