Supplementary Methods. Testing phylogenetic independent origin hypotheses using Bayes factors

Abstract

To assess support for the hypothesis that photophores originated more than once, we developed a Bayes factor test in which we compare the prior and posterior probabilities of the observed data under two opposing hypotheses (that the number of gains required is either less than or greater/equal to M). To approximate these prior and posterior probabilities we developed a computational method which uses MCMC to account for phylogenetic uncertainty and uncertainty in rates of gain and loss. Here we describe the model assumptions and computational details, which have been implemented in the R package indorigin available at https://github.com/vnmini/indorigin.

Modeling assumptions

We start with a binary character (e.g. absence/presence of a morphological trait) measured in n species. We collect these measurements into vector $\mathbf{y} = (y_1, \ldots, y_n)$, where each $y_i \in \{0, 1\}$. Suppose that the evolutionary relationship among the above species can be described by a phylogeny τ , which includes branch lengths. We assume that the binary character had evolved along this phylogeny according to a two-state continuous-time Markov chain (CTMC) with an infinitesimal rate matrix

$$\mathbf{\Lambda} = \left(egin{array}{cc} -\lambda_{01} & \lambda_{01} \ \lambda_{10} & -\lambda_{10} \end{array}
ight).$$

We also assume that we have another set of data \mathbf{x} , molecular and/or morphological, collected from the same species. In principle, we can set up an evolutionary model for this second data set, with evolutionary model parameters $\boldsymbol{\theta}$ (e.g. substitution matrix, rate heterogeneity parameters) and then approximate the posterior distribution of all model parameters conditional on all available data:

$$\Pr(\tau, \theta, \lambda_{01}, \lambda_{10} \mid \mathbf{x}, \mathbf{y}) \propto \Pr(\mathbf{x} \mid \tau, \theta) \Pr(\mathbf{y} \mid \tau, \lambda_{01}, \lambda_{10}) \Pr(\tau) \Pr(\theta) \Pr(\lambda_{01}) \Pr(\lambda_{10}), \quad (1)$$

where we assume that a priori $\lambda_{01} \sim \text{Gamma}(\alpha_{01}, \beta_{01})$ and $\lambda_{10} \sim \text{Gamma}(\alpha_{10}, \beta_{10})$, with the rest of the priors left unspecified for generality. However, in practice the contribution of the data vector **y** to phylogenetic estimation is negligible when compared to the contribution of the data matrix **x**. Therefore, we take a two-stage approach, where we first approximate the posterior distribution

$$\Pr(\tau, \boldsymbol{\theta} \mid \mathbf{x}) \propto \Pr(\mathbf{x} \mid \tau, \boldsymbol{\theta}) \Pr(\tau) \Pr(\boldsymbol{\theta}) \Pr(\lambda_{01}) \Pr(\lambda_{10})$$

via Markov chain Monte Carlo (MCMC). This produces the posterior sample of K phylogenies, $\boldsymbol{\tau} = (\tau_1, \ldots, \tau_K)$. This sample can also be generated via a bootstrap procedure within the maximum likelihood analysis. Next, we form an *approximate* posterior distribution

$$\widetilde{\Pr}(\lambda_{01}, \lambda_{10} \mid \mathbf{x}, \mathbf{y}) = \int_{\tau} \Pr(\lambda_{01}, \lambda_{10} \mid \tau, \mathbf{y}) \Pr(\tau \mid \mathbf{x}) d\tau$$

$$\propto \int_{\tau} \Pr(\mathbf{y} \mid \tau, \lambda_{01}, \lambda_{10}) \Pr(\lambda_{01}) \Pr(\lambda_{10}) \Pr(\tau \mid \mathbf{x}) d\tau$$

$$\approx \left[\sum_{k=1}^{K} \Pr(\mathbf{y} \mid \tau_k, \lambda_{01}, \lambda_{10}) \right] \Pr(\lambda_{01}) \Pr(\lambda_{10}).$$
(2)

that helps us estimate the rates of gain and loss of the trait, λ_{01} and λ_{10} , appropriately accounting for phylogenetic uncertainty. The approximate posterior (2) has only two parameters and therefore can be approximated by multiple numerical procedures, including deterministic integration techniques, such as Gaussian quadrature. We implement a MCMC algorithm that targets posterior (2), but plan to experiment with deterministic integration in the future.

So far our modeling assumptions and approximations follow standard practices in statistical phylogenetics as applied to macroevolution. For example, one could use software packages BayesTraits [Pagel et al., 2004] or Mr.Bayes [Ronquist et al., 2012], among many others, to approximate the posterior distributions (1) or (2). The main novelty of our methodology, explained in the next section, comes from the way we use these posteriors to devise a principled method for testing hypotheses about the number of gains and losses of the trait of interest.

Hypotheses and their Bayes factors

Let N_{01} be the number of gains and let N_{10} be the number of losses. Conservatively, in this work we assume that the root of the phylogenetic tree relating the species under study is in state 1. This means that the parsimony score for the number of gains associated with vector **y** and *any* phylogeny is 0, because under our assumption about the root any binary vector can be generated with only trait losses, even though such an evolutionary trajectory may be very unlikely.

We fix a nonnegative threshold m and formulate an *independent origin hypothesis* associated with this threshold as

$$\mathrm{H}_0: N_{01} \le M,$$

with the corresponding alternative

$$\mathbf{H}_a: N_{01} > M.$$

This means that our null hypothesis is that the trait was gained at most M + 1 times — we add one because we know that the trait was gained at least once. For example, using M = 0 corresponds to testing the null hypothesis that the trait was gained only once some time prior to the time of the most recent common ancestor of the species under study. We use a Bayes factor test [Kass and Raftery, 1995] to compare the above two hypotheses:

$$BF_{M} = \frac{\Pr(\mathbf{y} \mid N_{01} \le M)}{\Pr(\mathbf{y} \mid N_{01} > M)} = \frac{\Pr(N_{01} \le M \mid \mathbf{y}) / \Pr(N_{01} \le M)}{\Pr(N_{01} > M \mid \mathbf{y}) / \Pr(N_{01} > M)},$$
(3)

where $\Pr(N_{01} \leq M | \mathbf{y})$ and $\Pr(N_{01} > M | \mathbf{y})$ are the posterior probabilities of the null and alternative hypotheses, and $\Pr(N_{01} \leq M)$ and $\Pr(N_{01} > M)$ are the corresponding prior probabilities. We explain how we compute these probabilities in the next section.

Computational details

We approximate the posterior (2) by a MCMC algorithm that starts with arbitrary initial values $\lambda_{01}^{(0)}$, $\lambda_{01}^{(0)}$ and at each iteration $l \geq 1$ repeats the following steps:

1. Sample uniformly at random a tree index k from the set $\{1, \ldots, K\}$ and set the current tree $\tau^{(l)} = \tau_k$.

- 2. Conditional on the phylogeny and the gain and loss rates from the previous iteration, draw a realization of the full evolutionary trajectory (also known as stochastic mapping [Nielsen, 2002]) on phylogeny $\tau^{(l)}$ using the uniformization method [Lartillot, 2006] and record the following missing data summaries: $N_{01}^{(l)}$, $N_{10}^{(l)}$, defined as before, and $t_0^{(l)}$, $t_1^{(l)}$ total times the trait spent in state 0 and 1 respectively.
- 3. Draw new values of gain and loss rates from their full conditionals:

$$\lambda_{01}^{(l)} \sim \text{Gamma}(N_{01}^{(l)} + \alpha_{01}, t_0^{(l)} + \beta_{01}),$$

$$\lambda_{10}^{(l)} \sim \text{Gamma}(N_{10}^{(l)} + \alpha_{10}, t_1^{(l)} + \beta_{10}).$$

Advantages of using the above Gibbs sampling algorithm are: a) no tuning is required and b) augmenting the state space with latent variables, N_{01} , N_{10} , t_0 , t_1 , and sampling these latent variables efficiently yield rapid convergence of the MCMC, in our experience.

The last important computational issue is computing prior and posterior probabilities needed to compute the Bayes factor (3). Consider computing the posterior probability $\Pr(N_{01} \leq M | \mathbf{y})$ — a surprisingly nontrivial task, as it turns out. For example, the most straightforward approximation of this probability from our MCMC output is

$$\Pr(N_{01} \le M \mid \mathbf{y}) \approx \frac{1}{L} \sum_{l=1}^{L} \mathbb{1}_{\{N_{01}^{(l)} \le M\}},$$

where $1_{\{\}}$ is an indicator function. This approximation has substantial Monte Carlo error, a result of the large variance of N_{01} , which makes using this approximation infeasible for Bayes factor calculations, especially when $\Pr(N_{01} \leq M | \mathbf{y})$ is close to 0 or to 1. Alternatively, a better approximation can be formed as follows:

$$\Pr(N_{01} \le M \mid \mathbf{y}) \approx \frac{1}{L} \sum_{l=1}^{L} \Pr(N_{01}^{(l)} \le M \mid \mathbf{y}, \lambda_{01}^{(l)}, \lambda_{10}^{(l)}, \tau^{(l)}),$$
(4)

where $\Pr(N_{01} \leq M | \mathbf{y}, \lambda_{01}, \lambda_{10}, \tau)$ is the posterior probability of at most m jumps on a fixed tree τ , assuming known gain and loss rates, λ_{01} and λ_{10} . To compute the last posterior probability, we first compute $\Pr(N_{01} = m | \mathbf{y}, \lambda_{01}, \lambda_{10}, \tau)$ for $m = 0, \ldots, M$ and then sum these probabilities to obtain the desired quantity.

Computing $Pr(N_{01} = m | \mathbf{y}, \lambda_{01}, \lambda_{10}, \tau)$ can be accomplished by combining analytic results of Minin and Suchard [2008] and a dynamic programming algorithm of Siepel et al. [2006]. We further extend the analytic results of Minin and Suchard [2008] with an alternate representation of the two-state model solution to improve the numerical stability of our calculations. We compute the prior probability of at most M jumps using an approximation analogous to formula (4), with the exception of averaging over independent draws from priors of λ_{01} and λ_{01} , and over uniform draws of candidate phylogenies τ_1, \ldots, τ_K .

Implementation and illustrations

Software implementing the above procedure is available in the form of an open-source R package indorigin (https://github.com/vnminin/indorigin). To install the package install the devtools package and then install indorigin using 'install_github' command:

```
## install.packages("devtools") # uncomment if "devtoos" is not installed
## install_github("vnminin/indorigin") # uncomment or copy and paste into R terminal
library(indorigin)
```

```
## Loading required package: Rcpp
## Loading required package: RcppArmadillo
## Loading required package: testthat
```

Notice that installing from github requires installing the package from source. To learn about package installation see http://cran.r-project.org/doc/manuals/R-admin.html.

Simulated data

Let's simulate a tree and fast/slow evolving binary traits on this tree.

```
library(diversitree) # diversitree is only needed for simulations
## Loading required package: deSolve
## Loading required package:
                               ape
## Loading required package: subplex
## Loading required package: methods
set.seed(3245)
## Simulate a tree
phy<-NULL
while(is.null(phy)){
  phy <- tree.bd(c(.1, .03), max.taxa=50)</pre>
}
## Simulate FAST EVOLVING 0/1 characters on this tree
states1 <- sim.character(phy, c(.03, .1), x0=1, model="mk2")</pre>
## Simulate SLOW EVOLVING 0/1 characters on this tree
states2 <- sim.character(phy, c(.001, .01), x0=1, model="mk2")</pre>
```

First, we analyze the data simulated under the fast evolving trait regime. In this case, the Bayes factor strongly rejects the hypothesis that there were 0 gains of the trait.

```
## run the independet origin analysis on the simulated data.
## Notice that the first argument must be a list of trees even if you are
## supplying one tree. Hence, c(phy) command.
testIndOriginResults1 = testIndOrigin(inputTrees=c(phy), traitData=states1,
initLambda01=.01, initLambda10=.01, priorAlpha01=1, priorBeta01=10,
priorAlpha10=1, priorBeta10=10, mcmcSize=2100, mcmcBurnin=100,
mcmcSubsample=1, mcSize=10000)
```

pre-processing trees and trait data

```
## plot the tree with the simulated histories at all nodes
par(mfrow=c(1,2))
plot(phy, show.tip.label=FALSE, no.margin=TRUE)
col <- c("#004165", "#eaab00")
tiplabels(col=col[states1+1], pch=19, adj=1)
nodelabels(col=col[attr(states1, "node.state")+1], pch=19)</pre>
```

```
plot(phy, show.tip.label=FALSE, no.margin=TRUE)
col <- c("#004165", "#eaab00")
tiplabels(col=col[states2+1], pch=19, adj=1)
nodelabels(col=col[attr(states2, "node.state")+1], pch=19)</pre>
```


Figure 1: Fast (left figure) and slow (right figure) evolving binary traits with true internal node states plotted.

```
## running Gibbs sampler
## Computing posterior probabilities
## Computing prior probabilities
getBF(testIndOriginResults1)
## BF for N01<=0 log10(BF) 2xlog_e(BF)
## 5.173e-06 -5.286e+00 -2.434e+01</pre>
```

When we perform a similar analysis for the slow evolving trait, the Bayes factor supports the hypothesis of 0 gains, but the support is very weak. This is expected, because data generated under the slow evolving model have very little information about the gain/loss rates, so there is a lot of uncertainty about these rates.

```
testIndOriginResults2 = testIndOrigin(inputTrees=c(phy), traitData=states2,
initLambda01=.01, initLambda10=0.1, priorAlpha01=1, priorBeta01=10,
priorAlpha10=1, priorBeta10=10, mcmcSize=2100, mcmcBurnin=100,
mcmcSubsample=1, mcSize=10000)
```

pre-processing trees and trait data
running Gibbs sampler
Computing posterior probabilities
Computing prior probabilities

getBF(testIndOriginResults2)

##	BF	for N01<=0	log10(BF)	2xlog_e(BF)
##		1.11587	0.04761	0.21927

Photophores data

First, we are going to load 1000 phylogenies of 70 cephalopod species and a corresponding vector of trait values (presence/absence of photophores).

```
library(ape)
```

```
cephalopodTrees = read.tree("BLsonboots70.phy")
tree.num = length(cephalopodTrees)
cephalopodTraits = read.csv("BLspecies70.csv", header=FALSE)
# a little massaging to get trait data into a vector format
tip.num = dim(cephalopodTraits)[1]
cephalopodTraitVec = numeric(tip.num)
tipNames = as.character(cephalopodTraits[,1])
cephalopodTraitVec = cephalopodTraits[,2]
names(cephalopodTraitVec) = tipNames
```

run the analysis

```
cephalopodIndOriginResults = testIndOrigin(inputTrees=cephalopodTrees,
traitData=cephalopodTraitVec,initLambda01=.01, initLambda10=0.1,
priorAlpha01=1, priorBeta01=100, priorAlpha10=1, priorBeta10=10,
mcmcSize=1100, mcmcBurnin=100, mcmcSubsample=1, mcSize=1000, testThreshold=2)
## pre-processing trees and trait data
## running Gibbs sampler
## Computing posterior probabilities
## Computing prior probabilities
# get the Bayes factor
getBF(cephalopodIndOriginResults)
## BF for NO1<=2
                     log10(BF)
                                 2xlog_e(BF)
##
       3.722e-06
                    -5.429e+00
                                  -2.500e+01
```

The above results reproduce the Bayes factors in the 7th row of the SI Table 2. To reproduce the rest of the rows, one can change 'priorBeta01', 'priorBeta10', and 'testThreshold' parameters to manipulate the priors and the hypotheses. Note that we kept the number of MCMC iterations low, so it is possible to reproduce all of the above examples quickly. You should increase this number when attempting your own analyses.

References

- R.E. Kass and A.E. Raftery. Bayes factors. <u>Journal of the American Statistical Association</u>, 90:773–795, 1995.
- N. Lartillot. Conjugate Gibbs sampling for Bayesian phylogenetic models. <u>Journal of</u> Computational Biology, 13:1701–1722, 2006.
- V.N. Minin and M.A. Suchard. Counting labeled transitions in continuous-time Markov models of evolution. Journal of Mathematical Biology, 56:391–412, 2008.
- R. Nielsen. Mapping mutations on phylogenies. Systematic Biology, 51:729-739, 2002.
- M. Pagel, A. Meade, and D. Barker. Bayesian estimation of ancestral character states on phylogenies. Systematic Biology, 53:673–684, 2004.
- F. Ronquist, M. Teslenko, P. van der Mark, D.L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M.A. Suchard, and J.P. Huelsenbeck. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. <u>Systematic Biology</u>, 61:539–542, 2012.
- A. Siepel, K.S. Pollard, and D. Haussler. New methods for detecting lineage-specific selection. In Proceedings of the 10th International Conference on Research in Computational Molecular Biology, pages 190–205, 2006.

SI Table 1. GenBank sequence identifiers (GI numbers) for loci used in analysis listed alphabetically. Changes to the species name used in this manuscript are listed in bold. Newly generated sequences indicated by yellow cells.

GenBank Name	12S	16S	18S	ald3	ATPsyth	COI	cytb	ef1a	H3	odh	opsin	рах
Afrololigo mercatoris		93004770				194474586					194474656	
Alloteuthis africana		194474470				194474508					194474600	
Alloteuthis media		194474490				194474550					194474634	
Alloteuthis subulata		194474505				194474580					194474650	
Argonauta nodosa	45510911	45510935	49482067			4003405	76359244		50346987	45510951	45511050	
Chiroteuthis calyx		209969953	209969999			209970103			209970211			
Loligo gahi = Doryteuthis gahi		93004761				5678658						
Loligo opalescens = Doryteuthis opalescens	2402666124	2402666123				2402666121	2402666122			12055096		1778016
Loligo pealei = Doryteuthis pealeii		56567271	34369176			18026439	EF423109_1		38607257		AY450853_1	
Loligo plei = Doryteuthis plei		93004765				14120087						
Eledone cirrhosa	48994420	18073265	49482072							48994473	48994575	48994529
Enteroctopus dofleini	62005876	45510940				62084159	239735795	JF927838_1		45510965	45510966	45511018
Euprymna berryi	34542045	14161379				13195587						
Euprymna hyllebergi	34542048	34542074				34542132						
Euprymna morsei	62005906	34542070										
Euprymna scolopes	34542046	34542072			JF927843_1	34542128		JF927842_1		48994346	48994378	21667880
Euprymna tasmanica	34542047	34542073				34542130					48994587	48994541
Graneledone verrucosa	45510922	82561543	49482073			4003433	0700050		50346991	45510973	158828841	45511024
Heterololigo bleeken	97906254	97906253	40492077			979062511	97906252		50246007	49004244	49004276	49004406
	62005003	62005802	49462077			62084101			50540997	40994344	40994370	40994400 AP716344 1
l oligo forbesi	45510930	108038				5678661				45510087	45511086	AB7 10344_1
Loligo revnaudii	40010000	93004766				5678665				40010007	40011000	40011040
l oligo vulgaris	77157317	498939				5678656				13561066		
Loliolus beka		384228941				384228950						
Loliolus iaponica		93004768				5678666	145244494					
Loliolus uyii		325073373				330426895						
Lolliguncula brevis	48762898	93004769				5678655				48994332	48994364	48994394
Lolliguncula diomedeae		209969959	209969984			209970073			209970169			
Nautilus macromphalus	944906654	9449066533	17385427			911773921	944906652					
Nautilus pompilius	48994439	38607021	34369177	JF927850_1		18026437		JX036488_1				48994567
Nautilus scrobiculatus		571333	18026322									
Neorossia caroli		117960047										
Octopus bimaculoides	45510917	18076178		JF927853_1		15421827		JF927854_1		45510961	45511062	45511014
Octopus vulgaris	537938874	537938873				537938871	537938872			HM104284_1	116829804	HM104274_1
Rondeletiola minor	34542060	34542086				34542154						
Rossia bipapillata	34542059	34542085				5050000				1000 10 10	4000 407 1	4000 4 40 4
Rossia pacifica	62005904	62005893	40400070			5353806			50240000	48994342	48994374	48994404
Rossia paipeprosa	00074400	209969908	49482078			4003471			50346999			
	383/4163	383/4164	40400070	E0202600.4	E0163300 4	383/4165	902552949	E0202002 4	E0246005	12564000	215075400	121405000
Sepia Unicinalis	48004422	48004450	49402070	F0202090.1	F0162309_1	692002841	092002842	F0202692_1	50346995	13501068	315075492 48004594	121493088
	40994423	40994450					1			40994479	40994581	40994535

SI Table 1. GenBank sequence identifiers (GI numbers) for loci used in analysis listed alphabetically. Changes to the species name used in this manuscript are listed in bold. Newly generated sequences indicated by yellow cells.

GenBank Name	12S	16S	18S	ald3	ATPsyth	COI	cytb	ef1a	H3	odh	opsin	pax
Sepiadarium kochi	62005907	34542087				38154317						
Sepietta neglecta	34542056	34542082				34542148						
Sepietta obscura	34542057	34542083				34542150						
Sepietta oweniana	34542058	34542084				34542152						
Sepietta sp.		498954										
Sepiola affinis	34542050	209969909	49482079			34542136			50347001			
Sepiola atlantica	34542055	34542081				34542146						
Sepiola birostrata	34542049	34542075				34542134						
Sepiola intermedia	34542052	34542078				34542140						
Sepiola ligulata	34542051	34542077				34542138						
Sepiola robusta	34542053	34542079				34542142						
Sepiola rondeleti	34542054	34542080				34542144						
Sepiolina nipponensis	34542062	34542088				34542158						
Sepioloidea lineolata	48994422	48994449				4003477				48994477	48994579	48994533
Sepioteuthis australis	48762899	93004772				4003479				48994334	48994366	48994396
Sepioteuthis lessoniana	892554074	892554073	49482085			890008521	892554072		50347013	48994336	48994368	48994398
Sepioteuthis sepioidea		93004775				5678651						
Stauroteuthis gilchristi	45510909	45510933								45510947	45511046	45510998
Stauroteuthis syrtensis		82622206	49482062			4003483			50346978			
Stoloteuthis leucoptera	34542064	209969910	49482080			4003485			50347003			
Taonius pavo	AY616959	209969961	209969992			209970121			209970184			
Uroteuthis chinensis		209969912	23450949			28207579			50347009			
Uroteuthis duvauceli		3618168				5678659						
Uroteuthis etheridgei		93004779										
Uroteuthis edulis		3618173				169247791						
Uroteuthis noctiluca	34542041	34542065				34542116						
Uroteuthis sp. JMS 2004	48762901	48762912								48994338	48994370	48994400
Vampyroteuthis infernalis	1531248574	1531248573	34369180			1531248571	1531248572		50346982	45510945	45511044	45510996

Legend

Black text GI number for public data sequence generated in this study

Nautilus pompilius:

sequence assembled from available short-read datasets: Accessions: SRR330442; SRR108979; DRR001114; DRR001111

Octopus vulgaris:

sequence assembled from available short-read datasets: Accesssions: SRR1946; SRR108980

Idiosepius_paradoxus:

sequence assembled from available short-read datasets: Accessions DRR001110; DRR001113:

Hypotheses compared for Bayes	Priors on rates of	Prior Probability				Posterior Probablity
Factor test	gain:loss	on H0	BF	log10(BF)	2xlog_e(BF)	on H0
	1:100	0.9999944	1.08E-06	-5.97	-27.47	0.162277
HA: Nacine >-2	1:10	0.9995186	3.29E-06	-5.48	-25.25	0.00677985
HA. Ngalins >-2	1:1	0.9817623	6.23E-06	-5.21	-23.97	0.00033508
HU: Ngains <=1	10:1	0.9981345	3.54E-12	-11.45	-52.73	1.89E-09
	100:1	0.9998135	5.63E-19	-18.25	-84.04	3.02E-15
	1:100	1	3.05E-08	-7.52	-34.61	0.4422237
LLA, Masine > -2	1:10	0.9999708	3.82E-06	-5.42	-24.95	0.115802
HA: Ngalins >=3	1:1	0.993742	2.07E-04	-3.68	-16.96	0.031836
HU: Ngains <=2	10:1	0.9993716	5.04E-07	-6.30	-29.00	0.00080095
	100:1	0.9999358	9.45E-11	-10.02	-46.17	1.47E-06
	1:100	1	6.17E-09	-8.21	-37.81	0.9644096
	1:10	0.9999982	1.12E-05	-4.95	-22.79	0.865057
HA: Ngains >=4	1:1	0.9977474	4.82E-03	-2.32	-10.67	0.6810581
HU: Ngains <=3	10:1	0.9997861	1.31E-04	-3.88	-17.87	0.3806625
	100:1	0.9999785	8.03E-07	-6.10	-28.07	0.0360379
	1:100	1	3.37E-09	-8.47	-39.02	0.9995157
	1:10	0.9999999	9.63E-06	-5.02	-23.10	0.991713
HA: Ngains >=5	1:1	0.9992335	7.95E-03	-2.10	-9.67	0.912042
HU: Ngains <=4	10:1	0.9999263	1.09E-04	-3.96	-18.25	0.5968848
	100:1	0.9999926	8.37E-07	-6.08	-27.99	0.1018062

SI Table 2. Results of Test of Independent Origins.

The Bayes Factor test results for MCMC runs under 4 different null-alternative hypothesis pairs. For each hypothesis test, the rates of gain and loss were varied in the prior parameters, ranging from 1:100 (losses occur, on average, 100 times more often than gains) to 100:1 (gains 100 times more frequent). Earlier ML analysis under a 2-rate model estimated losses 10 more likely than gains (italized rows). Bayes Factors strongly and consistenly favored hypotheses of at least 2 or 3 gains across rate priors tested. Posterior probabilities indicate that these null hypotheses are least favored under priors which increase the relative rate of loss.

			U. edulis		E. scolopes
Control genes	actin	Ue_actinRT_F Ue_actinRT_R amplicon(bp)	56 CACCGCCGAGAGAGAAATTG 55.9 CCTGTTCGAAGTCAAGAGCG 71	Es_actinRT_F Es_actinRT_R	56.4 ATGTTCCCCGGTATTGCTGA 56.3 CGCCGATCCAGACAGAGTAT 115
	18s	RT_Sepiola_18s-F RT_Sepiola_18s-R amplicon(bp)	53.7 CGTTTTCCTCGATCAAGAGC 54.8 CATCGTTTACGGTCGGAACT 77	RT_Sepiola_18s-F RT_Sepiola_18s-R	53.7 CGTTTTCCTCGATCAAGAGC 54.8 CATCGTTTACGGTCGGAACT 77
	opsin	Ue_ops_F Ue_ops_R amplicon(bp)	56.1 GGGCTATCGGCCCTATCT 54.9 AATGTTGGATCGTGTAGCTGTATC 107	RT_Es_Op_F RT_Es_Op_R	54.8 CGAAGCATATGAGCCACAGA 55.7 CCGATAGCCCATAGGACAGA 76
Photo- detection	loph-opsin	amplicon(bp)		Es_lophops_F Es_lophops_R	CTCTCAATCAGCACGCTAACA GCCCAGAAGATGGCATACAC 140
	cry1	Ue_cry1_F Ue_cry1_R amplicon(bp)	53 TGCTTTCGAAAAAGCCTTACA 53.2 GGACGAATTCACCATTCCTATC 86	Es_cry1_F Es_cry1_R	54 TGTATGGCATGAGGATGGATAG 54.4 TTCCACGGACAAAACAGATACTT 97
	cry2	Ue_cry2_F Ue_cry2_R amplicon(bp)	55.9 GACTGGTTTCCCCTGGATAGA 54.3 CCAAAGATCACCTCTGGTTAAGA 112	Es_cry2_F Es_cry2_R	56.1 GACTGGCTTCCCTTGGATAGA 54.3 CCAAAGATCACCTCTGGTTAAGA 112
Lens proteins	s-crystallin	Ue_ScrystRT_F Ue_ScrystRT_R amplicon(bp)	55.8 TGGACATGATGAGGTGTGACT 55.9 TCCGTTCTTCCAGTGGTAGTAC 86	Es_ScrystRT_F Es_ScrystRT_R	56.1 GGTACTTGGCCCGTGAATTC 55.8 GAAGCGTCCGTTCTTTTCGT 134
	o-crystallin	Ocrys_Ue_F Ocrys_Ue_R amplicon(bp)	54.9 TTGAACCAACCGTCTTCTCC 55.1 GCCATTCCATAGTCGGTGTT 142	Ocrys_Es_F Ocrys_Es_R	52.6 GCGGAAAGAGCAATTTGAAG 54.8 ACCGGACCAATGAGATTGAC 146
Immuno/	NFkappaB	nfkb_Ue_F nfkb_Ue_R amplicon(bp)	54.9 TGTGAAACCTGAGCTTCCTG 56.8 TTTCTTCTGGTGGTGGTGCT <i>110</i>	nfkb_Es_F nfkb_Es_R	56.3 GAAGCTGCTGGTTGTCCTTC 55.4 GGATGTTGCTGCCTGAATCT 66
symbiosis proteins	peroxidase	Ue_peroxRT_F Ue_peroxRT_R amplicon(bp)	55.1 GGGTGACCGATTCTGGTATG 54 TCCCTGGATTTGTTGGATGT 127	Es_peroxRT_F Es_peroxRT_R	54.7 TTCCGAAGATGACGCTAACC 56.2 TCAGAAACACCACCAGTCCA 81
	TLR				

SI Table 3. Primers used for relative quantitative PCR in *E.scolopes* and *U. edulis*.

		Prediction s	core of eac transcrip	h <i>Euprymna</i> tome mode	a sample un I of tissue	ider <i>Uroteu</i> types	this GLM
		ang	brain	eye	gill	phot	skin
	Es1_skin	0.0268	0.0047	0.007	0.0339	0.0024	0.9253
S	Es1_phot	0.1393	0.0286	0.0267	0.0878	0.6291	0.0885
ne	Es1_gill	0.0192	0.0115	0.0083	0.9463	0.0018	0.0129
10	Es1_eye	0.0015	0.0018	0.9876	0.0004	0.0005	0.0083
ipt	Es1_brain	0.0046	0.975	0.0065	0.0039	0.0013	0.0086
SC	Es1_ang	0.8589	0.0093	0.0133	0.024	0.0036	0.0911
ans	Es2_skin	0.0066	0.0027	0.0086	0.0226	0.005	0.9545
ţ,	Es2_phot	0.0514	0.0234	0.0574	0.0862	0.5309	0.2508
Se	Es2_gill	0.0065	0.011	0.0267	0.8537	0.0052	0.0968
đ	Es2_eye	0.0031	0.006	0.979	0.0013	0.0014	0.0092
lo	Es2_brain	0.0029	0.9792	0.0075	0.0028	0.0013	0.0063
sc	Es2_ang	0.476	0.0087	0.019	0.0182	0.0051	0.473
ы	Es3_skin	0.0119	0.0077	0.0082	0.0467	0.0051	0.9205
Ē	Es3_phot	0.0879	0.015	0.0155	0.0675	0.6509	0.1632
Ś	Es3_gill	0.0074	0.0114	0.0067	0.9583	0.0012	0.015
17	Es3_eye	0.0007	0.0014	0.9956	0.0004	0.0003	0.0016
	Es3_brain	0.0072	0.9543	0.0096	0.0047	0.002	0.0221
	Es3_ang	0.8466	0.0142	0.0116	0.0181	0.0076	0.1019

	Prediction s	core of eac transcr	h <i>Uroteuthi</i> iptome mod	<i>is</i> sample un lel tissue ty	nder <i>Eupryn</i> pes	<i>nna</i> GLM
	ang	brain	eye	gill	phot	skin
Ue1_skin	0.082	0.3002	0.2957	0.0106	0.0137	0.2978
Ue1_phot	0.103	0.4288	0.1332	0.1359	0.1823	0.0168
Ue1_gill	0.034	0.0904	0.0925	0.7113	0.013	0.0587
Ue1_eye	0.0032	0.0124	0.9764	0.0025	0.0038	0.0018
Ue1_brain	0.0019	0.9772	0.0155	0.0015	0.0026	0.0013
Ue1_ang	0.4838	0.1889	0.1223	0.0519	0.1359	0.0172
Ue2_skin	0.0229	0.735	0.1749	0.0057	0.0114	0.05
Ue2_phot	0.1177	0.2616	0.1532	0.1039	0.3197	0.0439
Ue2_gill	0.0448	0.166	0.1148	0.5228	0.0037	0.1479
Ue2_eye	0.0016	0.0127	0.9797	0.0024	0.001	0.0026
Ue2_brain	0.0018	0.9775	0.0167	0.0019	0.0016	0.0005
Ue2_ang	0.7395	0.0811	0.0554	0.0867	0.029	0.0082
Ue3_skin	0.0415	0.3851	0.2809	0.0123	0.0626	0.2175
Ue3_phot	0.1344	0.3099	0.1455	0.1137	0.2031	0.0936
Ue3_gill	0.0527	0.0998	0.0677	0.6855	0.0131	0.0812
Ue3_eye	0.0117	0.0472	0.9288	0.0046	0.0013	0.0064
Ue3_brain	0.0021	0.9552	0.0282	0.0028	0.011	0.0007
Ue3_ang	0.7156	0.082	0.0427	0.0667	0.0526	0.0404

	Pvalues: probability of observed prediction on 10000 bootstrapped transcriptor								
	ang	brain	eye	gill	phot	skin			
Es1_skin	0.8982	0.9996	0.9972	0.8731	0.9832	0.003			
Es1_phot	0.3399	0.9164	0.9239	0.5982	0.0004	0.885			
Es1_gill	0.945	0.9924	0.9953	0	0.9907	0.996			
Es1_eye	0.9999	0.9999	0	1	0.9999	0.998			
Es1_brain	0.998	0	0.9975	0.9999	0.996	0.998			
Es1_ang	0.0001	0.9959	0.9806	0.9254	0.9576	0.880			
Es2_skin	0.996	0.9999	0.9946	0.9317	0.9224	0.000			
Es2_phot	0.7427	0.9462	0.7473	0.6051	0.0021	0.603			
Es2_gill	0.996	0.9931	0.9239	0.0002	0.9185	0.870			
Es2_eye	0.9991	0.9992	0	0.9999	0.9945	0.998			
Es2_brain	0.9994	0	0.9964	0.9998	0.9965	0.99			
Es2_ang	0.0244	0.9965	0.9583	0.9536	0.9208	0.310			
Es3_skin	0.9799	0.9979	0.9955	0.7983	0.9218	0.004			
Es3_phot	0.5348	0.9835	0.9727	0.6932	0.0003	0.749			
Es3_gill	0.9945	0.9924	0.9974	0	0.9966	0.995			
Es3_eye	0.9999	0.9999	0	0.9999	0.9999	0.999			
Es3_brain	0.9949	0	0.9921	0.9981	0.9884	0.990			
Es3_ang	0.0002	0.9851	0.9862	0.954	0.8551	0.860			

	probability of	Pvalues: probability of observed prediction on 10000 bootstrapped transcriptomes									
	ang	brain	eye	gill	phot	skin					
Ue1_skin	0.3901	0.792	0.4654	0.9117	0.8103	0.0036					
Ue1_phot	0.2608	0.4612	0.9265	0.189	0.0447	0.8616					
Ue1_gill	0.8792	0.9989	0.9861	0.0001	0.8241	0.2503					
Ue1_eye	0.9999	0.9999	0	0.9974	0.9915	0.9999					
Ue1_brain	0.9999	0	0.9999	0.9998	0.997	0.9999					
Ue1_ang	0	0.9654	0.9482	0.5947	0.1024	0.8543					
Ue2_skin	0.9658	0.0131	0.8246	0.9686	0.8619	0.3249					
Ue2_phot	0.1933	0.869	0.8832	0.2894	0.0109	0.3926					
Ue2_gill	0.762	0.981	0.959	0.0018	0.9922	0.0337					
Ue2_eye	0.9999	0.9999	0	0.9975	0.9999	0.9998					
Ue2_brain	0.9999	0	0.9999	0.9989	0.9995	0.9999					
Ue2_ang	0	0.9993	0.9997	0.3648	0.5422	0.9827					
Ue3_skin	0.7982	0.5761	0.5039	0.8966	0.2826	0.0109					
Ue3_phot	0.1375	0.7691	0.9004	0.2536	0.0412	0.1057					
Ue3_gill	0.6747	0.9982	0.9981	0.0001	0.8226	0.1399					
Ue3_eye	0.9979	0.9999	0	0.9807	0.9997	0.9937					
Ue3_brain	0.9999	0	0.9999	0.9965	0.8709	0.9999					
Ue3_ang	0	0.9992	0.9999	0.4855	0.3341	0.4358					

SI Table 4. Results of multinomial logistic regression test.

18 transcriptome libraries from each species were bootstrapped to generate 10000 'null transcriptomes'.

After the regression model was fit and cross-validated using U. edulis, the 18 real E scolopes transcriptomes, and the 10000 null E. scolopes datasets were predicted under the model. The same approach was repeated to create a GLM of Euprymna transcriptomes and test the fit of real Uroteuthis data and generated null data.

Uroteuthis edulis transcriptomes

Proportional support for each tissue category shown in top panels, and correspond to attached plots.

Exact p-values in lower tables represent the proportion of the null distributions in which larger predictions are observed.

P-values in red denote samples whose prediction score fell outside 95% of the null distribution for the tissue type.

Figure S1. Uroteuthis and Euprymna tissues.

Ventral dissection of *Uroteuthis edulis* (top row A,B) and *Euprymna scolopes* (bottom row C, D) showing organs sampled for transcriptome analyses. Photophores shaded (in orange) in right panels (B,D), along with homologous organs: eyes (pink), brain (green), ANG (yellow), gill (purple), skin (blue). Cartoons display simplified anatomy.

Figure S2. Marginal likelihoods for photophore presence (red) or absence (black) under 2-rate Markov model at ancestral nodes of ML topology. Nodes at which one state significantly improved the fit of the model over the other state are indicated by (*).

Relative expression of genes expressed in photophores of *Euprymna* and *Uroteuthis, by QPCR*

Transcript Abundances (FPKM) for select genes from transcriptome libraries of Uroteuthis and Euprymna

Figure S3. Relative expression of genes expressed in photophores of Euprymna and Uroteuthis.

Top panel: Mean expression levels for L-crystallin, S-crystallin, opsin, and peroxidase in qPCR assays, standardized by actin. Fold-abundance difference, S.E. bars and p-values from Wilcoxon Rank- sum test indicated. Lower panel: Mean normalized transcript abundances (FPKM) for genes identified in photophore transcriptome libraries (each n=3). Genes grouped by putative functional categories. Only genes in color were assayed for expression differences via qPCR.

Figure S4. Distances between transcriptomes as measured under (A) Cosine distance, (B) Spearman Rank distance, and (C) Bray-Curtis distance. Upper panel heatmaps depict similarity between the 18 sequenced libraries from each species, ranging from most similar (yellow) to least similar (blue). Lower panel barplots depict the median dissimilarity measured between tissues. Under all 3 distance measures, photophores from Euprymna and Uroteuthis (orange) are less distant (more similar) to each other than expected given non-homologous tissues' distances (grey).

Figure S5. Ordination of latent structure in transcriptomes distinguishes species and tissue signals. A, Non-metric Multidimensional scaling of 36 transcriptomes (2 species, 6 tissues, 3 replicates each) using 3 different measure of distance. For each measure, d imentions 2, 3, and 4 capture variance in gene expression which are shared between tissue type in both species. Dimension 1 capture variance explained by species differences. B, Scree plot showing proportion of variance in the 36-transcriptome dataset captured by each dimension (principal component). Gene expression differences due to species (Dimension 1) accounts for the largest proportion of variation while tissue (additively dimensions 2, 3, 4) accounts nearly the same proportion.

Figure S 6A. Uroteuthis transcriptomes tested against Euprymna GLM

Transcriptome data from *Uroteuthis* (18 samples; 3 from each tissue type) were predicted under a GLM fitted by 18 *Euprymna* transcriptomes from corresponding tissues. Circles denote the prediction scores for each of the 18 *Uroteuthis* transcriptomes. Filled points represent scores which fell outside of 95% of the null distribution. Nul distributions for the prediction scores for each tissue type were generated by testing 10000 bootstrapped *Uroteuthis* libraries against the same *Euprymna* model.

Figure S 6B. Euprymna transcriptomes tested against Uroteuthis GLM

Transcriptome data from *Euprymna* (18 samples; 3 from each tissue type) were predicted under a GLM fitted by 18 *Uroteuthis* transcriptomes from corresponding tissues. Circles denote the prediction scores for each of the 18 *Euprymna* transcriptomes. Filled points represent scores which fell outside of 95% of the null distribution. Nul distributions for the prediction scores for each tissue type were generated by testing 10000 bootstrapped *Euprymna* libraries against the same *Uroteuthis* model.

Figure S 7. Photophore transcriptomes share greater similarity with other photophores than photophores do with accessory nidamental glands. Bars represent mean cosine similarities between photophores or between photophores and ANGs. Error bars depict 95% confidence intervals estimated by 500 bootstrap replicates.