Supplemental Table I. Distribution of percent length coverage for the top matching UniProt database entries.

Percentage length coverage bin	Count in bin	Cumulative count
100	3071	3071
90	1205	4276
80	851	5127
70	806	5933
60	752	6685
50	697	7382
40	653	8035
30	532	8567
20	362	8929
10	0	8929
0	0	8929

Examples of statements that can be made based on above table:

- 3071 database proteins matches to a Trinity transcript by > 90% alignment coverage.

- 1205 database proteins matches to a Trinity transcript with an alignment coverage

between 80% and 90%.

- 4276 database proteins matches to a Trinity transcript by > 80% alignment coverage.

		Un-annotated
	Annotated_transcripts	transcripts
N50(bp)	1879	649
Average_transcript_length(bp)	1478	524
Median_transcript_length(bp)	1278	387
%total_mapped_reads	72.90	6.50
%Uniquely_mapped_reads	49.25	4.86

Supplemental Table II. Size statistics and percentage of read mapping to annotated and un-annotated transcripts.

Supplemental Table III. Primers used in RT-PCR analysis.		
Transcript number (Cpent_contig)		Sequence (5' to 3')
272246	Sense Anti-sense	AAGGCCAACAAGCAAGATTATTA ATTTCTTCTCCCCCACCATATAA
47491	Sense Anti-sense	GAAAGAAGAAACGAAATTTGTGC TCAAAGTGTCAACCTTGCATTC
136661	Sense Anti-sense	TGATGATCCTTTTGAAGAATACGA CAATCCCAAGATGATTCCTTACA
145193	Sense Anti-sense	TCTTGATCTGTGTCAGGACCTTT ACTTCTCCCAATCATTACCCAAC
43255	Sense Anti-sense	TGATGATAGTGCATTTGTGAAGG GGATGATACACAGTGAACCTTGG
129211	Sense Anti-sense	TGCCATCATCATTATTAAGCATT CGGCTTCTTCTTGTTATTCTTCC
69651	Sense Anti-sense	ATGATTTGCCTAGCTTCACTCAA TGATTCTCCTCCTTGTCATTTGT
38878	Sense Anti-sense	AATCGCAATGATGAGTTCTTGTT CAGCTTCATGGAGTATTTGATCC
221563	Sense Anti-sense	CTCGAATAACAGAAGCAGCAAGT GTCCAGATATGACCTTGAAGCAG
132201	Sense Anti-sense	ATGGAAAGTTGGTCCAGAAAGA ATCTCTGCCCTGTCGATAAGAA
76374	Sense Anti-sense	CCATTTGAAGGTGGAGTTTTTC AATAATTGCCCGACAGACAGAT

Supplemental Table III. Primers used in RT-PCR analysis.

Supplemental Figure S1. Flow-chart showing steps in dodder transcriptome assembly and annotation, and downstream transcript clustering and differential expression analysis

Supplemental Figure S2. Transcript size distribution for Dodder_all_transcriptome

Supplemental Figure S3. Expression of non-annotated transcripts as detected by RT-PCR in dodder stems. Contigs with single asterisk are non-annotated transcripts with a predicted ORF, whereas with double asterisks are non-annotated transcripts without a predicted ORF. Cpent_contig_132201 and Cpent_contig_76374 were used as controls which are annotated as *CAP-BINDING PROTEIN 20* and *UBIQUITIN-CONJUGATING ENZYME 21*, respectively and found to be highly expressed in all tissues from expression data.

Supplemental Figure S4. Pie charts for multilevel GO distribution of annotated transcripts in three categories: biological processes (A), cellular components (B) and molecular function (C).

Molecular function GO-term

Cellular component GO-term

Supplemental Figure S5. Histogram representation of GOslim classification in three categories: biological processes (A), molecular function (B) and cellular components (C).

Enzyme Code Distribution

Supplemental Figure S6. Distribution of transcripts annotated as enzymes among different enzyme classes.

Supplemental Figure S7. Multidimensional scaling (MDS) plot of all replicates of each dodder tissue used for transcriptome assembly and, subsequently, transcript clustering and differential expression analysis. There were eight replicates for stems, prehaustoria, haustoria and flowers (four replicates each from dodder grown on two host plants, tomato and tobacco) and four replicates for seeds and seedlings.