Additional File 1:
Supplementary Methods for ” Mapping Epistatic

Quantitative Trait Loci”

Cecelia Laurie!, Shengchu Wang?, Luciana Aparecida Carlini-Garcia®, Zhao-Bang
Zeng? 4+

1 Department of Mathematics, University of Alabama, Tuscaloosa, AL, USA and
Department of Biostatistics, University of Washington, Seattle, WA, USA

2 Department of Statistics & Bioinformatics Research Center,North Carolina State
University, Raleigh, North Carolina, USA

3 Instituto Agronomico de Campinas, Centro de Graos e Fibras, Campinas, SP, Brazil
and APTA Regional, Pélo Centro Sul, Piracicaba, SP, Brazil

4 Department of Statistics & Bioinformatics Research Center and Department of
Genetics, North Carolina State University, Raleigh, USA

* E-mail: zeng@stat.ncsu.edu

Contents

1 Supplementary Methods 1
1.1 Model . . . . . 1
1.2 Score statistic and re-sampling . . . . . . ... .. L Lo 2
1.3 Partial derivatives . . . . . . . . ... oo 4

1 Supplementary Methods

1.1 Model

For the backcross model as described in the paper, assume that there are m QTL in the

model with ¢ epistatic effects for a total of ¢ = m +t effects parameters. The likelihood is

a mixture of 2™ normal distributions, one for each of the possible missing QTL genotypes.
The individual and the overall log-likelihoods are given by

Li(#;v) =In {Zpg(b(@/ﬂﬂp ‘72>}

j=1

n 2m
[(6;v) =) In {Zpij(ﬁ(?/imjaff?)}
i=1 j=1

We have that v denotes the vector of positions of the QTL and € denotes the vector
of main and epistatic effects parameters along with the overall mean g and the variance
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o? of the residual effects. Recall that ¢(y;|p;,0?) denotes the normal distribution with
mean 4; and variance o2 and that the mixing proportion p;; is the probability of the j
multilocus genotype conditioned on marker data.

Genetic Design Matrixz D:

Let D= [djp]amx. where row j corresponds to the j™ multilocus QTL genotype and col-
umn p corresponds to the p* effects parameter. For p < m, djp = % or — % depending
upon whether the p* locus in the multilocus QTL genotype j is homozygous or, respec-
tively, heterozygous. For p > m, d;, = i if the two interacting QTL in the multilocus
genotype j are both homozygous or both heterozygous and d;, = —;11 if one of the QTL

is homozygous and the other heterozygous.

Effects Matrix E:

Let E be the ¢ x 1 vector of the effects parameters, i.e. E = [aq;...;am;71;- - .57 where
ai, ..., a, are the main effects parameters and 7, ..., are the epistasis effects param-
eters.

Genotypic Value p;:
Assuming multilocus genotype j, we have that u; = p+ D,E where D; denotes the ;%
row of D

Maixing Probabilities Matriz 11:
Let m;; denote the probability of multilocus QTL genotype j conditional on marker geno-
types and also phenotypic value, for individual 7. We have that

Pyl o)
Y/ om
> =1 Pij®(yilpg, 0?)

Let IT be the n x 2™ matrix whose (i, j) entry is ;.
For further derivation and discussion of the above quantities, see [1].

1.2 Score statistic and re-sampling

We describe the score statistic and the re-sampling procedure. We denote by [; the
log-likelihood of individual 7. Let D be a set of indices representing the set of models
examined. For a given model (represented by d € D), assume that the model has ¢ param-
eters, split into two groups, 0 = (n,8) = (01, ,0._1, 3, i1, %), where 3 is the parameter
(or parameters) to be tested for significance and n = (0y,--- ,0._1, i, 0%) is considered
the vector of nuisance parameters. In the following, 17 denotes the maximum likelihood
estimator of n for the reduced model with g = 0.
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Score Statistic

0°1:(0, 1; )) (3%(0,77;

Ui(d) = Us3(0,7;d) — ( d>> U,:(0,7; d)

9pon on?
al’L 5777 td
Usi(Bm;d) = %
Un,z(67n7d) - 877 - (8017 ) 80m_1’ 8[1,7 0_2)

= Uid)
i=1
The score statistic for Hy: 8 = 0 against Hy: 5 # 0 for model d is
W(d) = U'(d)V"(d)U(d)

where V(d) = Yoy Ui(d)U!(d). (Here the notation M’ refers to the transpose of the
matrix M.) Formulas for the needed first and second partial derivatives are given in the
subsection Partial derivatives below.

Resampling Thresholds

The stages involve forward searches for positions of QTL to add to the model, testing
for admitting interaction parameters, and backward elimination phases. The forward
searches for positions along the genome require a genome-wide threshold for an empirical
distribution of maximum score statistics. Testing for admitting or deleting additional
interaction parameters given that QTL are identified or deleting QTL in the model do not
involve a genome search and thus we use a pointwise threshold for testing of significance.

To find a genome-wide threshold using resampled score statistics (when searching
for positions along the genome):

1. Find independent samples G;, i = 1,2,--- ,n from N(0,1). Here n is the number
of individuals in the sample.

2. Calculate U*(d Z U(d)G;, W*(d) = U (d)V'U*(d), and S* = maz,W*(d).

3. Repeat step 1 (choosing a new sample {G;}) and step 2 a large number of times,
say N times. Let S,* for & = 1,--- , N denote the k" maximum resampled score
statistic.

4. Compute the 100(1 — «)™ percentile of {S;* : k = 1,--- N} to determine the
threshold value. Here « is the desired significance level.
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Note that the U;(d) and V(d) used in the resampling calculations are based on the
original data and are evaluated once and used repeatedly in step 2; only the G;’s are
changed in each resample. Since it does not involve refitting the model in each itera-
tion, the proposed method is computationally much more efficient than the permutation
method. More complete explanations and justifications of the procedure can be found
in [2].

To find a point-wise threshold for a given model d € D (when testing epistasis
parameters or parameters in backward-elimination) :

1. Find independent samples G;, i = 1,2,--- ,n from N(0,1). Here n is the number
of individuals in the sample.
2. Calculate U*(d) = Y U;(d)G; and W*(d) = U (d)V"'U*(d).
i=1
3. Repeat step 1 (choosing a new sample {G;}) and step 2 a large number of times,
say N times. Let W,* for k = 1,--- , N denote the k' resampled score statistic.

4. Compute the 100(1 — a)™ percentile of {W,* : k = 1,--- N} to determine the
threshold value. Here « is the desired significance level.

1.3 Partial derivatives

Let T be the n x 2™ matrix such that ¢;; = v; — y;.

21
Let S be the n x 2™ matrix such that s;; = 5 32 — 3
o

Throughout what follows, the matrix operator # denotes the Hadamard product of two
matrices, i.e. element-wise multiplication. For a matrix G, G; refers to the i** row of G,
G4 refers to the ¢ column of G, and G’ refers to the transpose of G.

First and second partial derivatives of the log-likelihood functions

Let 0 = (0y,...,0.,p,0°) denote the vector of parameters for the model and let v
denote the vector of positions of the QTL. In what follows we will shorten the notation
1(0;v) and 1;(0;v) to 1(f) and [;(0) respectively, since it is understood that the likelihood
depends on the positions but our focus is on derivatives with respect to the parameters
in 6.

Basic building blocks: Assume that k=1,---  c.

Myi —mi)
90, o
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0 o 0 1 7%(%*53‘)2 B gy 1
89k¢(yz’,uj>a ) - aek {We 7 :| - ¢(yl‘:u]70- )0_2 (yz ,uj)djk

0 |: 1 _l(yi—u]’)2
2

0 2\ __ ] — T 2i gy
sl = 51 | o) - )

0 o O 1 ,%M 1 o (i —py)* 1
aa2¢(y1]u],0 ) = 952 {We g ] = 02¢(yz’ﬂj,0 )( 202 9

First partial derivatives of individual log-likelihoods

0l;(0)

0 il 2 - 1
0~ o0 [ln{;pmﬁ(%!uﬁU )}] = ;Wz’j;(% — 5)djx

oL(6) 9 - al] e 1
a,u - a_,u [ln {jzlplj(b(ylhflma ) - jzlﬂ-zy;(yz :U’J)

e o [ [ U oy, L (o)
it _w[m{;pm@m,a) "2\ T 3

Second partial derivatives of the full log-likelihood:
We will need the partial derivatives of m;;. In the expressions below we will use the

: (vi —p)? 1
notation t;; = y; — p1; and s;; 5o 5
37% 1 2"
= — T (tijdjk - E WthinJk>
80k g T

(97'('1']' 1 il
o o2l tij — ZWthiJ
K J=1

2777,
87%» 1
D02 = ;sz Sij — E TiJSiJ
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The following refer to k=1,--- ;,candp=1,--- ¢

82
()ae aek ~ 09, [ZZ o7 a9 = ) ik

=1 j=1
- 1 om;
:—ZZ —mijd kdjp—i-zz 237;jt i
= 1] 1 =1 j=1
Zzﬁw Jkdjp+< ) Zzﬂ-wtz] ikjp
=1 j5=1 =1 j=1

2 n 2m 2"
_ (%) Z [(Z Wijtijdjk> (Z 77'thin«1}>>]
1 j=1 J=1

1=

In matrix notation, we have:

2
= —glunH(D[k]#D[p]) + (%) 11Xn(H#T#T)(D[k]#D[p])

- (5) Lo { (4T DI 4[(TT4T) D)}

where 114, is the 1 X n matrix whose entries are all equal to 1.

0°1(6)
(2) ooy,
djp) factors are replaced by 1.

is composed of expressions similar to those in (1) except that the d;, (and

In matrix notation, we have:

921(6 1 1\?2
aﬂéei = ——5 L IDM ¢ <;> 115, (TI#T#T) DI

- (i> 1o {(TT)DM 4 (TTAT) L]

o2

where 1omyq is the 27 x 1 matrix whose entries are all equal to 1.

32

factors are replaced by 1.

is composed of expressions similar to those in (2) except that the d;), (and d )
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In matrix notation, we have:

021(0)
Ol

1 1\?2
= —gllxnl—[lzmxl + (;) 11Xn(H#T#T)12mX1

- (Ui) 1o { (T Ly (L) Ly ]}

Note that 11,,II15my; equals n, the sample size.

3530 = 35, [Z S %H

=1 j=1
"1\ 1 om;
-5 () ot 5 G
i=1 j=1 =1 j=1
om om
( > ijtzjd]k—l—< ) ZZFUSUtUdJk
i=1 j=1 i=1 j=1

) | ) ()

In matrix notation, we have:

2 2
Ul _ _ (i) 11 (TAT)DM (i) 11, (TT4S4T)DY
g g

00,002
1\2
- (—2> 1ixy {[(H#T)D[kl]#[(n#smmxl]}
o
o°e) o ,
(5) 000 consists of expressions similar to those in (4) except that the d;; (and d )

factors are replaced by 1.

In matrix notation, we have:

9%1(6 1\?2 1\2
a’ua(o_)Q = <;> 11><n(H#T)12m><1+ (F) 11Xn(H#S#T)12mX1

_ (%) Lo {[(TTAT) Lom oA (TT4S) Lo 1]}
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n 2m
l]

0(0) _ - —n)® 1
(6) 302802 B [Z i ( 202 5)
1 2 n 2™ 1
- () ;Z%(Qs’“‘ =)

=1 j=1 =1 j=

om;
1
2m n 2m
1 1
— ( > ZTF” 28” (—2> Z ,LJSZ']'SU
i=1 j=1 —1 i—

5 G

2

9 2
8 l<9) - (%) 11xn(H#(ZS+H))12mx1 + (%) 11Xn(H#S#S)12mX1

In matrix notation, we have:
002002
1\?2
- (ﬁ) Liscn {[(TI#8) Loma | #{(TI#8) 1om a ]}

where H is the n x 2™ matrix where every entry equals %

The full log-likelithood second derivative matriz

2ue) . 9%) | d21(0) | 821(0)

90100, 56,00, d010p 80,002
d21(0) ue) . 9%0) | 921(0) | 82l(0)2

= | 96.06, 9690, 960 9690
06000’
|

9%1(6) 9%1(6) ‘ 9%1(6) 9%1(6)

Oudb1 Oudf. ‘ Oudu Oudo?

921(0) 521(6) | 921(0) 521(0)

00200, 00200, 0020 002002
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where

0%1(0) 1
= = ——1,,,II(DVI#DI
Afg agfaeg o2 1 H( # )

+ <%>2 11, (TI#T#T) (DYDY — (;)2 1., {[(H#T)D[f]]#[(H#T)D[g]]}

921(0) 1
= ——1,,IIDY
Ao, g2

Xp=

1

2
+(;) 1y (A TAT)DI — (1

U2>2 s { [(TAT) DY (TTAT) 1510, |
0216
2y = aegléa)2 - (012

# (%) tampsamps - (1) 1 {0mpe s ..

2
) 11, (II#T) DU

o2

0%1(0) 1
= —— 1y Illomy
Dy prRd 2mx1

Bu =

. (Ui) L (TTATAT) Ly 1 — (Ui) Vi {[(TEAT) Ly (TTAT) L]}

(6) 1)’
BlZ = BQl = W = - ; 11Xn(H#T)12m><l

1 2

. (Ui) Lo (TS AT Lyms ( ) Ly {{(TEAT) Ly [ (T48) Ly}

o2

821 6) 1
Bgz i (—) ]-1><n H# QS +H))12m><1

02002 o2

2
—l—(%) 115 (TT#S#S) 1omyq — ( ) 11 sn {[(TT#S) Lom o1 | #[(TT#S) 19m 1|}

1
Note that the first term in By;, namely — 11><n]:[12m><1 equals ——n.
02 o2
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