A Universal Isocyanide for diverse Heterocycle syntheses.

¹ Pravin Patil, ¹ Kareem Khoury², Eberhardt Herdtweck, ³ Alexander Dömling¹*

¹ Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.

²Carmolex Inc, Pittsburgh, Pennsylvania 15213, United States.

³ Technische Universität München, Garching, Germany.

a.s.s.domling@rug.nl

Supporting Information	S-1
General Methods	S-2
General experimental procedure for Ugi-tetrazoles	S-2
General experimental procedure for cyclization	S-3
Computational Chemical Descriptors	S-30
Xray-Crystallographic Information	S-33
Characterization of Products (MS, ¹ H NMR and ¹³ C NMR spectra of compounds)	S-45

Experimental section

1. General methods

Nuclear magnetic resonance spectra (NMR) were recorded on a Bruker Avance 500 spectrometer (¹H NMR (500 MHz), ¹³C NMR (126 MHz)). Chemical shifts for ¹H NMR were reported as δ values and coupling constants were in hertz (Hz). The following abbreviations were used for spin multiplicity: s = singlet, d = doublet, t = triplet, dd = double doublet, m = multiplet, bs = broad singlet. Chemical shifts for ¹³C NMR reported in ppm relative to the solvent peak. Thin layer chromatography was performed on Fluka precoated silica gel plates (0.20 mm thick, particle size 25 µm). Flash chromatography was performed on a Teledyne ISCO Combiflash Rf, using RediSep Rf Normal-phase Silica Flash Columns (Silica Gel 60 Å, 230 - 400 mesh). Reagents were available from commercial suppliers and used without any purification unless otherwise noted. All isocvanides were made in house by either performing the Hoffman or Ugi procedure. Other reagents were purchased from Sigma Aldrich, ABCR, Acros and AK Scientific and were used without further purification. Mass spectra (HRMS) were recorded on an Orbitrap XL (Thermo Fisher Scientific; ESI pos. mode, resolution of 60000@m/z 400). Electrospray ionization mass spectra (ESI-MS) were recorded on a Waters Investigator Semi-prep 15 SFC-MS instrument.

Synthetic procedure A (Ugi reaction):

To a 1 M solution of aldehyde in methanol were added successively 1.0 equiv of amine, 1.0 equiv of azidotrimethylsilane, and 1.0 equiv of isocyanoacetaldehydedimethylacetal. The resulting mixture was stirred at room temperature for 18 hrs. The solvent was removed under reduced pressure and the residue was purified using flash chromatography to obtain the Ugi-product.

Synthetic procedure B (cyclization):

To a solution of Ugi-tetrazole (1 mmol) was stirred with methanesulfonic acid (100 mmol) at room temperature for 18 hours. The reaction was diluted with dichloromethane and quenched with saturated sodium bicarbonate solution at 0-5 $^{\circ}$ C and extracted with dichloromethane (20 mL x 3). The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography to afford cyclic product.

Synthetic procedure C (Pictet–Spengler cyclization):

To a solution of Ugi-tetrazole(1 mmol) was stirred with methanesulfonic acid (100mmol) at room temperature for 18 hours. The reaction was quenched with saturated sodium carbonate and extracted with EtOAc (20 mL x3). The solvent was removed under reduced pressure, and the residue was purified by crystallization or flash column chromatography to afford cyclic product.

In all the cases, the spectral data are given for the major diastereomer.

8a: N-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(4-nitrophenyl)methyl)-2-(4-methoxyphenyl)ethanamine.

The product was obtained using procedure A, 814 mg, 92 % as pale yellow

NO₂ N

55.1, 49.2, 48.9, 35.1.

2a: 7-(4-methoxyphenethyl)-8-(4-nitrophenyl)-7,8-dihydrotetrazolo[1,5a]pyrazine.

The product was obtained using procedure **B**, 230 mg, 61 % as brown liquid;

HRMS (ESI) m/z calcd for $C_{19}H_{19}N_6O_3 [M+H]^+$: 379.1513; found: 379.1514; ¹H NMR (500 MHz, CDCl₃) δ 8.21 (d, J = 8.6 Hz, 2H), 7.52 (d, J = 8.6 Hz, 2H), 6.97 (d, J = 8.4 Hz, 2H), 6.79 (d, J = 8.4 Hz, 2H), 6.59 (d, J = 5.6 Hz, 1H), 6.19 (d, J = 5.6 Hz, 1H), 6.03 (s, 1H), 3.78 (s, 3H), 3.43 (dt, J = 14.1, 6.9 Hz, 1H), 3.35 – 3.23 (m, 1H), 2.87 – 2.78 (m, 2H);

¹³C NMR (126 MHz, CDCl₃) δ 158.5, 148.1, 145.0, 144.2, 129.5, 129.1, 127.9, 127.6, 124.3, 114.2, 95.3, 58.0, 55.2, 54.7, 34.1.

8b: N-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(4-nitrophenyl)methyl) propan-1-amine.

The product was obtained using procedure A, 483 mg, 69 % as pale yellow

liquid; HRMS (ESI) m/z calcd for $C_{15}H_{23}N_6O_4$ [M+H]⁺ : 351.1775; found: 351.1775; ¹H NMR (500 MHz, CDCl₃) δ 8.23 (d, J = 8.7 Hz, 2H), 7.61 (d, J = 8.7 Hz, 2H), 5.38 (s, 1H), 4.66 (t, J = 5.4 Hz, 1H), 4.50 (dd, 1H), 4.39 (dd, J = 14.1, 5.1 Hz, 1H), 3.41 (s, 3H), 3.32 (s, 3H), 2.52 (t, J = 7.1Hz, 2H), 1.57 – 1.49 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 155.9, 147.8, 145.3, 128.7, 124.2, 123.9, 103.0, 102.6, 56.6, 49.7, 23.0, 11.6.

2b: 8-(4-nitrophenyl)-7-propyl-7,8-dihydrotetrazolo[1,5-a]pyrazine.

The product was obtained using procedure **B**, 125 mg, 44 % as brown liquid;

HRMS (ESI) m/z calcd for $C_{13}H_{15}N_6O_2$ [M+H]⁺ : 287.1251; found: 287.1251; ¹H NMR (500 MHz, CDCl₃) δ 8.24 (d, J = 8.6 Hz, 2H), 7.61 (d, J = 8.6 Hz, 2H), 6.64 (d, J = 5.7 Hz, 1H), 6.35 (d, J = 5.7 Hz, 1H), 6.25 (s, 1H), 3.18 – 3.05 (m, 2H), 1.72 – 1.56 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H); ¹³C NMR

(126 MHz, CDCl₃) δ 148.3, 145.1, 144.2, 128.2, 127.7, 124.4, 95.0, 57.8, 54.8, 21.3, 10.9.

8c: N-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(4-methoxyphenyl)methyl) propan-1-amine.

The product was obtained using procedure **A**, 469 mg, 70 % as yellow liquid; HRMS (ESI) m/z calcd for $C_{16}H_{26}N_6O_3$ [M+H]⁺ : 336.2030; found: 336.2029; ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, J = 8.5 Hz, 2H), 6.88 (d, J = 8.5 Hz, 2H), 5.23 (s, 1H), 4.58 (t, J = 5.5 Hz, 1H), 4.41 (dd, J = 14.2, 5.5 Hz, 1H), 4.23 (dd, J = 14.2, 6.0 Hz, 1H), 3.79 (s, 3H), 3.36 (s, 3H), 3.33 (s, 3H), 2.53 (t, J = 7.4 Hz, 2H), 1.58 – 1.49 (m, 2H), 0.91 (t, J = 7.4Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 159.5, 156.9, 130.2, 128.7, 114.3, 102.6, 56.7, 55.5, 55.3, 49.6, 48.9, 23.0, 11.7.

2c: 8-(4-methoxyphenyl)-7-propyl-7,8-dihydrotetrazolo[1,5-a]pyrazine.

The product was obtained using procedure **B**, 57 mg, 21 % as brown liquid;

HRMS (ESI) m/z calcd for $C_{14}H_{17}N_5O [M+H]^+$: 272.1512; found: 272.1524; ¹H NMR (500 MHz, CDCl₃) δ 7.27 (d, J = 8.5 Hz, 2H), 6.87 (d, J = 8.5 Hz, 2H), 6.55 (d, J = 5.7 Hz, 1H), 6.26 (d, J = 5.7 Hz, 1H), 6.02 (s, 1H), 3.78 (s, 3H), 3.12 - 3.06(m, 1H), 3.04 - 2.98 (m, 1H), 1.66 - 1.50 (m, 2H), 0.88 (t, J =

7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 160.1, 146.3, 130.0, 128.6, 127.9, 114.4, 93.9, 57.7, 55.2, 54.1, 21.1, 10.9.

8d: N-(1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)cyclohexyl)aniline.

The product was obtained using procedure A, 509mg, 77 % as white solid, m.p.:

100-102 °C; HRMS (ESI) m/z calcd for $C_{17}H_{26}N_5O_2$ [M+H]⁺: 332.2081; found: 332.2081; ¹H NMR (500 MHz, CDCl₃) δ 7.06 (t, J = 7.8 Hz, 2H), 6.73 (t, J = 7.4 Hz, 1H), 6.22 (d, J =8.4 Hz, 2H), 4.76 (t, J = 5.6 Hz, 1H), 4.64 (d, J = 5.6 Hz, 2H), 4.10 (s, 1H), 3.30 (s, 6H), 2.37 – 2.30 (m, 2H), 2.23 – 2.14 (m, 2H), 1.74 - 1.67 (m, 3H), 1.58 - 1.36 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 159.7, 143.8, 129.4, 119.2, 115.1, 103.0, 55.5, 54.2, 50.0, 34.2, 24.8, 21.0.

2d: 7'-phenyl-7'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazine].

The product was obtained using procedure **B**, 195 mg, 73 % as white solid, m.p.:

99-101 °C; HRMS (ESI) m/z calcd for $C_{15}H_{18}N_5$ [M+H]⁺ : 268.1557; found: 268.1556; ¹H NMR (500 MHz, CDCl₃) δ 7.44 - 7.35 (m, 3H), 7.24 - 7.20 (m, 2H), 6.76 (d, J = 5.6Ň Hz, 1H), 6.27 (d, J = 5.6 Hz, 1H), 2.34 (d, J = 12.4 Hz, 2H), 2.02 – 1.91 (m, 2H), 1.73 – 1.54 (m, 5H), 1.10 – 0.98 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 148.9, 142.1, 130.3, 129.2, 128.9, 127.9, 97.2, 61.0, 33.1, 24.9, 22.3.

8e: N-(1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)cyclohexyl)-2,4-dimethyl aniline.

The product was obtained using procedure A, 604mg, 84 % as white solid; m.p.:

106-108 °C; HRMS (ESI) m/z calcd for $C_{19}H_{30}N_5O_2$ [M+H]⁺ : 360.2394; found: 360.2394; ¹H NMR (500 MHz, CDCl₃) δ 6.91 (s, 1H), 6.64 (d, *J* = 8.2 Hz, 1H), 5.64 (d, *J* = 8.2 Hz, 1H), 4.75 – 4.70 (m, 1H), 4.62 (d, *J* = 5.6 Hz, 2H), 3.96 (s, 1H), 3.30 (s, 6H), 2.41 (d, *J* = 13.7 Hz, 2H), 2.24 (s, 5.6 Hz, 2H), 3.96 (s, 1H), 3.90 (s, 6H), 2.41 (d, *J* = 13.7 Hz, 2H), 3.96 (s, 1H), 3.90 (s, 6H), 2.41 (d, *J* = 13.7 Hz, 2H), 3.96 (s, 1H), 3.90 (s, 6H), 3.90 (s,

3H), 2.21 – 2.10 (m, 5H), 1.78 – 1.65 (m, 3H), 1.53 – 1.36 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 160.0, 139.2, 131.6, 127.9, 127.4, 123.0, 112.8, 103.0, 55.5, 54.2, 49.9, 34.1, 24.9, 21.1, 20.2, 17.6.

2e: 7'-(2,4-dimethylphenyl)-7'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a] pyrazine].

The product was obtained using procedure **B**, 207 mg, 70 % as white solid, m.p.:

148-150 °C; HRMS (ESI) m/z calcd for $C_{17}H_{22}N_5 [M+H]^+$: 296.1868; found: 296.1869; ¹H NMR (500 MHz, CDCl₃) δ 7.16 (d, J = 8.0Hz, 1H), 7.07 (s, 1H), 7.04 (d, J = 8.0 Hz, 1H), 6.80 (d, J = 5.4 Hz, 1H), 6.08 (d, J = 5.4 Hz, 1H), 2.53 – 2.39 (m, 2H), 2.34 (s, 3H), 2.22 – 2.16 (m, 1H), 2.04 (s, 3H), 1.76 – 1.32 (m, 6H), 1.15 – 1.05 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 148.7, 138.4, 138.3, 138.2, 132.0, 130.6, 128.3, 127.4, 97.4, 61.0, 33.4, 32.4, 25.0, 22.5, 21.9, 20.9, 18.1.

8f: N-(1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)cyclohexyl)-2,6-

dimethylaniline.

The product was obtained using procedure A, 158 mg, 22 % as white solid,

m.p.: 122-124 °C; HRMS (ESI) m/z calcd for $C_{19}H_{30}N_5O_2$ [M+H]⁺ : 360.2394; found: 360.2393; ¹H NMR (500 MHz, CDCl₃) δ 6.94 (d, J = 7.4 Hz, 2H), 6.85 – 6.82 (m, 1H), 5.05 (t, J = 5.7 Hz, 1H), 4.78 (d, J = 5.7 Hz, 2H), 3.43 (s, 6H), 2.42 – 2.34 (m, 2H), 1.89 (s, 6H), 1.82 – 1.73 (m, 2H), 1.64 – 1.53 (m, 5H), 1.44 – 1.36 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 160.0, 141.9, 131.1, 129.2, 123.0, 103.3, 56.5, 55.9, 51.0, 37.1, 23.0, 22.0, 19.5.

2f: 7'-(2,6-dimethylphenyl)-7'H-spiro[cyclohexane-1,8'-tetrazolo[1,5a]pyrazine].

The product was obtained using procedure **B**, 177mg, 60 % as white solid, m.p.:

127-129 °C; HRMS (ESI) m/z calcd for $C_{17}H_{22}N_5 [M+H]^+$: 296.1870; found: 296.1869; ¹H NMR (500 MHz, CDCl₃) δ 7.16 – 7.12 (m, 1H), 7.07 (d, J = 7.5 Hz, 2H), 7.03 (d, J = 5.2 Hz, 1H), 6.04 (d, J = 5.2 Hz, 1H), 2.28 – 2.22 (m, 2H), 2.06 (s,

6H), 1.90 – 1.80 (m, 2H), 1.78 – 1.71 (m, 1H), 1.67 – 1.60 (m, 2H), 1.55 – 1.47 (m, 2H), 1.22 – 1.11 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 148.4, 139.6, 138.9, 128.6, 128.1, 126.2, 100.8, 59.7, 32.6, 25.1, 22.1, 18.8.

8g: N-(1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)cyclohexyl)pyridin-2amine.

The product was obtained using procedure A, 358 mg, 54 % as white solid,

 $\begin{array}{c} \text{m.p.: 126-128 °C; HRMS (ESI) m/z calcd for C_{16}H_{25}N_6O_2 \\ \text{[M+H]}^+ : 333.2033; \text{ found: } 333.2032; ^1\text{H NMR (500 MHz, CDCl_3) } \delta \ 7.98 \ (dd, J = 8.0, 0.8 \ \text{Hz}, 1\text{H}), \ 7.35 - 7.31 \ (m, 1\text{H}), \ 6.62 \ (dd, J = 7.2, \ 5.0 \ \text{Hz}, 1\text{H}), \ 6.06 \ (d, J = 8.0 \ \text{Hz}, 1\text{H}), \ 4.94 \ (s, 1\text{H}), \ 4.77 \ (t, J = 5.6 \ \text{Hz}, 1\text{H}), \ 4.52 \ (d, J = 5.6 \ \text{Hz}, 2\text{H}), \ 3.31 \ (s, 6\text{H}), \end{array}$

2.44 – 2.37 (m, 2H), 2.25 – 2.17 (m, 2H), 1.78 – 1.68 (m, 3H), 1.63 – 1.54 (m, 2H), 1.49 – 1.39 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 159.6, 155.9, 148.4, 137.5, 114.6, 108.2, 103.0, 55.5, 53.6, 49.9, 34.4, 24.9, 21.0.

2g: 7'-(pyridin-2-yl)-7'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazine].

The product was obtained using procedure **B**, 80mg, 30 % as white solid, m.p.:

132-134 °C; HRMS (ESI) m/z calcd for $C_{14}H_{17}N_6 [M+H]^+$: 269.1509; found: 269.1509; ¹H NMR (500 MHz, CDCl₃) δ 8.47 (dd, J = 5.0, 1.7Hz, 1H), 7.74 (td, J = 7.5, 1.9 Hz, 1H), 7.19 (dd, J = 7.5, 5.0 Hz, 1H), 7.03 (d, J = 7.5 Hz, 1H), 6.87 (d, J = 5.7 Hz, 1H), 6.41 (d, J = 5.7 Hz, 1H), 2.53 – 2.45 (m, 2H), 2.27 – 2.23 (m, 2H), 2.06 – 1.96 (m, 2H), 1.79 – 1.66 (m, 3H), 1.34 – 1.24 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 155.8, 150.0, 148.2, 138.2, 126.7, 121.1, 120.5, 99.5, 62.0, 32.0, 24.7, 22.4.

8h: 1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)-N-phenethylpropan-1amine.

The product was obtained using procedure A, 402 mg, 63 % as liquid; HRMS

(ESI) m/z calcd for $C_{16}H_{25}N_5O_2$ [M+H]⁺ : 320.2081; found: 320.2081; ¹H NMR (500 MHz, CDCl₃) δ 7.29 (t, J = 7.5 Hz, 2H), 7.21 (t, J = 7.5 Hz, 1H), 7.14 (d, J = 7.5 Hz, 2H), 4.76 (t, J = 5.4 Hz, 1H), 4.48 (dd, J = 14.1, 5.4 Hz, 1H), 4.40 (dd, J = 14.1, 5.4 Hz, 1H), 4.10 (t, J = 7.0 Hz, 1H), 3.39 (s, 3H), 3.36 (s, 3H), 2.80 - 2.63 (m, 4H), 1.95 - 1.84 (m, J = 13.8, 7.0 Hz, 2H), 0.89 (t, J = 7.4, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 157.0, 139.5, 128.6, 128.4, 126.2, 102.7, 55.0, 54.3, 49.0, 48.3, 36.3, 27.2, 27.2, 10.3.

2h: 8-ethyl-7-phenethyl-7,8-dihydrotetrazolo[1,5-a]pyrazine.

256.1563; ¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.20 (m, 3H), 7.11 – 7.08 (m, 2H), 6.44 (d, J = 5.6 Hz, 1H), 6.00 (d, J = 5.6 Hz, 1H), 4.91 (t, J = 5.6 Hz, 1H), 3.51 – 3.40 (m, 2H), 2.92 – 2.82 (m, 2H), 1.90 – 1.82 (m, 2H), 0.88 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 145.4, 137.7, 128.7, 128.6, 128.1, 126.8, 94.9, 55.9, 54.39, 35.6, 25.8, 8.6.

8i: N-(1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)propyl)butan-1-amine.

The product was obtained using procedure A, 222 mg, 41 % as white solid,

m.p.: 86-88 °C; HRMS (ESI) m/z calcd for $C_{12}H_{26}N_5O_2$ [M+H]⁺: 272.2081; found: 272.2079; ¹H NMR (500 MHz, CDCl₃) δ 4.80 (t, J = 5.5 Hz, 1H), 4.60 – 4.50 (m, 2H), 4.06 (t, J = 7.0 Hz, 1H), 3.42 (s, 3H), 3.40 (s, 3H), 2.48 – 2.41 (m, 1H), 2.40 – 2.33 (m, 1H), 1.94 – 1.87 (m, 2H), 1.45 – 1.35 (m, 2H), 1.35 – 1.23 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H), 0.87 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 157.4, 102.8, 55.6, 55.4, 54.7, 49.0, 47.0, 32.2, 27.4, 20.3, 13.8, 10.3.

2i: 7-butyl-8-ethyl-7,8-dihydrotetrazolo[1,5-a]pyrazine.

The product was obtained using procedure B, 113 mg, 55 % as yellow liquid;

HRMS (ESI) m/z calcd for $C_{10}H_{18}N_5$ [M+H]⁺ : 208.1562; found: 208.1563; ¹H NMR (500 MHz, CDCl₃) δ 6.48 (d, J = 5.6 Hz, 1H), 6.10 (d, J = 5.6 Hz, 1H), 5.04 (t, J = 5.4 Hz,

1H), 3.27 - 3.12 (m, 2H), 1.94 - 1.87 (m, 2H), 1.64 - 1.54 (m, 2H), 1.41 - 1.29 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H), 0.91 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 145.5, 128.5, 94.4, 55.6, 52.3, 30.8, 25.4, 19.7, 13.7, 8.6.

11a: N-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(3,4,5-trimethoxyphenyl) methyl)propan-2-amine.

The product was obtained using procedure A, 726 mg, 92 % as white solid,

 $\begin{array}{c} \text{OMe} \\ \text{MeO} \\ \text{MeO$

NMR (126 MHz, CDCl₃) δ 156.9, 153.6, 137.8, 133.8, 104.3, 102.8, 60.7, 56.1, 55.8, 55.4, 54.6, 49.0, 46.1, 22.6, 22.5.

3a: N-isopropyl-7,8,9-trimethoxy-11H-benzo[d]tetrazolo[1,5-a]azepin-11amine

The product was obtained using procedure **B**, 188 mg, 57 % as white solid, m.p.:

= 6.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 155.7, 153.9, 152.3, 141.8, 133.2, 118.0, 117.1, 107.9, 103.6, 61.5, 60.9, 56.1, 54.2, 46.3, 23.1, 22.2.

11b: N-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(3,4,5-trimethoxyphenyl) methyl)-N-propylpropan-1-amine.

4.36 (dd, *J* = 14.2, 5.5 Hz, 1H), 3.84 (s, 3H), 3.82 (s, 6H), 3.40 (s, 3H), 3.31 (s, 3H), 2.54 – 2.49 (m, 4H), 1.50-1.38 (m, 4H), 0.81 (t, *J* = 7.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.4, 153.0, 137.8, 131.7, 106.5, 102.8, 60.8, 59.5, 56.2, 55.8, 55.5, 52.6, 49.2, 21.0, 11.7.

3b: 7,8,9-trimethoxy-N,N-dipropyl-11H-benzo[d]tetrazolo[1,5-a]azepin-11amine.

The product was obtained using procedure **B**, 283 mg, 76 % as oil; HRMS (ESI)

¹³C NMR (126 MHz, CDCl₃) δ 154.8, 153.5, 152.0, 142.0, 132.2, 119.1, 117.8, 117.2, 109.8, 61.9, 61.3, 60.8, 56.0, 51.8, 18.8, 11.3.

11c: N-(4-chlorobenzyl)-1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)-1-(3,4,5-trimethoxyphenyl)methanamine.

The product was obtained using procedure A, 300 mg, 63 % as oil; HRMS (ESI)

m/z calcd for $C_{22}H_{29}CIN_5O_5$ [M+H]⁺ : 478.1852, found: 478.1852; ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.26 (m, 4H), 6.53 (s, 2H), 5.17 (s, 1H), 4.51 (t, *J* = 5.4 Hz, 1H), 4.33 (dd, *J* = 14.2, 4.9 Hz, 1H), 4.18 (dd, *J* = 14.2, 5.9 Hz, 1H), 3.83 (s, 3H), 3.82 (s, 6H), 3.76 (s, 2H), 3.30 (s, 6H), 2.55 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 156.3, 153.7, 137.5, 133.1, 129.6, 128.6, 104.7, 102.6, 60.8, 56.2, 56.2,

55.5, 55.4, 50.5, 49.0.

3c: N-(4-chlorobenzyl)-7,8,9-trimethoxy-11H-benzo[d]tetrazolo[1,5-a] azepin-11-amine.

The product was obtained using procedure **B**, 223 mg, 54 % as white solid, m.p.:

CI H.NOMe N-NOMe OMe 156-158 °C; HRMS (ESI) m/z calcd for $C_{20}H_{20}CIN_5O_3$ [M+H]⁺ : 414.1327; found: 414.1329; ¹H NMR (500 MHz, CDCl₃) δ 7.52 (d, *J* = 9.5 Hz, 1H), 7.28 – 7.25 (m, 2H), 7.21 – 7.16 (m, 3H), 6.79 (s, 1H), 5.23 (s, 1H), 3.92 (s, 3H), 3.90 (s, 3H), 3.88 (d, *J* = 4.5 Hz, 3H), 3.63 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 155.6, 153.4, 152.4, 22.4, 120.4, 120.4, 120.6, 117.1, 100.0, (1.5, (0.0, 56.1))

142.0, 137.2, 133.1, 132.4, 129.4, 128.6, 118.0, 117.1, 108.0, 61.5, 60.9, 56.1, 55.8, 50.4.

11d: N-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(3,4,5-trimethoxyphenyl) methyl) prop-2-en-1-amine.

The product was obtained using procedure A, 747 mg, 95 % as oil; HRMS (ESI)

m/z calcd for $C_{18}H_{28}N_5O_5$ [M+H]⁺ : 394.2085; found: 394.2083; ¹H NMR (500 MHz, CDCl₃) δ 6.58 (s, 2H), 5.91 (dd, J = 17.0, 10.4 Hz, 1H), 5.24 (s, 1H), 5.23 - 5.14 (m, 2H), 4.55 (t, J = 5.4 Hz, 1H), 4.41 (dd, J = 14.2, 5.4 Hz, 1H), 4.27 (dd, J = 14.2, 6.0 Hz, 1H), 3.83 (s, 6H), 3.82 (s,

3H), 3.36 (s, 3H), 3.34 (s, 3H), 3.25 (dd, J = 6.0, 1.1 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 156.4, 153.6, 138.0, 135.6, 133.3, 1176.0, 104.6, 102.6, 60.7, 56.3, 56.1, 55.5, 55.3, 49.9, 49.0.

3d: N-allyl-7,8,9-trimethoxy-11H-benzo[d]tetrazolo[1,5-a]azepin-11-amine.

The product was obtained using procedure **B**, 204 mg, 62 % as oil; HRMS (ESI) m/z calcd for $C_{16}H_{20}N_5O_3 [M+H]^+$: 330.1561; found: 330.1560; ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, *J* = 9.5 Hz, 1H), 7.20 (d, *J* = 9.5 Hz, 1H), 6.92 (s,

1H), 5.83 – 5.72 (m, 1H), 5.29 (s, 1H), 5.14 (ddd, *J* = 14.0, 11.2, 1.2 Hz, 2H),

3.95 (s, 3H), 3.93 (s, 3H), 3.88 (s, 3H), 3.23 - 3.05 (m, 2H), 1.71 (s, 1H); ^{13}C NMR (126 MHz, CDCl₃) δ 155.5, 153.5, 152.2, 141.8, 135.1, 132.5, 117.9, 117.8, 117.1, 117.0, 107.9, 61.4, 60.8, 56.0, 55.6, 49.6.

11e: N-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(3,5-dimethoxyphenyl) methyl) prop-2-en-1-amine.

The product was obtained using procedure A, 508 mg, 70 % as oil; HRMS (ESI)

(dd, J = 14.2, 5.0 Hz, 1H), 4.25 (dd, J = 14.2, 5.9 Hz, 1H), 3.76 (s, 6H), 3.36 (s,3H), 3.34 (s, 3H), 3.25 (d, J = 6.0 Hz, 2H), 2.25 (brs, 1H); ¹³C NMR (126 MHz, CDCl₃) & 161.2, 156.3, 140.0, 135.7, 116.9, 105.5, 102.4, 100.2, 56.2, 55.4, 55.3, 55.1, 49.9, 49.0.

3e: N-allyl-7,9-dimethoxy-11H-benzo[d]tetrazolo[1,5-a]azepin-11-amine.

The product was obtained using procedure **B**, 248 mg, 83 % as white solid, m.p.:

Ń

114-116 °C; HRMS (ESI) m/z calcd for $C_{15}H_{18}N_5O_2$ [M+H]⁺ : 300.1455; found: 300.1455; ¹H NMR (500 MHz, $CDCl_3$) δ 7.48 (d, J = 9.5 Hz, 1H), 7.23 (d, J = 9.5 Hz, 1H), 6.68 (d, J = 2.2 Hz, 1H), 6.49 (d, J = 2.2 Hz, 1H), 5.82 –

5.73 (m, 1H), 5.26 (s, 1H), 5.14 (ddd, J = 13.7, 11.4, 1.3 Hz, 2H), 3.88 (s, 3H), 3.87 (s, 3H), 3.19 - 3.06 (m, 2H), 1.74 (brs, 1H); 13 C NMR (126 MHz, CDCl₃) δ 162.8, 159.0, 153.5, 139.2, 135.2, 117.2, 117.1, 117.0, 113.0, 105.3, 98.3, 56.0, 55.9, 55.6, 49.8.

11f: 2-(3-chlorophenyl)-N-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(3,5-dimethoxyphenyl)methyl)ethanamine.

The product was obtained using procedure A, 857 mg, 93 % as oil; HRMS (ESI)

m/z calcd for $C_{22}H_{29}N_5O_4$ $[M+H]^+$: 462.1903; found: 462.1902; ¹H NMR (500 MHz, CDCl₃) δ 7.24 – 7.17 (m, 3H), 7.11 – 7.04 (m, 1H), 6.45 (d, J = 2.2 Hz, 2H), 6.40 (t, J = 2.2 Hz, 1H), 5.24 (s, 1H), 4.55 (t, J = 5.5 Hz, 1H), 4.40 (dd, J = 14.2, 5.0 Hz, 1H), 4.22 (dd, J = 14.2, 5.9 Hz, 1H), 3.75 (s, 6H), 3.34 (s, 6H), 2.90 – 2.79 (m, 4H), 2.15 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 161.2, 156.3, 141.6, 140.0, 134.1, 129.7, 128.7, 126.9, 126.4, 105.4, 102.5, 100.3, 57.3, 55.5, 55.3, 49.0, 48.5, 35.9.

3f: N-(3-chlorophenethyl)-7,9-dimethoxy-11H-benzo[d]tetrazolo[1,5a]azepin-11-amine.

The product was obtained using procedure **B**, 333 mg, 84 % as oil; HRMS (ESI)

m/z calcd for C₂₀H₂₁ClN₅O₂ [M+H]⁺ : 398.1378; found: 398.1376; ¹H NMR (500 MHz, CDCl₃) δ 7.31 (d, *J* = 9.5 Hz, 1H), 7.17 (d, *J* = 5.0 Hz, 2H), 7.10 (d, *J* = 9.5 Hz, 1H), 7.06 (s, 1H), 6.97 – 6.92 (m, 1H), 6.63 (d, *J* = 2.3 Hz, 1H), 6.47 (d, *J* = 2.3 Hz, 1H), 5.22 (s, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 2.87 – 2.77 (m, 1H), 2.75 – 2.64

(m, 3H), 1.69 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 162.8, 159.0, 153.4, 141.3, 139.1, 134.1, 129.7, 128.7, 126.8, 126.5, 116.9, 116.8, 112.8, 105.2, 98.4, 56.8, 55.9, 55.5, 48.0, 35.4.

11g: 4-benzyl-1-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(3,5-dimethoxy phenyl)methyl)piperidine.

The product was obtained using procedure A, 839 mg, 87 % as oil; HRMS (ESI)

m/z calcd for $C_{26}H_{36}N_5O_4$ $[M+H]^+$: 482.2762; found: 482.2760; ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, J = 7.8 Hz, 2H), 7.17 (t, J = 7.2 Hz, 1H), 7.10 (d, J = 7.8 Hz, 2H), 6.55 (d, J = 2.2 Hz, 2H), 6.38 (t, J = 2.2 Hz, 1H), 4.96 (s, 1H), 4.65 (t, J = 5.5 Hz, 1H), 4.56 (dd, J = 14.0, 5.5 Hz, 1H), 4.37 (dd, J = 14.0, 5.5 Hz, 1H), 3.75 (s, 6H), 3.37 (s, 3H), 3.33 (s, 3H), 2.94-2.84 (m, 1H), 2.72 (dd, J = 7.2, 3.8 Hz, 1H), 2.52 (d, J = 7.2 Hz, 2H), 2.19-2.11 (m, 1H), 1.96-1.88 (m, 1H), 1.65-1.56 (m, 1H), 1.56 – 1.45 (m, 1H), 1.42-1.25 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 160.8, 155.3, 140.4, 137.4, 129.0, 128.1, 125.8, 107.0, 102.6, 100.1, 64.9, 55.4, 55.4, 55.3, 51.9, 51.0, 49.2, 43.0, 37.7, 32.2, 32.1.

3g: 11-(4-benzylpiperidin-1-yl)-7,9-dimethoxy-11H-benzo[d]tetrazolo[1,5a]azepine.

The product was obtained using procedure **B**, 400 mg, 96 % as white solid, m.p.

: 182-184 °C; HRMS (ESI) m/z calcd for $C_{24}H_{27}N_5O_2$ [M+H]⁺ : 418.2238; found: 418.2237; ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, *J* = 9.4 Hz, 1H), 7.22 (t, *J* = 7.4 Hz, 2H), 7.17 (d, *J* = 9.4 Hz, 1H), 7.14 (t, *J* = 7.4 Hz, 1H), 7.05 (d, *J* = 7.1 Hz, 2H), 6.49 (dd, *J* = 7.5, 2.3 Hz, 2H), 4.89 (s, 1H), 3.86

(s, 3H), 3.82 (s, 3H), 2.47 – 2.33 (m, 3H), 2.23 – 2.17 (m, 1H), 1.92 (td, J = 11.6, 2.0, 1H), 1.75 (td, J = 11.6, 2.0 Hz, 1H), 1.50 – 1.41 (m, 2H), 1.06 – 0.96 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 162.1, 158.9, 152.9, 140.4, 138.0, 128.9, 128.1, 125.7, 117.1, 117.0, 113.9, 107.4, 98.4, 65.2, 55.9, 55.5, 51.9, 51.0, 42.8, 37.8, 31.7, 31.6.

11h: N-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(3,5-dimethoxyphenyl) methyl)aniline.

The product was obtained using procedure A, 790 mg, 99 % as oil; HRMS (ESI)

H, OMe N, OMe MeO OMe

m/z calcd for $C_{20}H_{26}N_5O_4$ [M+H]⁺ : 400.1979; found: 400.1979; ¹H NMR (500 MHz, CDCl₃) δ 7.15 (t, *J* = 8.0 Hz, 2H), 6.75 (t, *J* = 7.4 Hz, 1H), 6.66 (d, *J* = 8.0 Hz, 2H), 6.52 (d, *J* = 2.2 Hz, 2H), 6.39 (t, *J* = 2.2 Hz, 1H), 6.04 (d, *J* = 7.1 Hz, 1H), 5.02 (d, *J* = 7.1 Hz, 1H), 4.65 (dd, *J* = 5.8, 4.8 Hz, 1H), 4.41 (dd, *J* = 14.3, 4.8 Hz, 1H),

4.27 (dd, J = 14.3, 6.0 Hz, 1H), 3.73 (s, 6H), 3.41 (s, 3H), 3.39 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.4, 156.1, 145.8, 139.6, 129.3, 118.9, 113.7, 105.3, 102.9, 100.3, 55.8, 55.6, 55.4, 53.2, 49.3.

3h: 7,9-dimethoxy-N-phenyl-11H-benzo[d]tetrazolo[1,5-a]azepin-11-amine.

The product was obtained using procedure **B**, 56 mg, 15 % as white solid, m.p. :

H. N N. N N-N OMe

185-187 °C; HRMS (ESI) m/z calcd for $C_{18}H_{18}N_5O_2$ [M+H]⁺ : 336.1455; found: 336.1455; ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, J = 9.3 Hz, 1H), 7.31 (d, J = 9.3 Hz, 1H), 7.16 (t, J = 7.9 Hz, 2H), 6.81-6.75 (m, 2H), 6.68 (d, J = 8.0 Hz, 2H), 6.49 (d, J = 2.2 Hz, 1H), 5.61 (s, 1H),

4.90 (s, 1H), 3.89 (s, 3H), 3.77 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.3, 158.9, 153.5, 145.8, 138.5, 129.4, 119.1, 118.3, 117.5, 113.6, 112.4, 103.5, 98.5, 56.0, 55.6, 53.0.

11i: 2-(3-chlorophenyl)-N-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(3,4dimethoxyphenyl)methyl)ethanamine.

The product was obtained using procedure **A**, 875 mg,95 % as oil; HRMS (ESI) m/z calcd for $C_{22}H_{29}CIN_5O_4 [M+H]^+$: 462.1903; found: 462.1902; ¹H NMR (500 MHz, CDCl₃) δ 7.25 – 7.15 (m, 3H), 7.07

(dd, J = 7.0, 1.5 Hz, 1H), 6.83 (s, 3H), 5.24 (s, 1H), 4.56 (t, J = 6.0 Hz, 1H), 4.38 (dd, J = 14.2, 5.0, 1H), 4.19 (dd, J = 14.2, 6.0, 1H), 3.87 (s, 3H), 3.82 (s, 3H), 3.34 (s, 6H), 2.91 – 2.76 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 156.6, 149.6, 149.2, 141.6, 134.1, 130.1, 129.7, 128.7, 126.9, 126.4, 119.8, 111.1, 110.2, 102.7, 57.0, 55.9, 55.6, 55.4, 49.0, 48.5, 35.9.

3i: N-(3-chlorophenethyl)-8,9-dimethoxy-11H-benzo[d]tetrazolo[1,5a]azepin-11-amine.

The product was obtained using procedure **B**, 107 mg, 27 % as oil; HRMS (ESI)

m/z calcd for $C_{20}H_{21}CIN_5O_2$ [M+H]⁺ : 398.1378; found: 398.1378; ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, J = 9.4 Hz, 1H), 7.18 – 7.16 (m, 2H), 7.05 (s, 1H), 6.98 (s, 1H), 6.93 (td, J = 4.6, 1.6 Hz, 1H), 6.84 (d, J = 3.4 Hz, 1H), 6.65 (d, J = 9.4 Hz, 1H), 5.32 (s, 1H), 3.93 (s, 3H), 3.90

(s, 3H), 2.85-2.77 (m, 1H), 2.73-2.62 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 153.3, 151.0, 148.8, 141.2, 134.1, 129.7, 129.2, 128.7, 126.8, 126.4, 123.5, 122.0, 117.8, 113.4, 112.2, 56.3, 56.1, 47.7, 35.3.

11j: 4-benzyl-1-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(3,4-dimethoxy phenyl)methyl)piperidine.

The product was obtained using procedure A, 701 mg, 73 % as oil; HRMS (ESI)

m/z calcd for $C_{26}H_{36}N_5O_4$ [M+H]⁺ : 482.2762; found: 482.2761; ¹H NMR (500 MHz, CDCl₃) δ 7.24 (t, J = 7.4 Hz, 2H), 7.16 (t, J = 7.4 Hz, 1H), 7.10 (d, J = 7.0 Hz, 2H), 6.99 (d, J = 1.9 Hz, 1H), 6.89 (dd, J = 8.2, 1.9 Hz, 1H), 6.80 (d, J = 8.2Hz, 1H), 4.97 (s, 1H), 4.66 (t, J = 5.5 Hz, 1H), 4.56 (dd, J =14.1, 5.5 Hz, 1H), 4.37 (dd, J = 14.1, 5.5 Hz, 1H), 3.86 (s, 3H), 3.85 (s, 3H) 3.38 (s, 3H), 3.32 (s, 3H), 2.85 (d, J = 11.2 Hz, 1H), 2.75 (d, J = 11.2 Hz, 1H), 2.51 (d, J = 7.1 Hz, 2H), 2.16 – 2.10 (m, 1H), 1.91 (td, J = 11.2, 2.1 Hz, 1H), 1.61 (dd, *J* = 17.1, 7.1 Hz, 1H), 1.49 (dd, *J* = 7.4, 3.7 Hz, 1H), 1.41 – 1.26 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 155.6, 149.0, 140.4, 129.0, 128.1, 127.3, 125.7, 121.5, 112.0, 110.6, 102.7, 64.4, 55.9, 55.8, 55.5, 55.4, 51.7, 50.6, 49.1, 43.0, 37.7, 32.2, 32.1.

3j: 11-(4-benzylpiperidin-1-yl)-8,9-dimethoxy-11H-benzo[d]tetrazolo[1,5a]azepine.

The product was obtained using procedure **B**, 171 mg, 41 % as white solid, m.p.:

201-202 °C; HRMS (ESI) m/z calcd for $C_{24}H_{28}N_5O_2$ $[M+H]^+$: 418.2238; found: 418.2236; ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, J = 9.2 Hz, 1H), 7.21 (t, J = 7.5 Hz, 2H), 7.13 (t, J = 7.5 Hz, 1H), 7.04 (d, J = 7.5 Hz, 2H), 6.87 (s, 1H), 6.85 (s, 1H), 6.72 (d, J = 9.2 Hz, 1H), 4.95 (s, 1H),

3.91 (s, 3H), 3.90 (s, 3H), 2.41 (dd, J = 6.5, 3.4 Hz, 2H), 2.33 (d, J = 11.2 Hz, 1H), 2.24 (d, J = 11.2 Hz, 1H), 1.93 – 1.87 (m, 1H), 1.74 (dd, J = 17.1, 5.9 Hz, 1H), 1.50 – 1.38 (m, 2H), 1.06-0.94 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 152.7, 150.4, 148.7, 140.2, 128.8, 127.9, 125.6, 124.4, 122.3, 117.8, 113.9, 113.2, 64.2, 56.0, 55.9, 51.5, 50.7, 42.7, 37.6, 31.6.

14a: 1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)-N-(3,4-dimethoxy phenethyl)-2-methylpropan-1-amine

The product was obtained using procedure A, 730 mg, 93 % as liquid; HRMS

(ESI) m/z calcd for $C_{19}H_{32}N_5O_4$ [M+H]⁺ : 394.2449; found: 394.2448; ¹H NMR (500 MHz, CDCl₃) δ 6.77 (d, *J* = 8.0 Hz, 1H), 6.70 – 6.64(m, 2H), 4.78 (t, *J* = 5.5 Hz, 1H), 4.42 (d, *J* = 5.5 Hz, 2H), 3.85 (s, 6H), 3.41 (s, 3H), 3.32 (s, 3H), 2.71 – 2.60 (m, 4H), 2.18 - 207 (m, 1H), 1.59 (brs, 1H), 0.99 (d, J = 6.7 Hz, 3H), 0.81 (d, J = 6.7 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 156.8, 148.8, 147.3, 132.1, 120.4, 111.7, 111.1, 102.8, 59.2, 55.8, 55.7, 55.5, 49.0, 48.6, 35.7, 32.1, 19.3, 19.0.

4a: 8-isopropyl-2,3-dimethoxy-6,8,13,13a-tetrahydro-5H-tetrazolo [1',5':4,5] pyrazino[2,1-a]isoquinoline

The product was obtained using procedure C, 187 mg, 57 % as pale pink solid,

8.0 Hz, 1H), 3.23 - 3.12 (m, 1H), 3.06 (td, J = 11.3, 3.1 Hz, 1H), 2.87 (dd, J = 10.9, 6.2 Hz, 1H), 2.72 (d, J = 15.3 Hz, 1H), 2.25 - 2.12 (m, 1H), 1.17 (d, J = 6.6 Hz, 3H), 1.08 (d, J = 6.6 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 151.9, 148.6, 147.5, 126.3, 124.8, 111.9, 109.3, 64.8, 56.3, 56.1, 55.8, 51.4, 46.6, 46.2, 32.2, 29.1, 19.7

14b: N-((4-chlorophenyl)(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)methyl)-2-(3,4-dimethoxyphenyl)ethanamine

The product was obtained using procedure A, 783 mg, 85 % as pale yellow

liquid; HRMS (ESI) m/z calcd for $C_{22}H_{29}ClN_5O_4$ [M+H]⁺ : 462.1903; found: 462.1902; ¹H NMR (500 MHz, CDCl₃) δ 7.31 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 6.78 (d, J = 8.1 Hz, 1H), 6.70 (m, 2H), 5.26 (s, 1H), 4.56 (t, J = 5.4 Hz, 1H), 4.38 (dd, J = 14.2, 5.5 Hz, 1H), 4.23 (dd, J = 14.2, 5.5 Hz, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 3.33 (s, 3H), 3.29 (s, 3H), 2.85 – 2.72 (m, 4H), 2.05 (brs, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 156.2, 148.9, 147.6, 136.4, 134.3, 131.8, 129.1, 128.9, 120.5, 111.8, 111.3, 102.7, 56.5, 55.9, 55.8, 55.6, 55.5, 49.1, 48.8, 35.7.

4b:8-(4-chlorophenyl)-2,3-dimethoxy-6,8,13,13a-tetrahydro-5Htetrazolo[1',5':4,5]pyrazino[2,1-a]isoquinoline

The product was obtained using procedure C, 353 mg, 89 % as white solid,

m.p.: 119-121 °C; HRMS (ESI) m/z calcd for $C_{20}H_{21}CIN_5O_2$ [M+H]⁺ : 398.1378; found: 398.1379; ¹H NMR (500 MHz, CDCl₃) δ 7.31 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 6.68 (s, 1H), 6.53 (s, 1H), 5.53 (s, 1H), 4.72 (dd, J = 11.6, 3.2 Hz, 1H), 4.39 – 4.27 (m, 2H), 3.88 (s, 3H), 3.84 (s, 3H), 3.17 – 3.05 (m, 2H),

2.97 – 2.87 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 151.1, 148.7, 147.7, 134.4, 134.0, 129.2, 128.8, 126.2, 124.3, 111.9, 109.0, 108.7, 60.4, 56.1, 55.9, 50.1, 48.2, 46.0, 29.1.

14c: 1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)-N-(3,4-dimethoxy phenethyl)cyclohexanamine

The product was obtained using procedure A, 569 mg, 68 % as white solid,

m.p.: 94-96 °C; HRMS (ESI) m/z calcd for $C_{21}H_{34}N_5O_4$ [M+H]⁺ : 420.2605; found: 420.2604; ¹H NMR (500 MHz, CDCl₃) δ 6.81 (d, J = 8.1 Hz, 1H), 6.69 (dd, J = 8.1, 1.6 Hz, 1H), 6.65 (d, J = 1.6 Hz, 1H), 4.96 (t, J = 5.7 Hz, 1H), 4.66 (d, J = 5.7 Hz, 2H),

3.88 (s, 3H), 3.87 (s, 3H), 3.41 (s, 6H), 2.65 (t, *J* = 6.5 Hz, 2H), 2.45 (t, *J* = 6.5 Hz, 2H), 2.14 – 2.04 (m, 2H), 1.99 – 1.90 (m, 2H), 1.68 – 1.56 (m, 2H), 1.51 (s, 1H), 1.40 – 1.31 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 158. 9, 148.9, 147.5, 132.2, 120.7, 111.5, 111.3, 103.1, 55.8, 55.7, 55.6, 55.5, 55.3, 49.9, 43.1, 35.9, 34.6, 24.9, 21.3.

4c: 2',3'-dimethoxy-5',6',13',13a'-tetrahydrospiro[cyclohexane-1,8'tetrazolo[1',5':4,5]pyrazino[2,1-a]isoquinoline]

The product was obtained using procedure C, 273 mg, 77 % as white solid,

m.p.: 228-230 °C; HRMS (ESI) m/z calcd for $C_{19}H_{26}N_5O_2$ [M+H]⁺ : 356.2081; found: 356.2081; ¹H NMR (500 MHz, CDCl₃) δ 6.69 (s, 1H), 6.61 (s, 1H), 4.66 (dd, J = 11.1, 4.9 Hz, 1H), 4.56 (dd, J = 13.1, 4.9 Hz, 1H), 4.32 (dd, J = 13.1, 11.1 Hz, 1H), 3.88 (s, 6H),

3.20 – 3.12 (m, 1H), 3.09 – 3.00 (m, 1H), 2.81 – 2.75 (m, 1H), 2.73 – 2.64 (m, 1H), 2.38 – 2.28 (m, 1H), 2.20-2.06 (m, 2H), 2.00 – 1.91 (m, 1H), 1.84 – 1.73 (m, 2H), 1.69 – 1.50 (m, 4H); ¹³C NMR (126 MHz,) δ 156.6, 148.6, 147.5, 126.6, 125.7, 111.7, 109.3, 57.1, 56.1, 56.0, 55.8, 50.3, 46.7, 37.5, 35.3, 32.3, 29.4, 25.3, 20.8.

14d: N-(2-(1H-indol-3-yl)ethyl)-1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl) cyclohexanamine

The product was obtained using procedure A, 748 mg, 94 % as white solid,

m.p.: 101-103 °C; HRMS (ESI) m/z calcd for $C_{21}H_{31}N_6O_2$ [M+H]⁺ : 399.2503; found: 399.2503; ¹H NMR (500 MHz, CDCl₃) δ 8.02 (s, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.10 (t, J = 7.5 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.20 (t, J = 7.5 Hz, 1H), 7.10 (t, J = 7.5 Hz, 1H), 6.98 (s, 1H), 4.93 (t, J = 5.7 Hz, 1H), 4.66 (d, J = 5.7 Hz, 2H), 3.36 (s, 6H), 2.87 (t, J = 6.5 Hz, 2H), 2.53 (t, J = 6.5 Hz, 2H), 2.13 – 2.01 (m, 2H), 1.96-1.85 (m, 2H), 1.57 – 1.50 (m, 3H), 1.48-1.38 (m, 1H), 1.36 – 1.27 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 159.1, 136.3, 127.2, 121.9, 121.8, 119.2, 118.5, 113.4, 111.2, 102.9, 55.4, 55.3, 49.9, 42.2, 34.7, 25.8, 25.0, 21.3.

4d: 7',12',12b',13'-tetrahydro-6'H-spiro[cyclohexane-1,4'-tetrazolo [1'',5'':4',5'] pyrazino[1',2':1,2]pyrido[3,4-b]indole]

The product was obtained using procedure C, 177 mg, 53 % as white solid,

m.p.: 235-237 °C; HRMS (ESI) m/z calcd for $C_{19}H_{23}N_6$ [M+H]⁺: 335.1979; found: 335.1979; ¹H NMR (500 MHz, CDCl₃) δ 8.60 (brs, 1H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.21 (t, *J* = 7.3 Hz, 1H), 7.15 (t, *J* = 7.3 Hz, 1H), 4.90 – 4.81 (m, 1H), 4.76 – 4.67 (m, 1H), 4.43-

4.32 (m, 1H), 3.29-3.19 (m, 1H), 3.02 – 2.77 (m, 3H), 2.30-2.18 (m, 2H), 2.14-2.02 (m, 2H), 1.83 – 1.52 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 157.1, 136.5, 131.0, 126.6, 122.3, 119.9, 118.5, 111.3, 109.9, 57.7, 47.3, 46.8, 39.3, 34.5, 32.9, 25.3, 22.6, 21.1, 21.1.

14e: N-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(4-nitrophenyl)methyl)-2-(1H-indol-3-yl)ethanamine

The product was obtained using procedure A, 883 mg, 98 % as brown liquid;

HRMS (ESI) m/z calcd for $C_{22}H_{26}N_7O_4$ [M+H]⁺ : 452.2041; found: 452.2040; ¹H NMR (500 MHz, CDCl₃) δ 8.17 (brs, 1H), 8.09 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.0 Hz, 1H), 7.43 (d, J = 8.4 Hz, 2H), 7.34 (d, J =8.0 Hz, 1H), 7.18 (t, J = 7.5 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 7.01 (s, 1H), 5.34 (s, 1H), 4.57 (t, J = 5.1 Hz, 1H),

4.38 (dd, J = 14.1, 5.0 Hz, 1H), 4.30 (dd, J = 14.1, 5.0 Hz, 1H), 3.32 (s, 3H), 3.23 (s, 3H), 3.05-2.82 (m, 4H), 2.13 (brs, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 155.8, 147.7, 145.0, 136.4, 128.7, 128.6, 127.1, 123.9, 122.2, 119.3, 118.5, 112.9, 111.3, 102.4, 56.5, 56.3, 49.2, 47.4, 25.6.

4e: 4-(4-nitrophenyl)-4,6,7,12,12b,13-hexahydrotetrazolo[1'',5'':4',5'] pyrazino[1',2':1,2]pyrido[3,4-b]indole

The product was obtained using procedure C, 367 mg, 95 % as white solid,

m.p.: decomposes at 236 °C; HRMS (ESI) m/z calcd for $C_{20}H_{18}N_7O_2$ [M+H]⁺ : 388.1517; found: 388.1516; ¹H NMR (500 MHz, DMSO) δ 11.12 (s, 1H), 8.28 (d, *J* = 8.7 Hz, 2H), 7.82 (d, *J* = 8.7 Hz, 2H), 7.42 (dd, *J* = 13.8, 8.0 Hz, 2H), 7.12 (t, *J* = 7.4 Hz, 1H), 7.01 (t, *J* = 7.4 Hz, 1H), 5.39 (dd, *J* = 12.1, 3.2 Hz, 1H), 5.36 (s, 1H), 4.57

(d, *J* = 10.4 Hz, 1H), 4.46 (t, *J* = 11.4 Hz, 1H), 2.98 – 2.90 (m, 1H), 2.74 – 2.62 (m, 3H); ¹³C NMR (126 MHz, DMSO) δ 153.7, 148.7, 147.0, 137.3, 131.2, 131.1, 127.0, 125.0, 124.9, 122.4, 119.8, 119.0, 118.9, 112.3, 109.0, 62.8, 55.3, 49.6, 49.0, 22.1.

14f: N-(2-(1H-indol-3-yl)ethyl)-1-benzyl-4-(1-(2,2-dimethoxyethyl)-1Htetrazol-5-yl)piperidin-4-amine

The product was obtained using procedure A, 850 mg, 87 % as pale yellow

liquid; HRMS (ESI) m/z calcd for $C_{27}H_{36}N_7O_2$ [M+H]⁺ : 490.2925; found: 490.2925; ¹H NMR (500 MHz, CDCl₃) δ 8.11 (s, 1H), 7.50 (d, *J* = 7.9 Hz, 1H), 7.38 (d, *J* = 8.1 Hz, 1H), 7.31 – 7.17 (m, 6H), 7.10 (t, *J* = 7.4 Hz, 1H), 6.95 (s, 1H), 4.89 (t, *J* = 5.7 Hz, 1H), 4.60 (d, *J* = 5.6 Hz, 2H), 3.34 (s, 6H), 3.31 (s, 2H), 2.85 (t, *J* = 6.3 Hz, 2H),

2.52 (t, *J* = 6.1 Hz, 2H), 2.45 (s, 2H), 2.34 (d, *J* = 9.4 Hz, 2H), 2.17 (s, 2H), 1.90 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 158.2, 138.2, 136.3, 129.0, 128.1, 127.2, 127.0, 122.1, 121.9, 119.4, 118.6, 113.4, 111.2, 103.0, 62.8, 55.4, 53.8, 49.8, 49.0, 42.0, 34.7, 25.7.

4f: 1-benzyl-7',12',12b',13'-tetrahydro-6'H-spiro[piperidine-4,4'-tetrazolo [1'',5'':4',5']pyrazino[1',2':1,2]pyrido[3,4-b]indole]

The product was obtained using procedure C, 306 mg, 72 % as white solid,

m.p.: 156-158 °C; HRMS (ESI) m/z calcd for $C_{25}H_{28}N_7$ [M+H]⁺ : 426.2401; found: 426.2400; ¹H NMR (500 MHz, CDCl₃) δ 8.29 (brs, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.38 – 7.28 (m, 4H), 7.28 – 7.20(m, 2H), 7.16 (t, J = 7.3 Hz, 1H), 4.79 (dd, J = 10.4, 4.0 Hz, 1H), 4.72 (dd, J = 12.8, 4.0 Hz, 1H), 4.37 (t, J = 7.3 Hz,

11.8 Hz, 1H), 3.60 (s, 2H), 3.24 – 3.11 (m, 2H), 3.08-2.92 (m, 2H), 2.87 – 2.79 (m, 1H), 2.74 – 2.60 (m, 3H), 2.40-2.34 (m, 2H), 2.24 – 2.13 (m, 1H), 2.01 – 1.91 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 156.6, 138.5, 136.5, 130.7, 129.0, 128.2, 127.0, 126.6, 122.3, 119.8, 118.5, 111.3, 109.8, 62.8, 56.4, 48.8, 48.5, 47.7, 47.0, 39.6, 33.7, 32.7, 22.5.

14g: N-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(3,4,5-trimethoxyphenyl) methyl)-2-(1H-indol-3-yl)ethanamine

The product was obtained using procedure A, 853 mg, 86 % as pale yellow

liquid; HRMS (ESI) m/z calcd for $C_{25}H_{33}N_6O_5 [M+H]^+$: 497.2507; found: 497.2506; ¹H NMR (500 MHz, CDCl₃) δ 8.34 (s, 1H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.16 (t, *J* = 7.5 Hz, 1H), 7.07 (t, *J* = 7.5 Hz, 1H), 7.03 (s, 1H), 6.48 (s, 2H), 5.24 (s, 1H), 4.48 (t, *J* = 5.0 Hz, 1H), 4.37 (dd, *J* = 14.1, 5.0 Hz,

1H), 4.25 (dd, J = 14.1, 5.0 Hz, 1H), 3.80 (s, 3H), 3.71 (s, 6H), 3.29 (s, 3H), 3.28 (s,3H), 3.07 – 2.91 (m, 4H), 2.17 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 156.5, 153.5, 137.7, 136.3, 133.4, 127.3, 122.2, 122.0, 119.2, 118.6, 113.2, 111.2, 104.3, 102.5, 60.7, 57.4, 56.0, 55.4, 55.2, 48.9, 47.7, 25.6.

4g: 4-(3,4,5-trimethoxyphenyl)-4,6,7,12,12b,13-hexahydrotetrazolo [1'',5'':4',5']pyrazino[1',2':1,2]pyrido[3,4-b]indole

The product was obtained using procedure C, 138 mg, 32 % as white solid,

m.p.: 195-197 °C; HRMS (ESI) m/z calcd for $C_{23}H_{25}N_6O_3$ [M+H]⁺ : 433.1983; found: 433.1982; ¹H NMR (500 MHz, CDCl₃) δ 8.90 (s, 1H), 7.52 (d, *J* = 7.7 Hz, 1H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.20 (t, *J* = 7.5 Hz, 1H), 7.14 (t, *J* = 7.4 Hz, 1H), 6.69 (s, 2H), 5.02 (dd, *J* = 12.1, 3.2 Hz, 1H), 4.70 (s, 1H), 4.29 (t, *J* = 11.5 Hz,

1H), 4.14 (d, *J* = 10.4 Hz, 1H), 3.85 (s, 3H), 3.80 (s, 6H), 3.21 (dd, *J* = 11.1, 4.3 Hz, 1H), 2.89 – 2.70 (m, 2H), 2.55 – 2.46 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 153.8, 153.7, 137.9, 136.8, 133.0, 129.0, 126.4, 122.4, 119.8, 118.4, 111.3, 110.3, 105.2, 64.0, 60.8, 56.1, 55.1, 49.4, 48.1, 21.7.

14h: methyl 2-((1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)cyclohexyl) amino)-3-(1H-indol-3-yl)propanoate

The product was obtained using procedure A, 802 mg, 88 % as white solid,

m.p.: 125-127 °C; HRMS (ESI) m/z calcd for $C_{23}H_{33}N_6O_4$ [M+H]⁺ : 457.2558; found: 457.2558; ¹H NMR (500 MHz, CDCl₃) δ 8.34 (brs, 1H), 7.45 (d, *J* = 7.5 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.09 (t, *J* = 7.5 Hz, 1H), 6.87 (s, 1H), 4.76 (t, *J* = 5.6

Hz, 1H), 4.46 (dd, J = 14.4, 5.6 Hz, 1H), 4.09 – 3.98 (m, 1H), 3.49 (s, 3H), 3.42 – 3.35 (m, 1H), 3.32 (s, 3H), 3.29 (s, 3H), 2.99 (dd, J = 14.3, 5.0 Hz, 1H), 2.87 (dd, J = 14.3, 8.7 Hz, 1H), 2.31-2.15 (d, J = 13.2 Hz, 2H), 2.10 (brs, 1H), 1.78 – 1.53 (m, 3H), 1.50 – 1.11 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 176.0, 157.6, 136.0, 127.3, 122.6, 122.2, 119.6, 118.4, 111.2, 111.0, 102.9, 55.8, 55.7, 55.4, 55.2, 51.9, 50.1, 36.0, 35.5, 30.3, 25.1, 22.2, 21.9.

4h: methyl 7',12',12b',13'-tetrahydro-6'H-spiro[cyclohexane-1,4'-tetrazolo [1'',5'':4',5']pyrazino[1',2':1,2]pyrido[3,4-b]indole]-6'-carboxylate

The product was obtained using procedure C, 227 mg, 58 % as white solid,

N N N N N-N HN

m.p.: 235-237 °C; HRMS (ESI) m/z calcd for $C_{21}H_{25}N_6O_2$ [M+H]⁺ : 393.2034; found: 393.2033; ¹H NMR (500 MHz, CDCl₃) δ 8.51 (s, 1H), 7.50 (d, *J* = 8.0 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.17 (t, *J* = 7.5 Hz, 1H), 7.12 (t, *J* = 7.5 Hz, 1H), 5.30 (d, *J* = 9.6 Hz, 1H), 5.00 (dd, *J* =

12.1, 3.1 Hz, 1H), 4.51 (d, J = 4.5 Hz, 1H), 3.91 (t, J = 11.4 Hz, 1H), 3.56 (s, 3H), 3.27 (d, J = 15.1 Hz, 1H), 3.16 (dd, J = 15.1, 4.5 Hz, 1H), 2.47 – 2.24 (m, 2H), 2.15-2.00 (m, 2H), 1.91 – 1.87 (m, 1H), 1.74 – 1.58 (m, 3H), 1.45 (td, J = 13.1, 4.1 Hz, 1H), 1.28 – 1.15 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 175.2, 156.1, 136.7, 131.3, 126.5, 122.2, 119.7, 118.2, 111.4, 106.8, 60.1, 52.4, 52.0, 51.5, 48.1, 35.6, 32.3, 27.5, 25.1, 22.0, 21.8.

14i: methyl 2-(((4-chlorophenyl)(1-(2,2-dimethoxyethyl)-1H-tetrazol-5yl)methyl) amino)-3-(1H-indol-3-yl)propanoate

The product was obtained using procedure A, 847 mg, 85 % as colorless liquid;

HRMS (ESI) m/z calcd for $C_{24}H_{28}CIN_6O_4$ [M+H]⁺ : 499.1855; found: 499.1855; ¹H NMR (500 MHz, CDCl₃) (*major diastereomer*) δ 8.25 (s, 1H), 7.38-7.30 (m, 2H), 7.27 - 7.17 (m, 4H), 7.06 - 6.95 (m, 2H), 6.90 (s, 1H), 5.23 (s, 1H), 4.63 - 4.55 (m, 2H), 4.43 - 4.33 (m, 1H), 4.12 - 4.05 (m, 1H), 3.74 (s, 3H), 3.39 (s, 3H), 3.30 -

3.20 (m, 4H), 2.99 (dd, *J* = 14.2, 9.4 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) (*major diastereomer*) δ 174.1, 156.2, 136.0, 134.9, 134.3, 129.1, 128.7, 126.9, 123.3, 122.4, 119.6, 118.5, 111.3, 110.4, 102.7, 57.7, 55.7, 55.3, 54.3, 52.1, 49.0, 29.4. *diastereomeric* ratio = 3:2

4i: methyl 4-(4-chlorophenyl)-4,6,7,12,12b,13-hexahydrotetrazolo [1'',5'':4',5']pyrazino[1',2':1,2]pyrido[3,4-b]indole-6-carboxylate

The product was obtained using procedure C, 369 mg, 85 % as pale yellow

solid, m.p.: 170-172 °C; HRMS (ESI) m/z calcd for $C_{22}H_{20}N_6O_2$ [M+H]⁺ : 435.1331; found: 435.1331; ¹H NMR (500 MHz, CDCl₃) δ 8.79 (s, 1H), 7.51 (d, *J* = 7.5 Hz, 1H), 7.40 – 7.28 (m, 5H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.14 (t, *J* = 7.5 Hz, 1H), 5.82 (s, 1H), 5.14 (d, *J* = 9.7 Hz, 2H), 4.21 (t, *J* = 12.0 Hz, 1H), 3.82 (d, *J* = 5.0 Hz,

1H), 3.57 (s, 3H), 3.27 (d, J = 15.3 Hz, 1H), 3.04 (dd, J = 15.3, 5.3 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 172.2, 153.8, 136.9, 135.4, 135.3, 129.9, 129.7, 128.7, 126.2, 122.5, 119.7, 118.3, 111.5, 107.4, 60.5, 55.3, 51.9, 51.3, 50.8, 25.0. *diastereomeric* ratio = 9:1

14j: methyl 2-(((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(phenyl)methyl) amino)-3-(1H-indol-3-yl)propanoate

The product was obtained using procedure A, 798 mg, 86 % as white solid,

m.p.: 63-65 °C; HRMS (ESI) m/z calcd for $C_{24}H_{29}N_6O_4$ [M+H]⁺ : 465.2245; found: 465.2246; ¹H NMR (500 MHz, CDCl₃) (major diastereomer) δ 8.32 (s, 1H), 7.38 – 7.25 (m, 3H), 7.20 – 7.14 (m, 2H), 7.13 – 7.06 (m, 2H), 7. 04 - 6.98 (m, 2H), 5.29 (s, 1H), 4.54 – 4.46 (m, 2H), 7. 04 - 6.98 (m, 2H), 5.29 (s, 1H), 4.54 – 4.46 (m, 2H), 3.28 (dd, *J* = 14.2, 4.8 Hz, 1H), 3.24 (s, 3H), 3.05 (dd, *J* = 14.4, 8.6 Hz, 1H), 2.68 (brs, 1H); ¹³C NMR (126 MHz, CDCl₃) (major diastereomer) δ 174.2, 156.5, 136.5, 136.3, 128.7, 128.4, 127.8, 127.1, 123.3, 122.1, 119.5, 118.5, 111.3, 110.4, 102.5, 59.7, 57.9, 55.4, 55.0, 52.0, 48.9, 29.1. diastereomeric ratio = 2:1

4j: methyl 4-phenyl-4,6,7,12,12b,13-hexahydrotetrazolo[1",5":4',5']

pyrazino[1',2':1,2]pyrido[3,4-b]indole-6-carboxylate

The product was obtained using procedure **C**, 296 mg, 74 % as white solid, m.p.: 165-167 °C; HRMS (ESI) m/z calcd for $C_{22}H_{21}N_6O_2$ [M+H]⁺ : 401.1721; found: 401.1719; ¹H NMR (500 MHz, CDCl₃) (*major diastereomer*) δ 8.28 (s, 1H), 7.72 (d, *J* = 7.7 Hz, 1H), 7.77-7.30 (m, 5H), 7.25-7.10 (m, 3H), 5.83 (s, 1H), 5.16 (d, *J* = 10.2 Hz, 1H), 5.06 (d, *J* = 12.2 Hz, 1H), 4.34 – 4.22 (m, 1H), 3.89 (d, *J* = 4.9 Hz, 1H),

3.58 (s, 3H), 3.25 (d, J = 15.4 Hz, 1H), 3.05 (dd, J = 15.4, 5.5 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃)) (*major diastereomer*) δ 172.3, 154.2, 136.9, 136.5, 129.3, 129.2, 128.9, 128.6, 126.2, 122.2, 119.5, 118.1, 111.5, 107.2, 61.0, 58.1, 51.6, 51.2, 46.4, 22.6. *diastereomeric* ratio = 2:1

Computational Chemical Descriptors

A virtual library of 100,000 randomly generated compounds were made for each library using previously described methods (Koes, D. et al. PLoS One 2012, 7, e32839.). 1000 compounds of each reaction were randomly selected and physiochemical properties relating to drug likeness were analyzed via ChemAxon's Instant JChem Software (Instant JChem 5.9.2, 2012, ChemAxon http://www.chemaxon.com). Principal moment of inertia was calculated using Schrodinger's Maestro V 9.3(Suite 2012: Maestro, version 9.3, Schrödinger, LLC, New York, NY, 2012.)

SI Figure 1: Principal component analysis of our three scaffolds described in this paper and 1000 randomly selected compounds from the zinc database. (Top left) Overlap of all three scaffolds and ZINC compounds. (Top right) Overlap of Scaffold 2 and ZINC database. (Bottom left) Overlap of Scaffold 3 and ZINC database. (Bottom right) Overlap of Scaffold 4 and ZINC database.

SI Figure 2: 3D PCA of 1000 randomly selected compounds of all three scaffolds (green = scaffold 2, blue = scaffold 3, red = scaffold 4).

PCA Data:

Importance of components:

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
Standard deviation	3.6154	2.64	1.9758	1.75386	1.2311	1.14611	1.03285	0.99559	0.81857	0.77989
Proportion of Variance	0.3735	0.1991	0.1115	0.08789	0.0433	0.03753	0.03048	0.02832	0.01914	0.01738
Cumulative Proportion	0.3735	0.5726	0.6841	0.77202	0.8153	0.85285	0.88333	0.91165	0.9308	0.94817

Rotation:

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
Mass	0.0867	0.3379	-0.0188	0.1163	-0.0143	0.0370	-0.0348	0.0192	-0.0048	0.0789
donorcount	-0.0889	0.0742	0.3558	0.1071	-0.3184	0.0217	0.2822	-0.1332	0.0138	-0.2980
donsitecount	-0.0910	0.0719	0.3551	0.1079	-0.3126	0.0202	0.2780	-0.1317	0.0138	-0.3195
acceptorcount	-0.1659	0.2060	0.1546	0.0366	0.0189	0.0657	-0.3990	0.1346	0.0203	0.1570
accsitecount	-0.1748	0.2053	0.1387	0.0547	-0.0156	0.0740	-0.3746	0.1253	0.0202	0.1389
logP	0.1546	0.0694	-0.3528	0.1100	-0.1685	0.0158	0.0958	-0.0545	0.0218	-0.0125
pH0	0.1285	0.0342	-0.1990	0.2709	-0.2378	0.0979	-0.0021	0.0261	0.0104	0.2424
pH7	0.1590	0.0413	-0.3411	0.0611	-0.2063	0.0216	0.0805	-0.0695	0.0234	0.0671
pH14	0.2164	-0.0098	-0.2576	0.0377	0.1031	-0.0268	0.1176	-0.0068	0.0118	-0.0498
PSA	-0.0652	0.1827	0.3486	0.1636	-0.0125	0.0744	-0.0686	0.1056	-0.0160	0.1972
Atomcount	0.0131	0.3490	-0.1024	-0.0430	0.1202	-0.0353	0.1541	-0.0322	0.0043	-0.1359
AliphaticAtomCount	-0.2140	0.1956	-0.0848	-0.1381	0.0694	-0.0189	0.1052	-0.0217	0.0055	0.0325
AromaticAtomCount	0.2455	0.0893	0.0606	0.1780	-0.0738	0.0437	-0.1052	0.0247	-0.0106	0.0010
BondCount	0.0451	0.3496	-0.0839	-0.0591	0.0991	-0.0263	0.1427	-0.0338	-0.0004	-0.1247
AliphaticBond Count	-0.1816	0.2415	-0.0856	-0.1735	0.0576	-0.0046	0.0795	-0.0212	-0.0015	0.0366
AromaticBond Count	0.2478	0.0889	0.0721	0.1655	-0.0779	0.0396	-0.0800	0.0173	-0.0108	0.0028
RotatableBond Count	-0.1641	0.1958	-0.0780	0.2371	0.1640	0.0106	0.1159	-0.0170	-0.0535	0.0260
RingCount	0.2329	0.1592	0.0863	-0.1333	-0.0963	0.0477	-0.0123	-0.0260	-0.0311	0.0191
AliphaticRingCount	-0.0329	0.1499	-0.0199	-0.4976	-0.0762	0.0419	0.0114	-0.0657	-0.0291	-0.0171
AromaticRingCount	0.2527	0.0762	0.0979	0.1446	-0.0542	0.0245	-0.0188	0.0106	-0.0150	0.0288
HeteroRingCount	0.2252	0.0256	0.1907	-0.1291	0.2155	-0.0752	0.1109	0.0286	0.0110	0.1289
HeteroaliphaticRingCount	0.1248	0.1218	0.0887	-0.3805	0.2190	-0.0908	-0.0447	-0.0084	0.0695	-0.0910
HeteroaromaticRingCount	0.2248	-0.0392	0.2005	0.0570	0.1552	-0.0455	0.1746	0.0432	-0.0272	0.2264
RingAtomCount	0.2260	0.1785	0.0185	-0.0772	-0.1504	0.0611	-0.1412	0.0231	-0.0125	0.0054
RingBondCount	0.2272	0.1803	0.0452	-0.1161	-0.1454	0.0427	-0.0894	0.0042	-0.0024	-0.0059
ChainAtomCount	-0.2070	0.1505	-0.0405	0.2166	0.1865	-0.0412	0.1699	-0.0216	0.0078	0.0370
ChainBondCount	-0.1863	0.1793	-0.0626	0.2677	0.1871	-0.0076	0.1163	-0.0043	-0.0176	0.0651
SmallestRingSize	0.0044	0.0478	0.0187	0.0793	-0.0964	-0.6832	-0.0868	-0.0028	0.6961	0.0308
LargestRingSize	-0.1756	0.0788	-0.1144	-0.1618	-0.4112	0.0002	0.0209	0.0360	0.0046	0.2064
RingCountofSize4	-0.0003	-0.0445	0.0118	-0.0576	0.0985	0.6748	0.1512	0.0189	0.7040	0.0590
RingCountofSize5	0.1622	0.0200	0.2161	-0.1284	-0.0077	-0.1114	0.3838	-0.0847	-0.0608	0.5636
RingCountofSize6	0.2365	0.1268	0.0180	0.0046	0.0481	0.0264	-0.2228	0.0196	0.0407	-0.3503
RingCountofSize7	-0.2007	0.0830	-0.0955	-0.1535	-0.3610	0.0079	-0.0496	-0.1125	0.0008	0.1794
RingCountofSize8	-0.0091	0.0023	-0.0413	-0.0694	-0.1296	-0.0479	0.2559	0.9359	-0.0166	-0.1073
VDWVol	0.0458	0.3619	-0.0857	0.0467	0.0585	-0.0033	0.0647	-0.0094	0.0020	-0.0511

Single Crystal X-Ray Structure Determination of Compounds 3C, 2E and 4F

General:

Data were collected on an X-ray single crystal diffractometer equipped with a CCD detector (APEX II, *k*-CCD), a rotating anode (Bruker AXS, FR591) with MoK_a radiation ($\lambda = 0.71073$ Å) and a MONTEL-type focusing optic (compound 4F) or a fine-focussed sealed tube (Bruker AXS, D8), respectively (compounds 3C and 2E) and a graphite monochromator by using the SMART software package. [1] The measurements were performed on single crystals coated with perfluorinated ether. The crystals were fixed on the top of a cactus prickle (Opuntia ficus-india) and transferred to the diffractometer. The crystals were frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were merged and corrected for Lorenz and polarization effects, scan speed, and background using SAINT. [2] Absorption corrections, including odd and even ordered spherical harmonics were performed using SADABS. [2] Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structures. Structures were solved by direct methods with the aid of successive difference Fourier maps, and were refined against all data using WinGX [7] based on SIR-92. [3] If not mentioned otherwise, non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms could be located in the difference Fourier maps and were allowed to refine freely (compounds 2E and 4F. Unless otherwise noticed, methyl hydrogen atoms were refined as part of rigid rotating groups, with a C–H distance of 0.98 Å and $U_{iso(H)} = 1.5 \cdot U_{eq(C)}$. Other H atoms were placed in calculated positions and refined using a riding model, with methyne, methylene and aromatic C-H distances of 1.00, 0.99 and 0.95 Å, respectively, and $U_{iso(H)} = 1.2 \cdot U_{eq(C)}$. (compound **3C**). Full-matrix leastsquares refinements were carried out by minimizing $\Sigma w(F_o^2 - F_c^2)^2$ with

SHELXL-97 [5] weighting scheme. Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for Crystallography. [4] Images of the crystal structures were generated by PLATON. [6] CCDC 1017121 (2E), CCDC 1017122 (4F), and CCDC 1017123 (3C) contains the supplementary crystallographic data for this compound. This data can be obtained free of charge Cambridge Crystallographic from The Data Centre via www.ccdc.cam.ac.uk/data request/cif via or https://www.ccdc.cam.ac.uk/services/structure_deposit/

Special:

3C:	Full refinement was possible without running into problems.							
	The hydrogen atom bound to N5 was allowed to refine freely.							
2E:	Full refinement was possible without running into problems.							
4F:	Full refinement was possible without running into problems.							
	Small extinction effects were cured with the SHELXL procedure							

Compound 3C

Figure F1 – Ortep drawing of compound **3C** with 50% ellipsoids. [6]

Operator:	*** Herdtweck **	*						
Molecular Formula:	$C_{20} H_{20} CI N_5 O_3$							
Crystal Color / Shape	Colorless fragment							
Crystal Size	Approximate size of crystal fragment used for data collection:							
	$0.10 \times 0.25 \times 0.33$	mm						
Molecular Weight:	413.86 a.m.u.							
F ₀₀₀ :	432							
Systematic Absences:	none							
Space Group:	Triclinic	р <u>1</u>	(I.TNo.: 2)					

Cell Constants:	Least-squares refinement of 9874 reflections with the programs "APEX							
	suite" and "SAINT" [1,2]; theta range 1.84° < $ heta$ < 25.38°; Mo(K α); λ = 0.71073 Å							
	a =	a = 9.7930(3) Å		e =	76.4624(14)°			
	b =	10.1156(3) Å	β	8 =	89.7725(14)°			
	<i>C</i> =	11.4745(3) Å	γ	=	61.9039(15)°			
	V = 967.37(5)• Å	$A^3; Z = 2; D_{calc} = 1.4$	421 g cm ⁻	³ ; Mos. = 0	.77			
Diffractometer:	Kappa APEX II graphite monoc	Kappa APEX II (Area Diffraction System; BRUKER AXS); sealed tub graphite monochromator; 50 kV; 30 mA; λ = 0.71073 Å; Mo(K α)						
Temperature:	(-150±1) °C;		(123±1)	К				
Measurement Range:	1.84° < θ< 25.38°; h: −11/11, k: −12/12, l: −13/13							
Measurement Time:	2×15 s per film							
Measurement Mode:	measured: 7 rur	ns; 1698 films / sc	aled: 7 ru	ns; 1698 fi	lms			
	φ – and ω –movement; Increment: $\Delta \varphi / \Delta \omega$ = 1.00°; dx = 40.0 mm							
LP - Correction:	Yes [2]							
Intensity Correction	No/Yes; during scaling [2]							
Absorption Correction:	Multi-scan; during scaling; μ = 0.231 mm ⁻¹ [2]							
	Correction Facto	ors: T _{min}	= 0.705	6 T _m	_{ax} = 0.7452			
Reflection Data:	28405	reflections were integrated and scaled						
	28405	reflections to be merged						
	3553	independent reflections						
	0.022	R_{int} : (basis F_o^2)						
	3553	independent reflections (all) were used in			sed in			
		refinements						
	3077	independent reflections with $I_o > 2\sigma(I_o)$						
	99.7 %	completeness of the data set						
	269	parameter full-matrix refinement						
	13.2	reflections per parameter						
Solution:		Direct Methods [3, 7]; Difference Fourier syntheses						
----------------------------------	----------	--	--	----------	--	--		
Refinement Parameters:		In the asymmetric unit:						
		29	Non-hydrogen atoms with anisotropic disp	lacement				
			parameters					
		1	Hydrogen atoms with isotropic displaceme	nt				
			parameters					
Hydrogen Aton	ns:	The N-hydrogen atom positions was found in the difference and was refined with an individual isotropic displacement parameters.						
Hydrogen Atoms:		All other hydrogen atoms were placed in calculated positions ($d_{C-H} = 0.95$, 0.98, 0.99, 1.00 Å). Isotropic displacement parameters were calculated from the parent carbon atom ($U_{H} = 1.2/1.5 U_{c}$). The hydrogen atoms were included in the structure factor calculations but not refined.						
Atomic Form Fa	actors:	For neutral atoms and anomalous dispersion [4, 5, 7]						
Extinction Corre	ection:	no						
Weighting Sche	eme:	$w^{-1} = \sigma^2 (F_o^2) + (a*P)^2 + b*P$						
		with a: 0.0435; b: 1.8951; P: [Maximum(0 or F_0^2)+2* F_c^2]/3						
Shift/Err:		Less than 0.001 in the last cycle of refinement:						
Resid. Electron Density:		+1.07 e _{0;} ⁻ /Å ³ ; -0.66 e _{0;} ⁻ /Å ³						
R1:		∑(F₀ - F _c	$)/\Sigma F_{o} $					
$[F_{\rm o}>4\sigma(F_{\rm o});$	N=3077]:			= 0.0584				
[all reflctns;	N=3553]:			= 0.0672				
wR2:		$[\Sigma w (F_{o}^{2} - F_{c}^{2})^{2}/$	$\Sigma w(F_{0}^{2})^{2}]^{1/2}$					
$[F_{\rm o}>4\sigma(F_{\rm o});$	N=3077]:			= 0.1347				
[all reflctns;	N=3553]:			= 0.1406				
Goodness of fit:		$[\Sigma w (F_{o}^{2} - F_{c}^{2})^{2}/$	(NO-NV)] ^{1/2}	= 1.064				
Remarks:		Refinement expression $\Sigma w (F_o^2 - F_c^2)^2$						

Compound 2E

Figure F2 – Ortep drawing of compound 2E with 50% ellipsoids. [6]

Operator:	*** Herdtweck ***			
Molecular Formula:	$C_{17} H_{21} N_5$			
Crystal Color / Shape	Colorless fragment			
Crystal Size	Approximate size of crystal fragment used for data collection:			
	$0.30 \times 0.30 \times 0.30$	mm		
Molecular Weight:	295.39 a.m.u.			
F ₀₀₀ :	632			
Systematic Absences:	h0l: h+l≠2n; 0k0: k≠2n			
Space Group:	Monoclinic	P 2 ₁ /n	(I.TNo.: 14)	

Cell Constants:	Least-squares refinement of 9927 reflections with the programs "APEX					
	suite" and "SA 0.71073 Å	NNT" [1,2]; theta range 2.14° < θ < 25.39°; Mo(K α); λ				
	<i>a</i> =	8.2232(2) Å				
	b =	15.4975(5) Å β = 104.8288(12)°				
	<i>c</i> =	12.4813(4) Å				
	V = 1537.63(8	$V = 1537.63(8)$ · Å ³ ; $Z = 4$; $D_{calc} = 1.276 \text{ g cm}^{-3}$; Mos. = 0.63				
Diffractometer:	Kappa APEX graphite mono	Kappa APEX II (Area Diffraction System; BRUKER AXS); sealed tube; graphite monochromator; 50 kV; 30 mA; λ = 0.71073 Å; Mo(K α)				
Temperature:	(-150±1) °C;	(123±1) K				
Measurement Range:	2.14° < θ< 25.	2.14° < $ heta$ < 25.39°; h: -9/9, k: -18/18, l: -14/15				
Measurement Time:	2 imes 10 s per fil	2×10 s per film				
Measurement Mode:	measured: 12 runs; 3494 films / scaled: 12 runs; 3494 films					
	φ – and ω –movement; Increment: $\Delta \varphi / \Delta \omega$ = 0.50°; dx = 35.0 mm					
LP - Correction:	Yes [2]					
Intensity Correction	No/Yes; during	No/Yes; during scaling [2]				
Absorption Correction:	Multi-scan; du	ring scaling; μ = 0.080 mm ⁻¹ [2]				
	Correction Fac	tors: $T_{min} = 0.6914$ $T_{max} = 0.7452$				
Reflection Data:	59840	reflections were integrated and scaled				
	1408	reflections systematic absent and rejected				
	58432	reflections to be merged				
	2820	independent reflections				
	0.027	R_{int} : (basis F_o^2)				
	2820	independent reflections (all) were used in				
		refinements				
	2610	independent reflections with $I_o > 2\sigma(I_o)$				
	99.9 %	completeness of the data set				
	283	parameter full-matrix refinement				

		10.0	reflections per parameter		
Solution:		Direct Methods [3, 7]; Difference Fourier syntheses			
Refinement Pa	rameters:	In the asymmetric unit:			
		22	Non-hydrogen atoms with anisotropic disp	placement	
			parameters		
		21	Hydrogen atoms with isotropic displaceme	ent	
			parameters		
Hydrogen Atoms:		All hydrogen atom positions were found in the difference map calculated from the model containing all non-hydrogen atoms. The hydrogen positions were refined with individual isotropic displacement parameters.			
Atomic Form Fa	actors:	For neutral atoms and anomalous dispersion [4, 5, 7]			
Extinction Corr	ection:	no			
Weighting Sche	eme:	$w^{-1} = \sigma^2 (F_o^2) + (a*P)^2 + b*P$			
		with a: 0.044	1; b: 0.6040; P: [Maximum(0 or F_0^2)+2* F_c^2]/	3	
Shift/Err:		Less than 0.001 in the last cycle of refinement:			
Resid. Electron Density:		+0.25 e _{0;} ⁻ /Å ³ ; -0.18 e _{0;} ⁻ /Å ³			
R1:		∑(F₀ - Fc	$)/\Sigma F_{\circ} $		
$[F_{\rm o}>4\sigma(F_{\rm o});$	N=2610]:			= 0.0338	
[all reflctns;	N=2820]:			= 0.0368	
wR2:		$[\Sigma w (F_{\rm o}^{2} - F_{\rm c}^{2})^{2}/$	$\Sigma w(F_{o}^{2})^{2}]^{1/2}$		
$[F_{\rm o}>4\sigma(F_{\rm o});$	N=2610]:			= 0.0873	
[all reflctns;	N=2820]:			= 0.0901	
Goodness of fit:		$[\Sigma w (F_{\rm o}^{2} - F_{\rm c}^{2})^{2}/$	(NO-NV)] ^{1/2}	= 1.056	
Remarks:		Refinement expression $\Sigma w (F_o^2 - F_c^2)^2$			

Compound 4F

Figure F3– Ortep drawing of compound 4F with 50% ellipsoids. [6]

Operator:	*** Herdtweck ***					
Molecular Formula:	C ₂₇ H ₃₃ N ₇ O					
	(C ₂₅ H ₂₇ N ₇), (C ₂ H ₆ O)					
Crystal Color / Shape	Colorless plate					
Crystal Size	Approximate size of crystal fragment used for data collection:					
	$0.11 \times 0.26 \times 0.35~\text{mm}$					
Molecular Weight:	471.60 a.m.u.					
F ₀₀₀ :	504					
Systematic Absences:	none					
Space Group:	Triclinic	P 1	(I.TNo.: 2)			
Cell Constants:	Least-squares refinement of 9987 reflections with the programs "AP suite" and "SAINT" [1,2]; theta range 1.42° < θ < 25.45°; Mo(K α); λ 71.073 pm					

	a =	858.12(6) pm	α =	86.569(3)°
	b =	1014.11(7) pm	β=	89.634(3)°
	<i>C</i> =	1431.89(10) pm	$\gamma =$	79.327(3)°
	V = 1222.31(15)	• 10^6 pm^3 ; Z = 2; D _{calc} = 1	L.281 g cm ⁻³ ; I	Mos. = 0.63
Diffractometer:	Kappa APEX II (Area Diffraction System; BRUKER AXS); rotating anode; graphite monochromator; 50 kV; 60 mA; λ = 71.073 pm; Mo(K α)			
Temperature:	(-173±1) °C;	(100	±1) K	
Measurement Range:	1.42° < θ< 25.45°; h: −10/10, k: −12/12, l: −17/17			
Measurement Time:	2×5 s per film			
Measurement Mode:	measured: 15 runs; 6018 films / scaled: 15 runs; 6018 films			
	φ – and ω –move	ement; Increment: $\Delta \phi/2$	1ω = 0.50°; dx	a = 35.0 mm
LP - Correction:	Yes [2]			
Intensity Correction	No/Yes; during scaling [2]			
Absorption Correction:	Multi-scan; during scaling; μ = 0.082 mm ⁻¹ [2]			
	Correction Factor	ors: $T_{min} = 0.7$	7027 T _r	_{nax} = 0.7452
Reflection Data:	30230	reflections were integrated and scaled		
	30230	reflections to be merg	ed	
	4504	independent reflection	ns	
	0.028	R_{int} : (basis F_o^2)		
	4504	independent reflections (all) were used in		
		refinements		
	4167	independent reflection	ns with $I_o > 2c$	ד(<i>I</i> _0)
	99.5 %	completeness of the data set		
	449	parameter full-matrix refinement		
	10.0	reflections per parame	eter	
Solution:	Direct Methods	[3]; Difference Fourier	syntheses	
Refinement Parameters:	In the asymmetric unit:			

		35	Non-hydrogen atoms with anisotropic disp	olacement	
			parameters		
		33	Hydrogen atoms with isotropic displaceme	ent	
			parameters		
Hydrogen Atoms:		All hydroger calculated fr hydrogen po parameters.	I hydrogen atom positions were found in the difference map alculated from the model containing all non-hydrogen atoms. The ydrogen positions were refined with individual isotropic displacement arameters.		
Atomic Form Factors:		For neutral atoms and anomalous dispersion [4]			
Extinction Cor	rection:	$F_{\rm c}$ (korr) = k $F_{\rm c}$ [1+0.001 · ε · $F_{\rm c}^2$ · λ^3 /sin(2 Θ)] ^{-1/4} SHELXL-97 [5]			
		ε refined to ε	r = 0.014(2)		
Weighting Sch	eme:	$w^{-1} = \sigma^2 (F_o^2) + (a*P)^2 + b*P$			
		with a: 0.036	8; b: 0.6392; P: [Maximum(0 or F_0^2)+2* F_c^2]/2	3	
Shift/Err:		Less than 0.001 in the last cycle of refinement:			
Resid. Electron Density:		+0.28 $e_{0;}^{-}/Å^{3}$; -0.22 $e_{0;}^{-}/Å^{3}$			
R1:		∑(F₀ - Fc	$)/\Sigma F_{o} $		
$[F_{\rm o}>4\sigma(F_{\rm o});$	N=4167]:			= 0.0357	
[all reflctns;	N=4504]:			= 0.0385	
wR2:		$[\Sigma w(F_{\rm o}^{2}-F_{\rm c}^{2})^{2}/$	$\sum [\Sigma w(F_{o}^{2})^{2}]^{1/2}$		
$[F_{\rm o}>4\sigma(F_{\rm o});$	N=4167]:			= 0.0882	
[all reflctns; N=4504]:				= 0.0909	
Goodness of fit:		$[\Sigma w (F_{o}^{2} - F_{c}^{2})^{2})$	(NO-NV)] ^{1/2}	= 1.057	
Remarks:		Refinement e	expression $\Sigma w (F_o^2 - F_c^2)^2$		

Crystal Structure References:

- APEX suite of crystallographic software. APEX 2 Version 2008.4. Bruker AXS Inc., Madison, Wisconsin, USA (2008).
- [2] SAINT, Version 7.56a and SADABS Version 2008/1. Bruker AXS Inc., Madison, Wisconsin, USA (2008).

- [3] Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli M. "SIR92", J. Appl. Cryst. 1994, 27, 435-436.
- International Tables for Crystallography, Vol. C, Tables 6.1.1.4 (pp. 500-502), 4.2.6.8 (pp. 219-222), and
 4.2.4.2 (pp. 193-199), Wilson, A. J. C., Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.
- [5] Sheldrick, G. M. "SHELXL-97", University of Göttingen, Göttingen, Germany, (1998).
- [6] Spek, A. L. "**PLATON**", A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, (2010).
- [7] L. J. Farrugia, "WinGX (Version 1.70.01 January 2005)", J. Appl. Cryst. 1999, 32, 837-838.

8a: N-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(4-nitrophenyl)methyl)-2-(4-methoxyphenyl)ethanamine

2a: 7-(4-methoxyphenethyl)-8-(4-nitrophenyl)-7,8-dihydrotetrazolo[1,5-a]pyrazine.

2c: 8-(4-methoxyphenyl)-7-propyl-7,8-dihydrotetrazolo[1,5-a]pyrazine.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fi(ppm)

8d: N-(1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)cyclohexyl)aniline.

2d: 7'-phenyl-7'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazine].

8e: N-(1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)cyclohexyl)-2,4-dimethylaniline.

2e: 7'-(2,4-dimethylphenyl)-7'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazine].

8f: N-(1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)cyclohexyl)-2,6-dimethylaniline.

2f: 7'-(2,6-dimethylphenyl)-7'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazine].

8g: N-(1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)cyclohexyl)pyridin-2-amine.

2g: 7'-(pyridin-2-yl)-7'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazine].

8h: 1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)-N-phenethylpropan-1-amine.

8i: N-(1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)propyl)butan-1-amine.

2i: 7-butyl-8-ethyl-7,8-dihydrotetrazolo[1,5-a]pyrazine.

11a: N-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(3,4,5-trimethoxyphenyl) methyl)propan-2-amine.

3a: N-isopropyl-7,8,9-trimethoxy-11H-benzo[d]tetrazolo[1,5-a]azepin-11-amine

11b: N-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(3,4,5-trimethoxyphenyl)methyl)-N-propylpropan-1-amine.

3b: 7,8,9-trimethoxy-N,N-dipropyl-11H-benzo[d]tetrazolo[1,5-a]azepin-11-amine.

11c: N-(4-chlorobenzyl)-1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)-1-(3,4,5-trimethoxyphenyl)methanamine.

3c: N-(4-chlorobenzyl)-7,8,9-trimethoxy-11H-benzo[d]tetrazolo[1,5-a]azepin-11-amine.

11d: N-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(3,4,5-trimethoxyphenyl)methyl) prop-2-en-1- amine.

3d: N-allyl-7,8,9-trimethoxy-11H-benzo[d]tetrazolo[1,5-a]azepin-11-amine.

S-96

11e: N-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(3,5-dimethoxyphenyl)methyl)prop-2-en-1-amine.

3e: N-allyl-7,9-dimethoxy-11H-benzo[d]tetrazolo[1,5-a]azepin-11-amine.

11f: 2-(3-chlorophenyl)-N-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(3,5-dimethoxy phenyl)methyl)ethanamine.

3f: N-(3-chlorophenethyl)-7,9-dimethoxy-11H-benzo[d]tetrazolo[1,5-a]azepin-11-amine.

11g: 4-benzyl-1-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(3,5-dimethoxyphenyl) methyl)piperidine.

3g: 11-(4-benzylpiperidin-1-yl)-7,9-dimethoxy-11H-benzo[d]tetrazolo[1,5-a]azepine.

11h: N-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(3,5-dimethoxyphenyl)methyl)aniline.

11i: 2-(3-chlorophenyl)-N-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(3,4-dimethoxy phenyl)methyl)ethanamine.

S-114

3i: N-(3-chlorophenethyl)-8,9-dimethoxy-11H-benzo[d]tetrazolo[1,5-a]azepin-11-amine.

11j: 4-benzyl-1-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(3,4-dimethoxyphenyl)methyl) piperidine.

14a: 1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)-N-(3,4-dimethoxyphenethyl)-2-methylpropan-1-amine

4a: 8-isopropyl-2,3-dimethoxy-6,8,13,13a-tetrahydro-5H-tetrazolo[1',5':4,5]pyrazino[2,1-a]isoquinoline

14b: N-((4-chlorophenyl)(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)methyl)-2-(3,4-dimethoxyphenyl)ethanamine

4b: 8-(4-chlorophenyl)-2,3-dimethoxy-6,8,13,13a-tetrahydro-5H-tetrazolo[1',5':4,5] pyrazino[2,1-a]isoquinoline

14c: 1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)-N-(3,4-dimethoxyphenethyl)cyclohexanamine

14d: N-(2-(1H-indol-3-yl)ethyl)-1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl) cyclohexanamine.

14e: N-((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(4-nitrophenyl)methyl)-2-(1H-indol-3-yl)ethanamine

4e: 4-(4-nitrophenyl)-4,6,7,12,12b,13-hexahydrotetrazolo[1'',5'':4',5']pyrazino [1',2':1,2]pyrido[3,4-b]indole

4f: 1-benzyl-7',12',12b',13'-tetrahydro-6'H-spiro[piperidine-4,4'-tetrazolo[1'',5'':4',5']pyrazino[1',2':1,2]pyrido[3,4-b]indole]

4g: 4-(3,4,5-trimethoxyphenyl)-4,6,7,12,12b,13-hexahydrotetrazolo[1'',5'':4',5'] pyrazino[1',2':1,2]pyrido[3,4-b]indole

14h: methyl 2-((1-(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)cyclohexyl)amino)-3-(1H-indol-3-yl)propanoate

4h: methyl 7',12',12b',13'-tetrahydro-6'H-spiro[cyclohexane-1,4'-tetrazolo [1'',5'':4',5']pyrazino[1',2':1,2]pyrido[3,4-b]indole]-6'-carboxylate

14i: methyl 2-(((4-chlorophenyl)(1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)methyl) amino)-3-(1H-indol-3-yl)propanoate

4i: methyl 4-(4-chlorophenyl)-4,6,7,12,12b,13-hexahydrotetrazolo[1'',5'':4',5'] pyrazino[1',2':1,2]pyrido[3,4-b]indole-6-carboxylate

14j: methyl 2-(((1-(2,2-dimethoxyethyl)-1H-tetrazol-5-yl)(phenyl)methyl)amino)-3-(1H-indol-3-yl)propanoate

4j: methyl 4-phenyl-4,6,7,12,12b,13-hexahydrotetrazolo[1'',5'':4',5']pyrazino [1',2':1,2]pyrido[3,4-b]indole-6-carboxylate

