Supplementary Figures 1~6

LC-MS/MS Quantitation of Esophagus Disease Blood Serum

Glycoproteins by Enrichment with Hydrazide Chemistry and Lectin

Affinity Chromatography

Ehwang Song¹, Rui Zhu¹, Zane Hammoud², and Yehia Mechref^{1*}

¹Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409

² Cardiothoracic Surgery, Henry Ford Hospital, Detroit, MI USA 48202

*Corresponding authors Email: yehia.mechref@ttu.edu Tel: 806-742-3059 Fax: 806-742-1289

Keywords: Glycoproteins, Lectin Chromatography, Hydrazide-Chemistry Enrichment, LC-MS/MS, Quantitative Glycoproteomics

Supplementary Figure 1. Number of identified glycoproteins (A) and identified unique peptides (B) between DF, HGD, and EAC by lectin affinity chromatographic enrichment.

Supplementary Figure 2. Number of identified glycoproteins (A) and identified unique peptides (B) between DF, HGD, and EAC using hydrazide chemistry-based enrichment.

Supplementary Figure 3. Comparisons of number of identified glycoproteins from LC-ESI-MS/MS.

Supplementary Figure 4A. Gene ontology for biological process from identified glycoproteins enriched by lectin affinity chromatographic enrichment.

Supplementary Figure 4B. Gene ontology for biological process from identified glycoproteins enriched by hydrazide chemistry.

Supplementary Figure 5A. Gene ontology for cellular component from identified glycoproteins enriched by lectin affinity chromatographic enrichment.

Supplementary Figure 5B. Gene ontology for cellular component from identified glycoproteins enriched by hydrazide chemistry

Supplementary Figure 6. Comparisons of number of targeted glycoproteins (A) and glycosylation sites (B) for MRM experiments and statistical evaluation.

