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SI Materials and Methods
The impacts of flooding were calculated using the global flood
impact module of GLOFRIS, described in ref. 1. For clarity, we
also briefly describe the data and methods used in this impacts
module in the following paragraphs. Note that in this paper we
used updated versions of the exposure datasets.

Affected Population and Affected GDP. In GLOFRIS, affected
population and GDP are estimated using maps showing down-
scaled population and GDP. For this study, we used maps de-
rived from the IMAGE model (Integrated Model to Assess the
Global Environment) (2, 3), which were further downscaled to
a horizontal resolution of 30 × 30 arcseconds using LandScan
population maps (4). The affected population and GDP were
calculated as the sum of the population or GDP located in areas
that are shown as flooded in the inundation maps.

Urban Damage. This risk indicator provides an estimate of urban
damage, and the calculation uses a map of asset values in urban
areas to represent economic exposure and a stage-damage
function to represent vulnerability. The asset value map is based
on a land-use map, together with an estimate of urban asset values
per square kilometer. The land-use data are taken from the
HYDE database (5). For each grid cell, HYDE shows the
fractional area of land with urban land cover; the horizontal
resolution is 5 × 5 arcminutes. Using these data, we calculated
the urban area per grid cell at a horizontal resolution of 30 × 30
arcseconds. The next step was to assign an economic value to the
urban area per square kilometer data, which was carried out
using the method described in ref. 6. Vulnerability was repre-
sented by applying a stage-damage function. The function used
here is the average of the high and low urban density land-class
functions used in the Damagescanner model (7, 8) and can be
found in ref. 1. In this paper we specifically estimated relative
anomalies in risk during the different phases of ENSO, and
hence the choice of the function is not so important. For future
analyses looking at absolute risk estimates it is important to
account for spatial variations in vulnerability (9).

SI Discussion
Validation of Hydrological and Hydraulic Models. The discharge
results of PCR-GLOBWB have been validated in previous studies
against observed data on mean monthly discharge (10) and peak
annual discharge (1), and the flood volume results of DynRout
have been validated against GRACE satellite data of terrestrial
water storage (11). In general, the models have been found to
show fair to good performance.
In terms of simulating peak annual discharge, the model was

previously validated against observed daily discharge data from
the Global Runoff Data Centre (GRDC; www.bafg.de/cln_007/
nn_266918/GRDC), using gauging stations with daily data
availability for more than 25 y (during 1958–2000) and an up-
stream area above 125,000 km2. For these stations, the relative
error was calculated for discharge with a return period of 10 y,
based on extrapolations using the Gumbel distribution fit to the
observed and modeled time series. Generally, the relative error
was found to be reasonable (between −25 and +25% for 37 of
the 53 stations).
However, these validations did not assess the performance of

the model in terms of its ability to simulate relative differences in
peak discharges between the different phases of ENSO, which is
the aspect of most crucial importance for the current paper.

Therefore, in this study we carried out extra validation to spe-
cifically examine this aspect. We used daily discharge data from
the GRDC database, using only those stations with upstream
areas greater than 10,000 km2 for which daily data are available
for every day of the hydrological year in at least 15 hydrological
years between 1959 and 2000 (i.e., 722 stations).
In Fig. S7 we show the correlation (Spearman’s rank) between

the modeled and observed values of the maximum daily dis-
charge (Qmax) per hydrological year. Generally, the agreement is
good. For half of the stations, the correlation coefficient is
greater than 0.6, and it is greater than 0.4 for 80% of stations.
The correlation is relatively low in northern high-latitude re-
gions. This may be due to earlier noticed biases in the pre-
cipitation data in northern latitudes owing to snow undercatch of
the used rain gauges (1). Low correlation is also found in several
of the gauging stations assessed in Central America.
We also examined the agreement between the modeled and

observed data in terms of the relative change in Qmax between El
Niño and non-El Niño years (Fig. S8A) and between La Niña
and non-La Niña years (Fig. S8B). The figure shows that for the
vast majority of stations modeled and observed median Qmax
show either no significant difference between El Niño (La Niña)
and non-El Niño (non-La Niña) years or significant differences
of the same sign. For the other stations there is a statistically
significant difference in modeled median Qmax between El Niño
(La Niña) and non-El Niño (non-La Niña) years but none for
observed data (or vice versa). There are no stations at which
modeled and observed median Qmax show significant changes
between El Niño/non-El Niño years or La Niña/non-La Niña
years with different signs. Hence, the model seems to simulate
well the relative differences in peak annual discharge between
the different phases.

Validation of Impact Assessment Results. The globally aggregated
impact results of the modeling cascade have been validated in
ref. 1. For the current paper, we carried out further validation at
regionally disaggregated levels, first by the large regions defined
in ref. 12 and shown in Table S3 and, second, by country (Table
S4). We assessed the correlation (Spearman’s rank) between
annual reported losses and annual modeled urban damages and
between annual reported fatalities and annual modeled exposed
population over the period 1990–2000. The reported fatalities
and losses were taken from Munich Re’s NatCatSERVICE da-
tabase (13). For this analysis, we only included events for which
the main cause of the event is river flooding (i.e., “floods”), and
not other forms of floods, for example flash floods, dam breaks,
and tsunamis. Both reported and modeled annual impacts were
extracted for hydrological years, rather than calendar years. The
validation comparisons are intended to give a broad picture of
whether the modeled impacts pick up interannual differences in
impacts similar to those recorded in the loss database. The
modeled and reported impacts are not the same variables
(e.g., affected population is compared with reported fatalities).
Moreover, loss databases themselves are inherently limited and
suffer from many problems; for a detailed discussion see ref. 14.
We used the period 1990–2000 only because this is the latest 10-y
period for which we have simulated impacts, and the loss data-
base is generally considered to be more reliable for the most
recent period compared with early time periods (14).
In Table S3 we show the correlation between annual reported

losses and annual modeled urban damages and between annual
reported fatalities and annual modeled exposed population for
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the world regions. Generally, we see reasonable to good agree-
ment. A major exception is for North Africa, where both pairs of
variables show negative correlation. This is not a surprising result
for two reasons. First, simulating flood events in this arid region is
particularly difficult (1), and second, there are very few reported
events in this region (n = 32). Hence, we cannot make any sta-
tistically robust statements on whether the discrepancy results
from the quality of the modeled data or from the reported data,
or both. In Eastern Asia, the correlation is almost zero between
reported losses and urban damage (rho = 0.52 for reported fa-
talities and modeled exposed population), and for Eastern
Europe and Central Asia the correlation is slightly negative
between reported fatalities and modeled exposed population
(and positive, although weak, between reported losses and urban
damage). For Eastern Europe and Asia, this may be related to
the hydrological modeling results: The validation results for
modeled vs. observed peak annual discharge (Fig. S7) show low
to negative correlation for many gauging stations. The same
cannot be said for Eastern Asia, where the discharge validation
results are good. The fact that the correlation between reported
fatalities and modeled exposed population is reasonably strong
in this region, yet the correlation is negative for reported losses
vs. urban damage, may be indicative of lower quality of reported
loss information. Until recently, many states in the region felt
they should not share information of this kind with the rest of the
world (14). However, the poor performance for exposed pop-
ulation vs. reported fatalities may simply be due to there being
no clear (linear) relationship between these two variables in this
region. In our calculations of urban damage we do include
a vulnerability component, by means of using a depth-damage
function. However, we did not use such a component for exposed
population.
The same analysis was carried out using reported and modeled

impacts for the 10 countries for which the largest number of
reported events are available (Table S4). For most countries, the
correlation is again reasonable to strong. An exception is the
Russian Federation, and to a lesser extent India. As above,
the poor correlation for the Russian Federation may be a result of
the fact that our hydrological model does not seem to simulate
interannual variations in peak annual discharge very well in this
region (compared with observed data), especially in the eastern
part. In addition, the Russian Federation and India (as well as
many other countries) may have suffered from relatively large
numbers of events that remain undocumented, owing to low
media penetration and insufficient data collection and sharing.
Finally, the reported loss data include both damages in urban and
rural areas, whereas the damage model only reflects urban
damages. The latter fact may lead to discrepancies in developing
countries, such as India, where large parts of the country consist of
rural areas and small settlements that are not represented in the
global urban density databases.

Comparison with Past Results. ENSO’s influence on observed
floods has only been examined in a few regions, mainly in the
western United States and Australia. An analysis of observed
daily discharge data for the Santa Cruz River at Tucson, Arizona
(15) showed the magnitude of a 100-y flood to be significantly
larger during El Niño years. For the cell in which this river is
found, we simulated a positive anomaly in 100-y flood volume
(+25%), and for the FPU in which this river is found (Colorado)
we simulated a positive anomaly in annual expected damages
(+18%). A study of ENSO relationships with peak observed
discharges at 303 locations in the western United States (16) found
that in El Niño years days with high daily discharge occur more
frequently than average over the southwestern United States and
less frequently than average over the northwestern United States,
with an almost opposite pattern for La Niña years.

We also see this general pattern reflected in our flood-risk
results. We found higher exposed population and GDP during El
Niño years in the southwestern United States and lower values in
the northwest. For urban damage, however, the El Niño signal is
weak. During La Niña years, we found lower urban damages,
exposed GDP, and exposed population in the southwest and
higher urban damages in the northwest. However, the pattern is
not clear in basins located in the central part of the western
United States. For example, for the Sacramento–San Joaquin
basin we simulated negative damage anomalies during La Niña
conditions and weak (not reliable) anomalies during El Niño
conditions. This is related to hydroclimatological differences
between the northern (Sacramento) and southern (San Joaquin)
parts of this basin. During La Niña conditions, the simulated
anomalies in flood volumes are lower across almost the entire
Sacramento–San Joaquin basin, whereas during El Niño con-
ditions negative anomalies are more dominant in most parts of
the Sacramento basin, with positive anomalies in most parts of
the San Joaquin basin.
For Australia, studies have been carried out to condition flood

return periods on indices of ENSO and the Interdecadal Pacific
Oscillation (IPO) (17, 18). These studies show graphs of log-
normal values of a regional flood index value for New South
Wales for return periods between 1 and 100 y, conditioned on El
Niño and La Niña years only. The results clearly show higher
values of the flood index during La Niña years compared with El
Niño years (the climatological mean is not shown). This is in
agreement with our maps of flood volume anomalies during La
Niña years (positive anomaly) and El Niño years (negative anom-
alies) in New South Wales. Ishak et al. (19) analyzed a database of
annual maximum stream flows in Australia and found that indices
of ENSO, IPO, and the Southern Annular Mode can account for
most of the observed trend in annual maximum stream flows.
In the northern coastal region of Peru, analyses of observed

time series of annual floods for 13 rivers show strong positive peak
flow anomalies during El Niño years (20). For this region, we also
simulated high positive anomalies in flood volume and damages
(+43% for the latter).

Main Differences in Results Between Indicators. We simulated
anomalies in risk between the different phases of ENSO for the
different risk indicators, namely, annual expected urban damage,
exposed GDP, and exposed population. We found that the sign of
anomalies is very similar across the different indicators. However,
there are clear differences in the strength of the anomalies, and
hence also in the number and distribution of reliable anomalies.
In Table S1 we show the percentage of the Earth’s land area for

which basins showed a reliable positive or negative anomaly dur-
ing El Niño and/or La Niña years. Note that Antarctica and
Greenland are excluded from the analyses. The anomalies per
basin are shown in Fig. 2 (annual expected urban damage), Fig. S4
(annual exposed GDP), and Fig. S5 (annual exposed population).
From Table S1 we see large differences in the percentage of

land area affected by the different anomalies. For example, during
La Niña years similar percentages of land surface experienced
positive and negative anomalies (10% and 13% of total land
area, respectively). However, for exposed GDP and exposed
population, negative anomalies were simulated across much
larger areas than is the case for positive anomalies. Figs. S4 and
S5 reveal a simple explanation for these differences. For exam-
ple, during La Niña years, negative anomalies in exposed GDP
and population are simulated in the large FPU representing
northeastern Russia. However, this anomaly is not simulated for
urban damage. For a large part, this explains the difference
noted earlier in this paragraph.
A comparison of the maps of anomalies in annual expected

urban damage (Fig. 2) with those for annual affected GDP shows,
in general, a similar pattern in terms of the signal of the
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anomalies. However, there are also some clear differences in
terms of the differences in magnitude of the anomalies. Notable
differences exist in South America, particularly around the region
of the Paraná and San Francisco basins, and in the western
basins. In North America, there are several basins in the western
and south-central parts of the United States showing reliable
anomalies in annual expected urban damage during different
ENSO phases, but no anomalies in annual exposed GDP. The
strength of the anomalies in southern Africa also tends to be
stronger for urban damage than for affected GDP. However,
there are regions that show reliable anomalies in affected GDP
but no anomalies in urban damage. Further research is required
to understand the reasons for these differences, which could be
related to several factors. One factor is the location of the ex-

posed elements at risk. So-called urban damages can only occur
in regions where urban area is located in flood-prone areas (i.e.,
where it is potentially exposed to a flood hazard). The same is
the case for affected GDP and population. Because the geo-
graphical locations of these elements differ, so do the absolute
impacts of flooding, and by extension the relative differences
between ENSO phases. Another factor of large importance is
that the urban damage indicator is dependent on inundation
depth, whereas the other indicators are only dependent on the
binary presence or absence of inundation. In our approach, the
spatial distribution of GDP is directly related to the population
density per cell. Hence, the results in ENSO anomalies for these
two indicators are very similar.
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Fig. S1. Absolute anomaly in flood volumes normalized to surface area per cell (cubic meter per square meter) with return periods of 100 y during (A) El Niño
years and (B) La Niña years (compared with all years). Statistical significance was assessed by bootstrapping (α = 0.05), using 1,000 repetitions. Field significance
of the gridded results was assessed using the binomial distribution (21) and found to be highly significant (P < 0.001).
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Flood volume higher than average during El Niño years

(a) k=5 (c) k=100

(d) k=1000(b) k=25

<-50 -50 - -25 -25 - -10 10 - 25 25 - 50 >50Not
significant

< 10> -10

Fig. S2. Percentage anomaly in flood volumes during El Niño years (compared with all years) with a return period of (A) 5 y, (B) 25 y, (C) 100 y, and (D) 1,000 y.
Statistical significance per cell was assessed by bootstrapping (α = 0.05), using 1,000 repetitions. Field significance of the gridded results was assessed using the
binomial distribution (21) and found to be highly significant (P < 0.001). Compared with the percentage anomalies in flood volumes during El Niño years with
a return period of 100 y (Fig. 1A), the strengths of the anomalies generally show a small increase for floods with shorter return periods. In most regions this
change is very small, and hence there is little change between the categories shown in the figure. The patterns of the anomalies therefore remain similar across
different return periods.
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Flood volume lower than average during La Niña years
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Flood volume higher than average during La Niña years
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Fig. S3. Percentage anomaly in flood volumes during La Niña years (compared with all years) with a return period of (A) 5 y, (B) 25 y, (C) 100 y, and (D) 1,000 y.
Statistical significance per cell was assessed by bootstrapping (α = 0.05), using 1,000 repetitions. Field significance of the gridded results was assessed using the
binomial distribution (21) and found to be highly significant (P < 0.001). Compared with the percentage anomalies in flood volumes during La Niña years with
a return period of 100 y (Fig. 1B), the strengths of the anomalies generally show a small increase for floods with shorter return periods. In most regions this
change is very small, and hence there is little change between the categories shown in the figure. The patterns of the anomalies therefore remain similar across
different return periods.
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Fig. S4. Percentage anomaly per FPU in annual expected exposed GDP for (A) El Niño years and (B) La Niña years (compared with all years).
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Anomaly in annual expected exposed population (%)

(b) La Niña years
versus all years 

(a) El Niño years
versus all years 

Affected population lower than average during:
(a) El Niño; or (b) La Niña years

Affected population higher than average during:
(a) El Niño; or (b) La Niña years
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Fig. S5. Percentage anomaly per FPU in annual expected exposed population for (A) El Niño years and (B) La Niña years (compared with all years).
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Flood damage lower than average during:
(a) El Niño; or (b) La Niña years

Anomaly in annual expected flood damage (%)

Flood damage higher than average during:
(a) El Niño; or (b) La Niña years
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Fig. S6. Percentage anomaly per country in annual expected damage in urban areas for (A) El Niño years and (B) La Niña years (compared with all years). The
results show the importance of the aggregation scale on the overall results in terms of anomalies in risk. Comparing the results at the country scale with those
at the FPU scale shown in Fig. 2 shows that country-scale assessments mask important regional ENSO influences on risk. This is especially the case in larger
countries where there are regionally opposite influences of ENSO on hydroclimate. A clear example is the United States: Based on the country-aggregated
results, there is no reliable anomaly in this country during El Niño or La Niña years, yet the regionally disaggregated influence is high.
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Fig. S7. Correlation (Spearman’s rank, rho) between modeled and observed Qmax time series over the period 1958–2000. (Inset) Histogram of values for
individual gauging stations, n = 722. For a discussion of these validation results, see SI Discussion, Validation of Hydrological and Hydraulic Models).
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Indicator
1 2 3

(a)

(b)

Fig. S8. Indicator of the agreement between modeled and observed median Qmax for (A) El Niño years compared with non-El Niño years and (B) La Niña years
compared with non-La Niña years. Indicator 1 means that both modeled and observed median Qmax show either no significant difference or significant dif-
ferences with the same sign. Indicator 2 means that modeled median Qmax shows no significant difference, whereas the observed Qmax does show a significant
difference. Indicator 3 means that observed median Qmax shows no significant difference, whereas modeled Qmax does show a significant difference. There are
no stations at which modeled and observed median Qmax show significant differences with the opposite sign. Statistical significance was assessed using a two-
tailed Mann–Whitney U test, α = 0.05. For a discussion of these validation results, see SI Discussion, Validation of Hydrological and Hydraulic Models.
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Table S1. Percentage of land area (excluding Antarctica and
Greenland) with reliable positive and negative anomalies in flood
risk during El Niño and La Niña years

El Niño La Niña

Flood risk indicator
Positive
anomaly

Negative
anomaly

Positive
anomaly

Negative
anomaly

Urban damage 10 19 10 13
Exposed GDP 12 39 13 30
Exposed population 12 38 14 30

Table S2. Percentage anomalies in globally aggregated values
of modeled annual expected urban damage based on El Niño and
La Niña years only (compared with results based on all years)

Anomaly per ENSO phase, %

Protection standard, y El Niño La Niña

2 −8.9 −14.2
5 −6.8 −10.9
10 −6.2 −9.8
25 −6.0 −8.9
50 −5.8 −8.7
100 −5.9 −8.8
250 −5.8 −8.9
500 −5.9 −9.0

Results are shown for different assumptions of a nominal protection stan-
dard (expressed as a return period) against flooding. None of the anomalies
is reliable. The simulations carried out for this paper assume that no infra-
structural flood protection measures are in place, such as dikes and retention
areas. A past study has shown that the absolute risk estimates are strongly
influenced by the assumed flood protection standard (1). Here, we assessed
how anomalies in risk between ENSO phases are affected by assuming dif-
ferent nominal flood protection standards. At the global scale, we found
that the flood protection standard has a fairly small influence on the simu-
lated risk anomalies.
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Table S3. Correlation (Spearman’s rank, rho) between reported impacts (13) and modeled
impacts over the period 1990–2000

Spearman’s rank, rho

Country n
Reported losses vs.
urban damage

Reported fatalities vs.
exposed population

Australia and Oceania 69 0.71 0.48
Central America 69 0.42 0.21
Eastern Asia 102 −0.03 0.52
Eastern Europe and

Central Asia
123 0.24 −0.08

Indian subcontinent 131 0.15 0.32
Latin America 108 0.60 0.61
Middle East 71 0.50 0.81
Middle and South Africa 123 0.65 0.49
North Africa 32 −0.10 −0.18
North America 126 0.77 0.59
Southeastern Asia 127 0.62 0.77
Western Europe 140 0.70 0.68

Values are shown for the geographical regions shown in ref. 12. n is the number of reported events in the
period used in the analysis. For a discussion of these results, see SI Discussion, Validation of Hydrological and
Hydraulic Models.

Table S4. Correlation (Spearman’s rank, rho) between reported
impacts (13) and modeled impacts over the period 1990–2000 per
country

Spearman’s rank, rho

Country n
Reported losses vs.
urban damage

Reported fatalities vs.
exposed population

United States 87 0.71 0.53
China 54 0.70 0.58
India 47 0.19 0.22
Russian Federation 45 0.15 −0.07
Canada 39 0.72 0.37
Indonesia 38 0.27 0.78
Australia 34 0.68 0.37
Brazil 32 0.42 0.50
Bangladesh 28 0.54 0.52
South Africa 27 0.63 0.51

Values are shown for the 10 countries with the largest number of observed
flood events (n). For a discussion of these results, see SI Discussion, Validation of
Hydrological and Hydraulic Models.
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