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Supplementary materials 

S1. List of symbols and abbreviations 
A area 

AH Hamaker constant 

C electrolyte concentration 

D diffusion coefficient 

E intensity of electric field 

EG Gibbs elasticity of the membrane 

e elementary charge 

j electric current density  

ji ion current density 

H height of the spherical cap made by the patch 

h
M

 thickness of the membrane 

h
S
 thickness of the seal 

kB  Boltzmann constant 

L wetted length of the capillary 

Lc length of the whole capillary 

LD Debye length, 2 2

D B / 2L k T e C  

p pressure 

R radius of curvature 

Rc radius of the capillary 

Ri Stokes radius of an ion 

Res electric resistance 

Q liquid delivery 

T temperature 

t time 

v fluid velocity field 

vi drift velocity 

vL creep velocity, vL = dL/dt 

W power 
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w power density 

z coordinate normal to the glass surface 

 cone top angle 

 surface concentration of lipid in a monolayer 

 viscosity 

 absolute dielectric permittivity 

el electrostatic contribution to the disjoining pressure 

vdW dispersion contribution to the disjoining pressure 

e bulk charge density 

e
G
, e

M
 surface charge densities of the glass and the membrane 

M
 membrane tension 

G
 the surface tension of the glass 

GM
 the surface tension of the membrane-covered glass, GM

 = G
 +M

 -adh 

adh  the adhesion energy (adh > 0) 

el electrostatic contribution to the adhesion energy 

vdW dispersion contribution to the adhesion energy 

  electrostatic potential 

G
, M

 surface potentials of the glass and the outer wall of the membrane 

m minimal (midplane) potential of the film 

∞ surface potential of a free surface 

 

subscripts: 

adh adhered membrane 

cap spherical cap 

c capillary 

superscripts: 

G
 glass 

M
 membrane 

GM
 glass with adhered membrane 
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S2. Electrostatics of the seal zone 
 

To find the potential distribution S
(z) in the seal, we need to solve the Poisson-Boltzmann 

equation:  

S2S
 = -eiCi   with   Ci = Ci∞exp(-ei

S
/kBT).       (A1) 

The two surfaces (the glass z = 0 and the membrane z = h
S
) are assumed to have fixed surface 

charge densities (e
G
 and e

M
). This problem is long known

19
. Our main task now is, based on 

Derjaguin approach, to find for the case “constant charge” the difference  = G
 – M

 as a 

function of h
S
, in order to be able to use Eq (39) for the creep velocity, and to estimate the 

resistance of the seal using the obtained ion concentration profiles. 

Briefly, Derjaguin integrated the Poisson-Boltzmann equation (A1) to obtain a solution for the 

potential in terms of the inverse function z vs. S
: 

m

1 1
D m m

dz

L







     
 

  
 .       ` (A2) 

We use the following symbols for the electrostatic Boltzmann factors (used here as kind of 

dimensionless potentials): 

 S

Bexp /e k T   ,    m m Bexp /e k T   , 

 M M

Bexp /e k T   ,   G G

Bexp /e k T   ;      (A3) 

LD is the Debye length; m is the minimal potential (in a symmetric film, it lays in the middle of 

the film – Langmuir’s “midplane potential” – but with asymmetric films such as the water film 

between glass and membrane this is not the case); z is distance from the plane of minimal 

potential. 

The value of m (or m) plays a central role in the electrostatic model of the film. This 

potential is a decaying function of h
S
. According to Derjaguin’s result Eq (A2), the distances h

Mm
 

from the plane of minimal potential to the membrane and h
Gm

 from the plane of minimal 

potential to the glass surface are given by: 

M

m

Mm

D
1 1

m m

d
h L







     


  
 ;   

G

m

Gm

D
1 1

m m

d
h L







     


  
 .  (A4) 
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The total thickness of the seal is h
S
 = h

Mm
 + h

Gm
; the above integrals can be expressed in terms of 

the elliptic FE integrals; this yields the following equation for h
S
: 

M SS

m m m m m
E E2 2 2

D m m mm m

2i F i , F i ,
1 1 1

h

L

      

   

     
      

          

;  (A5) 

here i 1  . This equation determines implicitly the dependence m(h
S
). If the film thinning is 

in constant potential regime, then M
 = ∞

M
 and G

 = ∞
G
 (∞

M
 and ∞

G
 being the unperturbed 

potential of the free membrane and glass) and the relation (A5) can be directly used to calculate 

the inverse function h
S
(m). However, in constant charge regime, M

 and S
 also depend on h

S
. 

This dependence must be determined from the thin film analogs of the Gouy equation (surface 

electroneutrality). At the glass surface, the Gouy equation reads
19

: 

 
G

1
G G 1D

m mS

B

eeL

k T


   




     .       (A6) 

At the outer membrane wall, Gouy equation is complicated by the fact that there is non-zero field 

inside the membrane. The electroneutrality condition states that: 

S membrane
MS S Md d

d d
e

z z

 
     .        (A7) 

Using the first integral of Poisson-Boltzmann equation
19

, 

 
S

1
M M 1B

m m

D

d
0

d

k T

z eL


   


     ,      (A8) 

and the fact that the field in the membrane is linear, 

membrane M C

M

d
0

dz h

  
  ,         (A9) 

we obtain the following electroneutrality condition (generalizing the Gouy equation): 

 
M M M C

1
M M 1D D

m mS S M

B B

eeL eL

k T k T h

   
   

 


 

      ;     (A10) 

here C
 is the surface potential at the membrane-cell boundary (the inner monolayer of the 

membrane). However, the term proportional to e
M

 is of the order of 2÷20, while the correction 

term for the field in the membrane is 0.02÷0.2, therefore, we can neglect the correction term to 

obtain 
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 
M

1
M M 1D

m mS

B

eeL

k T


   




     .       (A11) 

Physically, this approximation means that the charge located at the inner wall of the membrane 

does not affect significantly the field distribution in the seal. This approximation simplifies the 

multilayer problem to Derjaguin’s asymmetric thin film. 

We can compare Eqs (A6) and (A11) with the normal Gouy equations for a free glass or 

membrane surface, obtained using the thick film limit, where m = 0 (M
 = 1): 

 
G

1
G GD

S

B

2eeL

k T


 





     ;       
M

1
M MD

S

B

2eeL

k T


 





     .   (A12) 

Using Eqs (A12), we can write Eqs (A6) and (A11) in their somewhat more operative forms in 

which surface charge densities e
G
 and e

M
 are eliminated: 

   
1 1

G G G G 1

m m2     
 



       ;      (A13)

 

   
1 1

M M M M 1

m m2     
 



       .      (A14) 

Eqs (A13), (A14) and (A5) are a system of 3 equations for the 3 potentials, m, G
 and M

, as 

functions of h
S
. They are exact within the limits of validity of Poisson-Boltzmann equation, the 

constant charge assumption and the assumption of a negligible contribution of the charge of the 

inner wall of the membrane. A parametrical solution h
S
(m), S

(m) and G
(m) is easily obtained 

and it is shown in Figure 2.  

This solution also determines the repulsive electrostatic force between the glass and the 

membrane. Langmuir’s classical expression for the disjoining pressure is still valid for 

asymmetric film
19

: 

 1

el B m m 2k TC      .         (A15) 

Together with h
S
(m), this equation determines the dependence of the electrostatic contribution to 

the adhesion energy on h
S
. We will only analyze the limit of el at h

S
 >> LD. Using the 

asymptote 

 
  

m

m

1

1 1

mm m

4 11
d ln

1 1









     



 




   
 ,    (A16)

 

we can write instead of Eq (A5) 
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  
   

m

G M
S

1

2
G M

D
m

16 1 1
ln

1 1 1

h

L


 

  


 



  

.      (A17)

 

This equation is easily solved for m. The result is substituted into Eq (A15) to obtain Eq (4). 

The electrostatic energy (5) is then obtained from the result for el using the relation el = –

del/dh
S
. 

All of the above are well-known “classic” formulae. A new point with our problem is that our 

liquid film is extremely thin, which complicates the problem. Let us obtain some simple 

analytical results for the case where it is so thin that h
S
 < LD. We use, first, the approximation G

 

>> 1/G
 and M

 >> 1/M
, which are fulfilled even for thicker films. This simplifies our Gouy 

equations  and  leads to explicit expressions for S
 and M

: 

 
1

G G G

m 2   


     ;

      

 
1

M M M

m 2   


     .    (A18)

 

Substituting these into Eq (A5) for m vs. h
S
 and using another approximation – m ≈ M

 ≈ G
, 

valid for h
S
 << LD (cf. Figure 2) by taking the series expansion of the elliptic functions we obtain 

the following equation: 

M G M GS

m m m m

2 2 2 2

D m m m m

2 2 2 2
1 1

h

L

       

   
      

   
 

.    (A19) 

This equation is easily solved for m; the result is then substituted into Eqs (A18) and the later 

are further simplified to yield the sought difference  = G
 – M

 as a function of h
S
: 

     
S

1/2 1/2 1/2
M G M GB

D

Δ 1
2

k T h

e L
    

 

   
     
      

.     (A20) 

This equation is equivalent to Eq (7). 
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S3. Effect of surface conductivity on seal resistivity 
When the surface potential is high and the seal film has a thickness comparable to LD, the 

surface conductivity starts to play a role in the seal resistance. The increased concentration of 

counterions in the surface vicinity, Ci = Ci∞exp(-ei/kBT), increases the electric current under the 

action of E: 

 
S

S S

c B c

0

2π exp( / )d 2π 1

h

i i i i i iJ R C e k T zE R h C con E        ,   (A21) 

where i is the ionic conductivity of the i-th ion and coni
S
 is the contribution for the surface 

conductivity of the i-th ion to J: 

 
S

S

BS

0

1
exp( / ) 1 d

h

i icon e k T z
h

   .       (A22) 

Assuming for simplicity that both ions have the same mobilities, we find 

 
S

S S

c B c

0

2π exp( / )d 4π 1

h

i i i iJ R C e k T zE R h C con E       ,   (A23) 

where       
S

S

S

0

1
1/ 2 d

2

h

con z
h

    .       (A24) 

If h
S
 > LD, the conductivity can be divided in two contributions from the two surfaces: 

S G Mcon con con  .         (A25) 

The contribution con
G
 refers to the double layer of the glass surface only, i.e., 

 
G

G

S S

G 1

1 1 1/ 2
1/ 2 d d

2 2 d / d
con z

h h z


 

  


 
     ,     (A26) 

where the integration is performed as if the glass surface is free. Using the first integral of 

Poisson-Boltzmann equation
19,16

, (d/dz)
2
 = 2

()/LD
2
, we can take the integral 

analytically: 

   
1/2 1/2

G G GD

S
2

L
con

h
 

   
  

.       (A27) 

Similarly, for the conductivity of the membrane surface, we obtain: 

   
1/2 1/2

M M MD

S
2

L
con

h
 

   
  

.       (A28) 

Substituting these into Eq (A23), we obtain for the resistivity the expression (13). 



 

 55 

S4. Ratio between van der Waals attractive energy and the 

energy of the repulsive interactions in equilibrium thin films 
 

Consider a film in which an attractive dispersion interaction is acting together with certain 

repulsive force. We choose for simplicity a simple exponential dependence for the repulsion 

(which can refer to electrostatic repulsion, Eq (5), but other repulsive interactions also
12,29

 follow 

approximately exponential dependences on h), and the simplest h
-2

 law for the attraction, i.e., 

H
adh R R2

exp( / )
12π

A
A h L

h
    ,        (A29) 

where LR is the characteristic length of the repulsive force (Debye length for electrostatics, 

hydration length for hydration repulsion etc.); AR is a positive coefficient. The derivatives of adh 

are: 

adh H R
R3

R

exp( / )
6π

A A
h L

h h L


   


;   

2

adh H R
R2 4 2

R

exp( / )
2π

A A
h L

h h L


  


.   (A30) 

If AR is small enough, then adh(h) is a monotonically decreasing function. Above certain critical 

value of AR, the adhesion energy adh will possess a maximum and a minimum with respect to h. 

The critical value itself corresponds to saddle point of the function adh(h) where both ∂adh/∂h 

and ∂
2adh/∂h

2
 are zero; from Eqs (A30) it follows that this saddle point is at: 

cr R3h L ;   
3

H
R,cr 2

R

e

162π

A
A

L



 .        (A31) 

The maximum of adh, which corresponds to the equilibrium state of the film, is always at heq > 

hcr. This maximum is obtained from the extremum condition ∂adh/∂h = 0, which yields: 

R H
eq R 3

R eq

exp( / )
6π

A A
h L

L h
  .         (A32) 

This is a transcendental equation for the equilibrium thickness heq; we do not need to solve it for 

our purposes. We substitute the exponent in Eq (A29) according to Eq (A32) to obtain the 

equilibrium adhesion energy: 

H R R
adh,eq vdW,eq2

eq eq eq

2 2
1 1

12π

A L L

h h h
 

   
         

   

;      (A33) 
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here, -AH/12heq
2
 is obviously the van der Waals energy vdW,eq of the equilibrium film. From Eq 

(A33), we find that 

adh,eq R

vdW,eq eq

2
1

L

h




  .          (A34) 

However, we found that heq > 3LR, Eq (A31), so it is valid for the equilibrium film that 

adh,min

vdW,min

1
1

3




  .          (A35) 

Similar estimations can be given for many other models for the surface forces in the film 

(electrostatic, steric or hydration repulsion, and more complex models of the van der Waals 

attraction). The final result is the same: whenever van der Waals force is the leading attractive 

term in the adhesion energy, then, irrespective of the nature of the repulsive force, adh,eq is of the 

order of or 2-5 times smaller than |vdW,eq|. The estimation is inapplicable if the leading attractive 

term is not the van der Waals energy. 
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S5. Adhesion-driven creep in conical capillary 

 

Figure S 1. Diagram of a conical capillary. 

 

The geometrical characteristics of the pipette are defined in Figure S 1, together with their 

symbols. The following relations between these geometrical characteristics will be needed: 

Rc = (L0 + L) sin(/2);      r = (L0 + l) sin(/2);      R0 = L0sin(/2).   (A36) 

The local velocity profile at l is linear as in Eq (18), but with a dependence of the surface 

velocity vl on l: 

vx(z; l) = vl(l)z/h
S
.           (A37)  

This dependence can be found from the condition for constant total flow through any cross-

section of the cone, 2rh
S
vl/2 = const, which yields: 

vl(l) = L0v0/(L0+l),      and also      vL = dL/dt = L0v0/(L0+L).    (A38) 

The membrane velocity is varying with the position l: it moves faster at the cone edge and slower 

with the increase of l. The flow of the liquid surface conserves its area, i.e., it does not create 

elastic strain in the membrane (we will skip the proof). 

From now on, derivations are similar to the case of cylindrical flow in Section 3.1.1. The local 

dissipation rate per unit area [J/m
2
s] is wdiss = S

vl
2
/h

S
, which must be integrated over the area of 

the cone, i.e., over dAcone = 2rdl: 

 
0

S 2 S 2
2 0

diss 0S S

0

( )
2π d 2πsin ln

2

L

l L

L

v l L Lv
W r l L L

h h L

  
   ;     (A39) 

here we used Eqs (A38), and also the assumption that h
S
 and S

 are independent of l. 

Next – the area of a cone is Rc(L + L0), so the adhesion energy is: 

Fadh = –Aadhadh = –[ Rc(L+L0) – R0L0 ] adh.       (A40) 
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Taking the time derivative of it, and using that dL/dt = vL, we obtain for the power Wadh of the 

energy source the following expression: 

 adh
adh 0 adh c adh

d
2πsin / 2 ( ) 2π

d
L L

F
W L L v R v

t
        .    (A41) 

Eqs (A39) and (A41) are the conical analogues of the cylindrical Eqs (19) and (17). From the 

energetic balance (Wadh + Wdiss = 0) one can find the velocity vL of the patch edges: 

   

S

adh

S

0 0

d

d ln 1 /
L

hL
v

t L L L L




 

 
;       (A42) 

compare to Eq (20). The integration of Eq (A42) yields: 

2
S 2

2

0S 2

adh 0 0 0 0

1 ln 1
2 2

L L L L
t L

h L L L L





    
        
     

.      (A43) 

This is the conical variant of Lucas-Washburn Eq (21). For the sake of easier comparison, we 

can rewrite Eq (21) in a form similar to Eq (A43): 

S
2

S

adh2
t L

h




 .          (A44) 

The dimensionless dependences of the cylindrical L on t and the conical L on t are given in 

Figure S 2 (the units of L and t are [L0] and [S
L0

2
/2h

Sadh] respectively). 

 

Figure S 2. Dimensionless wetted length vs. dimensionless time for cone and cylinder, Eqs. 

(A43)-(A44). This figure reflects the fact that at the point at which the patch starts to penetrate 

into the pipette, it sees only the radius R0 which is the same for the cylinder and the cone. Wetted 

length L for the cone corresponds to more volume of liquid in the seal zone compared to a 

cylindrical pipette, which means higher friction and slower creep. 
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S6. Pressure-driven creep rate in conical capillary 
 

The relevant Navier-Stokes equation in the lubrication approximation is: 

S( ) ( , )l zz xp l v z l   .  

Double integration with respect to z yields the velocity profile: 

   S

S S

( )
,  ( )

2

l
x l

p lz
v z l v l z z h

h 


   .       (A45) 

We need two conditions to determine the unknown functions vl(l) and p(l). The first condition is 

for area conservation of the membrane (i.e., the membrane cannot stretch while flowing). A 

portion of the membrane of length l is transferred for a period of time dt from point l to point l 

+ vldt. The membrane length is altered after this shift: 

 δ 1 ( )d δl ll v l t l  ; 

the respective area alteration is: 

 
( ) ( )

2π ( )δ 2π ( d ) 1 ( )d δ 2π ( )δ 2π d δl
l l l

v l r l
r l l r l v t v l t l r l l t l

l


    


.   (A46) 

From this equation it follows that if we assume that the membrane area is conserved, then ∂l(rvl) 

= 0 is fulfilled, which yields for vl once again Eq (A38) (using Eqs (A36)). The second condition 

is the one for constant volume discharge through a cross-section of the cone, which is obtained 

by integration of Eq (A45): 

S

0

2π ( , )d

h

xQ r v z l z const  .         (A47) 

The pressure drop between the two ends of the seal (l = 0 and l = L) is p, which allows us to 

find the unknown const. After some calculations, from Eq (A47) (a differential equation for the 

unknown function p(l)) and from the surface conservation condition, Eq (A38), we can obtain: 

 
 

 

 

 
0 0C P C

0 0

ln 1 / ln 1 /
( ) Δ

ln 1 / ln 1 /

l L l L
p l p p p p

L L L L

 
   

 
,     (A48) 

where p
C
 is the pressure in the cell outside the pipette; p

P
 = p

C
 + p is the pressure in the pipette 

above the patch dome (outside the cell). Substituting Eq (A48) into Eq (A45), we obtain the 

velocity profile vx(z,l). From it the rate of dissipation of energy is calculated: 
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 
S
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   
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The mechanical work per unit time (if Wflow is neglected) is equal to 
2

patch cπ Δ LW R pv , cf. Eq 

(25). From the balance Wflow + Wpatch = 0, we find then the velocity at l = L: 

 

S

c

S

0 0

d Δ

d 2 ln 1 /
L

RL h p
v

t L L L L
  

 
.       (A50) 

As with the cylinder (Section 3.1.2), some small terms, O(h/L), are neglected. This result is 

similar to Eq (A42) for adhesion-driven creep, with –pRc/2 instead of adh, as it was with 

cylindrical capillary. However, the pressure-driven creep of the patch will follow different 

dependence from the adhesion driven creep since Rc depends on L, cf. Eq (A36). Eq (A50) can 

be integrated: 

   
S

0 0S

2
ln 1 /

Δ sin( / 2)
t L L L L L

h p




      .      (A51) 

If adhesion force and pressure gradient are acting simultaneously, the energy balance is Wflow + 

Wpatch + Wadh = 0, cf. Eqs (A49), (A41) and (25). It yields: 

   
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S7. Experimental data for pressure-driven creep 
 

Protein incorporation into liposomes. 

D/R method. This method followed closely that described by Häse et al.
48

 (1). Lipids (2 mg) 

were dissolved in a glass test tube using chloroform. D/R buffer (1 mL) was added, and the 

solution sonicated for 15 min to form a cloudy liposome suspension. This was transferred into a 

15 mL falcon tube, and a further 2 mL of D/R buffer was added. The desired quantity of MscS 

and/or MscL was then added at a protein to lipid ratio of 1:1000 (wt/wt) for both proteins and the 

solution was placed on a rotary wheel for 1 h at 4°C. After this time, Bio-Beads SM-2 (BioRad, 

Richmond, CA) were added and the suspension mixed for a further 3 h. The solution was 

centrifuged at 250 000 × g, and the pellet was collected and spotted onto a microscope cover 

glass, and dehydrated under vacuum overnight at 4°C. The dried lipid spot was rehydrated with 

D/R buffer at 4°C and subsequently used for experimentation. 

Sucrose method. A total of 2 mg of a lipid or a mixture of lipids dissolved in chloroform was 

dried under a stream of N2 gas. Distilled water (5 μL) was then added to prehydrate the lipids, 

followed 5 min later by 1 mL of 0.4 M sucrose. The solution was placed in the oven at 55 °C for 

3 h, after which time, the appropriate volume of MscS and MscL was added to make a protein-

to-lipid ratio of 1:1000 (wt/wt) for both proteins. 

 

Electrophysiology. 

Before gigaohm-seal formation and excision of membrane patches from liposome blisters, an 

aliquot of liposomes (2-4 μL) was placed on the bottom of the experimental chamber containing 

the bath solution. Liposome blisters were patched ~10 min after seeding of the liposome 

preparation. Negative pressure (suction) was applied to patch pipettes using a syringe and was 

monitored using a piezoelectric pressure transducer (PM 015R, World Precision Instruments, 

Sarasota, FL). Borosilicate glass pipettes (Drummond Scientific Co., Broomall, PA) were pulled 

using a pipette puller (PP-83, Narishige, Tokyo, Japan). Electrodes with resistance of 2.5–5.0MΩ 

(bubble number, 4.0–5.0) were used for the patch-clamp recording from inside-out liposome 

patches. To confirm whether MscS and/or both MscS and MscL were included in the liposomal 

membranes, the channel activities of both channels were examined in liposomes using the patch-

clamp method. Currents were amplified with an AxoPatch 1D amplifier (Axon Instruments),and 
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data were acquired at a sampling rate of 5 kHz with 2kHz filtration. The bath and pipette 

recording solution were the same consisting of 200 mM KCl, 40 mM MgCl2, and 5 mM HEPES 

(pH 7.2 adjusted with KOH). 

 

Fluorescence imaging of membrane patches. 

Fluorescence images from excised inside-out membrane patches, which consisted of azolectin 

(99.9 weight %)/rhodamine-PE (0.1%) containing wild-type MscS and/or both MscS and MscL 

and azolectin (69.9%)/cholesterol (30%)/rhodamine-PE (0.1%) membranes were observed using 

a confocal microscope (LSM 700, Carl Zeiss Inc., Jena, Germany) specially placed in a patch-

clamp Faraday cage using a long working distance water immersion objective lens (63x, 

NA1.15, Carl Zeiss, Jena, Germany). A 555 nm laser was used as the excitation light source. 

Fluorescence data were acquired and analyzed with ZEN software (Carl Zeiss Inc., Jena, 

Germany). Scan rate was 196 ms/scan, with no interval between consecutive scans. To visualize 

liposome patches the pipette tip was bent ~30° with a microforge (Narishige; MF-900, Tokyo, 

Japan) to become parallel to bottom face of the chamber.  

A typical measurement is illustrated in Figure S 3 with data for MscS+MscL. After the patch is 

formed, pressure is applied and this pressure is increased stepwise, approximately linearly with 

time (Figure S 3, up). Simultaneously, creeping distance L = L(t) – L(0) was monitored as 

function of time (Figure S 3, down). The L data was used to calculate the creeping velocity vL 

according to Eq (60). Together with the pressure data, this allows the construction of the plot in 

Figure 6.  

Dome bulging results in deviation of the creep velocity from Eq (61), cf. Figure 6. The 

observed geometry of the patch during creep under the action of suction is shown in Figure S 4. 

Only after the dome has relaxed to a stationary shape is Eq (61) valid. 
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 Figure S 3. Applied pressure vs. time and creeping distance L = L(t) – L(0) vs. time. Data for 

MscS+MscL.
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 Figure S 4. Series of confocal single frame images (MscS patch) illustrating the typical patch 

behavior under the action of increasing pressure. The pressure starts to increase linearly at 1.18 s. 

Initially, the patch dome bulges until at t = 5 s it relaxes to a stationary shape. At this stage, the 

patch continues to creep according to Eq (A50), until the lytic pressure p = 7800 Pa is reached 

at t = 6.670 s.  

 


