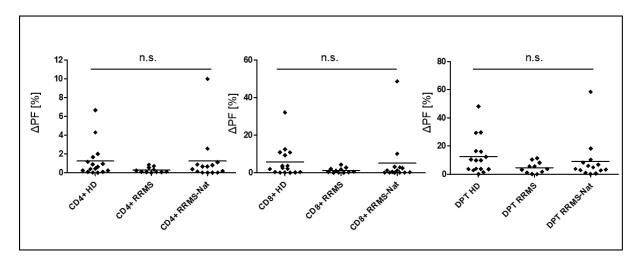

SupplementaryTable 1

Clinical characteristics of patients

	no. of subjects	age	f:m ratio	disease duration: years (mean, SD, median)	EDSS (median, range)	Natalizumab treatment duration: months (mean, SD, median)
HD	41	37	1.4:1	n/a	n/a	n/a
RRMS	30	38	2.75:1	3.0, 5.7, 1.0	2.0 (0-4.5)	n/a
NAT	32	34	1.9:1	6.7, 5.0, 6.0	2.5 (1.0-4.5)	20.0, 18.0, 16.5


Supplementary Figure 1 Antigen-induced IFNγ production by single and double positive T cells

IFNγ secretion by CD4+, CD8+ single positive or CD4+CD8+ double positive T cells in response to different antigenic stimuli (MBP, CMV pp65, JCV VP-1 or EBV EBNA-1 peptide pools) were assessed by intracellular cytokine staining. The percentage of IFNγ positive cells within the respective T cell subpopulations is shown for controls as well as RRMS patients.

Supplementary Figure 2

Single and double positive T cell proliferation induced by JCV peptide pools

Comparative analysis of proliferative T cell responses to JCV VP-1 peptide pools in healthy donors (HD), untreated RRMS patients and Natalizumab treated MS patients (RRMS-NAT) as detected by CFDA-SE proliferation assay. No significant differences were observed (Kruskal-Wallis/Dunns Multiple Comparison).