### Supplementary Materials for

### MACE: Model based analysis of ChIP-exo

Liguo Wang<sup>1,4\*</sup>, Junsheng Chen<sup>3</sup>, Chen Wang<sup>1</sup>, Liis Uusküla-Reimand<sup>5</sup>, Kaifu Chen<sup>4</sup>, Alejandra Medina-Rivera<sup>5</sup>, Edwin J. Young<sup>5</sup>, Michael T. Zimmermann<sup>1</sup>, Huihuang Yan<sup>1</sup>, Zhifu Sun<sup>1</sup>, Yuji Zhang<sup>1</sup>, Stephen T. Wu<sup>1</sup>, Haojie Huang<sup>2</sup>, Michael D. Wilson<sup>5,6</sup>, Jean-Pierre A. Kocher<sup>1\*</sup>, Wei Li<sup>4\*</sup>

<sup>1</sup>Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA;

<sup>2</sup>Department of Biochemistry and Molecular Biology, Mayo Clinic, MN 55905, USA;

<sup>3</sup>School of Life Science and Technology, Tongji University, Shanghai 200092, China.

<sup>4</sup>Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular

and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA

<sup>5</sup>Genetics & Genome Biology Program, SickKids Research Institute, 686 Bay Street. Toronto, ON, M5G 0A4, Canada

<sup>6</sup>Department of Molecular Genetics, University of Toronto, Canada

\* To whom correspondence should be addressed:

Tel: +1 507 284 8728 Fax: +1-507-284-0360 Email: <u>wang.liguo@mayo.edu</u>

Tel: +1 507 538 8315 Fax: +1 507 284 0360 Email: kocher.jeanpierre@mayo.edu,

Tel: +1 713 798 7854 Fax: +1 713 798 6822 Email: wl1@bcm.edu

Running title: Demarcation of Protein-DNA Binding Boundaries

This PDF file includes:

Supplementary Figure 1 Supplementary Figure 2 Supplementary Figure 3 Supplementary Figure 4 Supplementary Figure 5 Supplementary Figure 6 Supplementary Figure 7 Supplementary Figure 8 Supplementary Figure 9 Supplementary Figure 10 Supplementary Figure 11 Supplementary Figure 12 Supplementary Figure 13 Supplementary Figure 14 Supplementary Figure 15

#### **Supplementary Figure legends**

#### Supplementary Figure 1

Nucleotide composition (y-axis) bias in multiple ChIP-exo datasets. A, Mouse ONECUT1 (HNF6). B, Yeast Reb1. C, Human CTCF. D, Human CTCF with bias corrected.

#### **Supplementary Figure 2**

Effects of nucleotide composition bias correction illustrated by the coverage profile around CTCF motifs. Vertical dashed curves indicate CTCF motif position.

#### **Supplementary Figure 3**

Evaluating the impact of "nucleotide composition bias correction" and "entropy-based noise reduction" upon border-pair detection. A, Validate detected border pairs using ChIP-seq results from ENCODE. B, Validate detected border pairs using CTCF motif. C, Spatial resolution measured by distance to motif.

#### **Supplementary Figure 4**

Screenshot from the University of California, Santa Cruz genome browser. Twelve custom tracks are displayed. From top to bottom: coverage profiles from 3 biologic replicates, calculated from reads mapped to the forward strand (dark blue); coverage profiles from 3 biologic replicates, calculated from reads mapped to the reverse strand (dark red); signal consolidated from the 3 forward-strand reads (dark blue); signal consolidated from the 4 reverse-strand reads (dark red); border pairs called by MACE (blue); peaks detected by Rhee 2011 (green); in silico predicted CTCF motif (red); phastCon conservation score in mammals (dark green). A, CTCF binding site on

promoter region of Myc. B, Example showing peak identified by Rhee et al, 2011 was off target.

### **Supplementary Figure 5**

Relationship between entropy-based noise reduction effects and signal intensity. All predicted CTCF motifs were ranked by ChIP-exo tag intensity in descending order and equally divided into 4 groups: A, the first quantile (0-25%) represented the strongest bindings; B, the second quantile (25-50%) represented modest strong bindings; C, the third quantile (50-75%) represented modest weak bindings; D, the fourth quantile (75-100%) represented weakest binding. Two vertical dashed lines indicate the CTCF motif position.

### **Supplementary Figure 6**

A, Reb1 border pair size distribution. B, Reb1 motif density profile over 26mer border pairs. C, Conservation profile over 26mer border pairs. D, Direct sequence pileup of 26mer border pairs.

### **Supplementary Figure 7**

Genomic distribution of Reb1 border pairs encompassing motif (blue) and background control (black). TSS indicates transcription start sites.

### **Supplementary Figure 8**

ChIP-exo raw sequencing tags profile over Reb1 motifs. Blue represent forward tags and red represent reverse tags.

### **Supplementary Figure 9**

A, MNase-seq tag intensity profiles around peaks detected by ENCODE (red) and Rhee et al. (blue) B, MNase-seq tag intensity profiles around MACE detected border pairs. Border pairs were stratified into 6 groups (0-mismath, 1-mismath, 2-mismath, 3-mismath, 4-mismath and 5-or-more mismatches) according to its editing distances to canonical CTCF motif. C, DNaseI-seq intensity profiles around 6 groups of MACE border pairs. D, FAIRE-seq intensity profiles around 6 groups of MACE border pairs.

#### **Supplementary Figure 10**

Comparison of CTCF motif enrichment in binding regions defined by MACE (red), Rhee et al (blue) and genome background (black). X-axis indicated "number of mismatches" allowed when searching CTCF motif in candidate binding regions.

#### **Supplementary Figure 11**

ONECUT1 (HNF6) motif identified from 25mer border pairs. Motif logo was generated using plogo (http://plogo.uconn.edu/).

### **Supplementary Figure 12**

Performance comparison between MACE and GPS. A, Bar-plot showing percent of putative binding regions (red areas) supported by CTCF canonical motif (RSYDMCMYCTRSTGK). B, Bar-plot showing percent of putative binding regions

validated by ENCODE CTCF ChIP-seq. C and D, Compare spatial resolution between MACE and GPS. Spatial resolution was measured by distance between motif and peak center (y-axis in C and x-aixs in D).

#### Supplementary Figure 13

Entropy based noise reduction effects using 2 replicate (dashed curves) and 3 replicates (solid curves). Forward and reverse strand signals were represented in blue and red, respectively. All predicted CTCF motifs were ranked by ChIP-exo tag intensity in descending order and equally divided into 4 groups: A, the first quantile (0-25%) represented the strongest binding; B, the second quantile (25-50%) represented modest strong binding; C, the third quantile (50-75%) represented modest weak binding; D, the fourth quantile (75-100%) represented weakest binding. Rep123, using all 3 replicates; Rep12, using replicate-1 and replicate-2; Rep13, using replicate-1 and replicate-3; Rep23, using replicate-2 and replicate-3. Two vertical dashed lines indicate the CTCF motif position.

#### **Supplementary Figure 14**

A, Tag intensity profile of border pair with exact (0-mismatch) CTCF motif. B, C, D, E Tag intensity profiles of border pair with 1-, 2-, 3- and 4-mismatch to canonical CTCF motif, respectively. F, Sequence conservation profiles of border pair with 0- (black), 1-(red), 2- (green), 3- (blue) and 4- (cyan) mismatch to canonical CTCF motif. Dashed line indicated genome background.

#### **Supplementary Figure 15**

Comparing signal-to-noise ratio between ChIP-seq and ChIP-exo. We sampled the same number of reads (i.e. 10 million) from both ChIP-seq and ChIP-exo experiments, and trimmed reads to the same length. Blue dots represented binding sites detected by both ChIP-seq and ChIP-exo. X-axis: tag intensity (measured by wigsum) of ChIP-exo; Y-axis: tag intensity of ChIP-seq. Red dashed curve indicated diagonal line (slope = 1) and red solid curve indicated regression line.







43.72%

42.78%

36.24%

Т

20

Т

30

40

50

٦

60



В

















**Supplementary Figure 11** 









