Supporting Information

Enantiospecific Synthesis and Biological Investigations of a Nuphar Alkaloid:

Proposed Structure of a Castoreum Component

Hajime Seki and Gunda I. Georg*

Department of Chemistry and Department of Medicinal Chemistry, Institute for Therapeutics

Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware

Street SE, Minneapolis, MN 55414 United States

Table of Contents

1. Comparison of ¹ H and ¹³ C-NMR data from prior work	2
2. ¹ H and ¹³ C NMR spectra	
3.1 Compound 5	6
3.2 Compound 6	8
3.3 Compound 7	10
3.4 Compound 8	12
3.5 Compound 9	14
3.6 Compound 10a	16
3.7 Compound 10b	18
3.8 Compound 1	20
3.9 Compound 2	22
3.10 Compound 11	24
3.11 Compound 1•HCI	26
3. GC/MS for compounds 1 and 2	28

1. Comparison of ¹H and ¹³C-NMR data from prior work

alkaloid 1

¹H and ¹³C NMR data of alkaloid 1 was summarized in the table below.

1. ¹H NMR data of Georg, Kunz, and Barluenga are similar to each other.

2. ¹³C NMR data of Georg, Kunz, Barluenga, LaLonde are similar to each other.

3. Although Davis reports that their data of alkaloid **1** is identical with Barluenga's, we found that the ¹H NMR spectrum provided to us by Barluenga's lab was quite different from the Davis ¹H NMR, especially in the ~3.0 ppm region. Davis' spectrum of **1** seems not calibrated, which made it difficult for us to further decipher the spectrum.

4. In Davis' paper (*JOC*, **2006**, *71*, 4222), although the spectroscopic data of the intermediate #16 was identical to Barluenga's report (intermediate #10), we found that the two spectra were somewhat different. This led us to the speculation that they might have produced the stereochemical isomer of the alkaloid. The comparison of spectroscopic data of the intermediate **11** further supported this hypothesis (see below).

5. We synthesized the HCl salt of alkaloid **1** and examined its spectra, which was different from any of the reported spectra including the one by Davis'.

1•**HCI.** ¹H NMR (400 MHz, CDCl₃) δ 12.29 (bs, 1H), 7.68 (s, 1H), 7.41 (s, 1H), 7.09 (d, J = 1.4 Hz, 1H), 3.67 (t, J = 9.8 Hz, 1H), 3.44 (s, 1H), 2.75 – 2.47 (m, 4H), 2.26 (m, 3H), 2.05 (dd, J = 13.6, 2.8 Hz, 1H), 1.94 (m, 2H), 1.35 – 1.21 (m, 1H), 1.02 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 141.6, 121.1, 110.5, 73.9, 61.6, 51.9, 33.0, 32.9, 31.5, 27.5, 19.2, 18.6.

alkaloid1	Georg		Kunz		Barluenga	
Atom #	¹ H	¹³ C	¹ H	¹³ C	¹ H	¹³ C
1 (2H)	2.0-1.85 1.52-1.45	29.2	2.01-1.90 1.54-1.36	29	1.98-1.87 M	28.9
2 (2H)	1.76-1.50	20.3	1.68-1.55	20	М	20
3 (2H)	2.95-2.84 2.0-1.85	53.3	2.99-2.78 2.01-1.90	53.1	2.88 (td, 8.8, 2.2 Hz) 1.98-1.87	53.1
4	-	-	-	-	-	-
5	2.95-2.84	59.9	2.99-2.78	59.8	2.91 (dd, 8.4, 5.7Hz)	59.7
6	1.82-1.70	34.3	1.84-1.70	34	M	34
7 (2H)	1.18-1.01 1.82-1.70	34.1	1.14-1.01 1.84-1.70	33.8	1.13-1.02 M	33.8
8	1.50-1.35	36.6	1.54-1.36	36.3	M	36.2
8a	1.68-1.51	71.6	1.68-1.55	71.5	M	71.4
9	0.91 (d, 6.5 Hz)	19	0.91 (d, 6.5 Hz)	18.8	0.90 (d, 6.6 Hz)	18.8
10	-	128.4	-	128	-	128
11	6.44	109.9	6.47	109.7	6.44	109.6
12	7.34	139.5	7.35	139.4	7.33-7.26	139.3
13	7.34	142.8	7.35	142.8	7.33-7.26	142.6

M = 1.82-1.39, 8H

alkaloid1	Davis*		LaLonde		Tufariello	Bates		
Atom #	¹ H	¹³ C	¹ H	¹³ C	¹ H/ ¹³ C	¹ H/ ¹³ C		
1 (2H)	1.98			20.2				
1 (211)	N			20.2				
2 (2H)	N	•	Not provided	20.2				
	2.88 (td, 8.8,		Not provided.					
3 (2H)	2.2Hz)			53.3				
	N				Not way dated			
4	-		_	-	Not provided.			
	2.90 (dd, 8.4,				commercial by	Not		
5	5.7Hz)	Not	3.52 (dd, 8.0, 6.0 Hz)	60	the H and C	provided.		
6	N	INOL	Not vided.	34.4	NMR spectra of 1 synthesized	Referred to Barluenga's data		
7 (2H)	1.13	provided.		34.1				
	N							
8	N			36.5	by Lal onde "			
8a	N			71.6	by Eaconao.			
9	0.90 (d, 6.6Hz)				0.89 (d, 6 Hz)	18.2		
10	-		_	-				
11	6.42		6.45	1				
12	7.38		7.36	139.7				
13	7.38		7.36	143.1				

N = 1.39, 8H

*actual spectrum looks different from data here

alkaloid 2

Alkaloid 2	Geora ¹		Kunz		Ban	
Atom #	1H	¹³ C	¹ H	¹³ C	¹ H	¹³ C
1 (2H)	1.70-1.58	27 or 32.3	М	32.1	Not provided	
2 (2H)	1.72-1.52	20.3	М	20.1	not provided.	
3 (2H)	2.90-2.83	53.6	2.91-2.82	53 /		
5 (211)	1.87-1.75	55.0	1.88-1.75	3.1-2.7	3.1-2.7	
4	_	-	_	-	_	
5	2.90-2.83	61.1	2.91-2.82	60.9	3.1-2.7	
6 (2H)	1.52-1.45	20.1	1.52-1.45	28.9		
0 (211)	1.87-1.75	29.1	1.88-1.75		 Not provided.	Not
7 (2H)	1.72-1.52	27 or 32.3	М	26.8		Not provided.
	1.93 (td, 6.8, 2.8					
8	Hz)	29.6	1.97-1.89	29.4		
8a	2.14-2.06	67.7	2.15-2.06	67.5		_
9 (3H)	1.04 (d, 7.0 Hz)	12.4	1.04 (d, 7.0 Hz)	12.2	0.91 (d, 6 Hz)	
10	_	129	_	128.7	_	
11	6.43	109	6.43	109.7	6.46	
12	7.36-7.30	139.2	7.35-7.31	139.1	7.36-7.35	
13	7.36-7.30	142.7	7.35-7.31	142.6	7.36-7.36	

M=1.71-1.53, 6H

1. Our data match with ones by Kunz. However, we unable to decide on the assignments for the $^{13}\mathrm{C}$ signals for atoms 1 and 7 (red).

intermediate 11

Int. 11	Georg (solid) ¹		Tufarie	llo	Davis (liqui	d) ²
Atom #	¹ H	¹³ C	¹ H	¹³ C	¹ H	¹³ C
1 (2H)	2.09-1.97	30.5				
	1.79-1.58					
2 (2H)	1.92-1.79	21.5				
2 (211)	1.79-1.58	21.0	Not provided			
	2.94 (dd, 12.4,		riot provided			10 5
3 (2H)	5.4 Hz)	52.2				21.9
	2.09-1.97				1.04 (d.	30.6.
4	-	-			6.3Hz), 1.48,	45.4.
5	3.34 (dd, 11.9, 3.2Hz)	58.1	3.30 (dd, 11.5, 3.6 Hz)		1.70, 1.91(2H), 2.38 (3H), 2.42	49.7, 50.6,
6 (2H)	2.76-2.65	48.6		Not provided.	(q, 8.2Hz), 3.26, 3.68	52.4, 59.4
7	_	209.8	Not provided		3.81, 6.42,	110.3,
8	2.50-2.39	50.5	not promadal		7.22, 7.38 (d,	121.5,
8a	2.09-1.97	70.5			7.2Hz)	140.7,
9	1.04 (d, 6.6 Hz)	10.7	1.03 (d, 6.6 Hz)			143.0, 211.3
10	-	126.8				
11	6.47	109.1	Not provided			
12	7.42-7.31	143.6	Not provided.			
13	7.42-7.32	139.6				

1. We confirmed the structure of **11** by X-ray.

2. The chemical shifts are noted in order from upfield to downfield region since it was not possible to make assignments of each H and C peak. This spectroscopic data clearly differs from ours.

•