Supporting Information

Regio- and Stereoselective Mono-Epoxidation of Dienes using Methyltrioxorhenium: Synthesis of Allylic Epoxides

Saroj Ranjan De, Ganesh Kumar, Jawahar L. Jat, Saritha Birudaraju, Biao Lu, Rajkumar Manne, Narender Puli, Adeniyi Michael Adebesin, and John R. Falck*

Division of Chemistry, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390

Table of Contents

$^{1}\text{H}/^{13}\text{C}$ NMR spectra of 1	S 4
$^{1}\text{H}/^{13}\text{C}$ NMR spectra of 2/3	S5-S6
HPLC chromatogram of 2/3	S7
HPLC of diastereo-enriched 2	S8
¹ H NMR spectra of 4a	S9
¹ H NMR spectra of 5a/6a	S10
$^{1}\text{H}/^{13}\text{C}$ NMR spectra of 4b	S11-S12
¹ H/ ¹³ CNMR spectra of 5b/6b	S13-S14
¹ H NMR spectra of 4c	S15
¹ H/ ¹³ C NMR spectra of 5c/6c	S16-S17
$^{1}\text{H}/^{13}\text{C}$ NMR spectra of 4d	S18-S19
¹ H/ ¹³ C NMR spectra of 5d/6d	S20-S21
$^{1}\text{H}/^{13}\text{C}$ NMR spectra of 4e	S22-S23
¹ H/ ¹³ C NMR spectra of 5e/6e	S24-S25

¹ H/ ¹³ C NMR spectra of 5f/6f	S26-S27
$^{1}\text{H}^{/13}\text{C}$ NMR spectra of 7	S28-S29
$^{1}\text{H}/^{13}\text{C}$ NMR spectra of 8	S30-S31
$^{1}\text{H}^{/13}\text{C}$ NMR spectra of 9	S32-S33
$^{1}\text{H}^{/13}\text{C}$ NMR spectra of 10	S34-S35
¹ H NMR spectra of 12/13	S 36
$^{1}\text{H}^{/13}\text{C}$ NMR spectra of 15	S37-S38
$^{1}\text{H}^{/13}\text{C}$ NMR spectra of 17	S39-S40
$^{1}\text{H}^{/13}\text{C}$ NMR spectra of 19	S41-S42
$^{1}\text{H}^{/13}\text{C}$ NMR spectra of 20	S43-S44
$^{1}\text{H}^{/13}\text{C}$ NMR spectra of 21	S45-S46
$^{1}\text{H}^{/13}\text{C}$ NMR spectra of 22	S49-S50
$^{1}\text{H}^{/13}\text{C}$ NMR spectra of 23	S51-S52
$^{1}\text{H}^{/13}\text{C}$ NMR spectra of 24	S55-S56
$^{1}\text{H}^{/13}\text{C}$ NMR spectra of 25	S57-S58
$^{1}\text{H}^{/13}\text{C}$ NMR spectra of 26	S59-S60
$^{1}\text{H}^{/13}\text{C}$ NMR spectra of 27	S61-S62
$^{1}\text{H}^{/13}\text{C}$ NMR spectra of 28	S63-S64
$^{1}\text{H}^{/13}\text{C}$ NMR spectra of 29	S65-S66
$^{1}\text{H}^{/13}\text{C}$ NMR spectra of 30	S67-S68
$^{1}\text{H}/^{13}\text{C}$ NMR spectra of 31	S69-S70
$^{1}\text{H}^{/13}\text{C}$ NMR spectra of 32	S71-S72

$^{1}\text{H}/^{13}\text{C}$ NMR spectra of 33	S73-S74
$^{1}\text{H}/^{13}\text{C}$ NMR spectra of 34	S75-S76
$^{1}\text{H}/^{13}\text{C}$ NMR spectra of 35	S77-S78
$^{1}\text{H}/^{13}\text{C}$ NMR spectra of 36	S79-S80
$^{1}\text{H}/^{13}\text{C}$ NMR spectra of 38	S81-S82
$^{1}\text{H}/^{13}\text{C}$ NMR spectra of 40	S83-S84
$^{1}\text{H}/^{13}\text{C}$ NMR spectra of 42	S85-S86
HPLC chromatogram of standard chiral epoxide.	S87
HPLC chromatogram of chiral epoxide from chiral salan ligand and Ti(IV)	S 88
HPLC chromatogram of 1:1 mixture of chiral Ti(salan)-generated epoxide + epoxide standard	S89
HPLC chromatogram of epoxide 5a/6a from MTO-pyridine epoxidation	S90
HPLC chromatogram of epoxide 5a/6a from MTO-pyridine epoxidation + epoxide standard	S91

Peak	Ret. Time	Area	Height	Area %
1.	30.608	3568595	65420	58.429
2.	32.440	2539018	42270	41.571

CHIRALCEL OJ-H, 15 CM, 4.6MM, 2.7 MICRON, Hexane:IPA (99.8:0.2), 0.8 mL/min, 205.

Peak	Ret. Time	Area	Height	Area %
1.	29.049	7725264	116942	100
CHIRALCEL OLH 15 CM 4 GMM 2.7 MICRON HoveneyIRA (00.9:0.2) 0.9 ml/min 205				

CHIRALCEL OJ-H, 15 CM, 4.6MM, 2.7 MICRON, Hexane:IPA (99.8:0.2), 0.8 mL/min, 205.

Note: Compound obtained from chiral epoxidation as described in reference

S14

Stereochemistry Determination:

1. HPLC chromatogram of standard chiral epoxide.

Source: Larodan Fine Chemicals, Cat. no.: 24-1802-12b, Lot. No.: H-074

Ascestis Express, 15cm, 4.6mm, 2.7 micron; hexane/IPA :99.9/0.1, 0.75mL/min, 205nm

2. HPLC chromatogram of chiral epoxide prepared using chiral salan ligand and Ti(IV) using HPLC analysis condition above Reference: Jat, J. L.; De, S. R.; Kumar, G.; Adebesin, A. M.; Gandham, S. K.; Falck, J. R., submitted for publication.

S	8	8
\mathbf{D}	U	U

3. HPLC chromatogram of 1:1 mixture of chiral Ti(salan)-generated epoxide + commercial epoxide standard using HPLC analysis condition above.

Peak	Ret. Time	Area	Height	Area %
1.	14.043	23200616	908224	52.162
2.	15.270	21276975	793732	47.838

4. HPLC chromatogram of epoxide 5a/6a from MTO-pyridine epoxidation using HPLC analysis condition above.

Peak Table							
Detector A Ch 2 205nm							
Peak #	Ret. Time	Area	Height	Area %			
1	16.322	1050224	44308	52.0176			
2	17.763	968752	39023	47.9824			

5. HPLC chromatogram of epoxide 5a/6a from MTO-pyridine epoxidation + commercial epoxide standard using HPLC analysis condition above.

