SUPPLEMENTAL DATA

FIGURE LEGENDS

Figure S1

(A) Western blot analysis of histone H4 in wild-type and *t::HHF2*, *G::HHF2* and *M::HHF2* cells synchronized in G1 and released into fresh medium for 60 minutes (2N DNA content) under conditions of histone depletion. Pgk1 was used as loading control. The average and SEM of 3 independent experiments is shown. One of them is shown on the right. One asterisk indicates a statistically significant difference according to a paired *t*-test (p-value <0.05).
(B) Cell cycle distribution of wild-type and *t::HHF2* cells growing asynchronously under conditions of histone depletion, based on the nuclear and spindle morphologies by DAPI and immunofluorescence with antibodies against tubulin. The relative amount of cells at the different cell cycle stages was obtained by counting 200 cells for each strain from two independent cultures.

Figure S2

(A) S phase checkpoints are not required for t::HHF2 viability. Cell growth analyses of wildtype, t::HHF2, $mec1\Delta$, $rad53\Delta$ $chk1\Delta$, t::HHF2 $mec1\Delta$ and t::HHF2 $rad53\Delta$ $chk1\Delta$. All strains are $sml1\Delta$.

(B) Metaphase arrest by histone loss is independent of histone H2A phosphorylation at Ser129. Flow cytometry analysis of wild-type, *t::HHF2*, *hta1,2S129** and *t::HHF2 hta1,2S129** cells synchronized in G1 and released into fresh medium under conditions of histone depletion. (C) Metaphase arrest by histone loss depends on Mad2. Cell cycle progression analysis by immunofluorescence with antibodies against tubulin of wild-type, *G::HHF2*, *mad2* Δ , and *G::HHF2 mad2* Δ cells synchronized in G1 and released into fresh medium under conditions of histone of histone depletion. (D) Cell growth in galactose 2% and glucose 2% containing media (left), and

immunofluorescence analysis with antibodies against tubulin (right) of *chr-G::HHF1* and *chr-G::HHF1 mad2* Δ cells synchronized in G1 and released into fresh medium under conditions of histone depletion. *chr-G::HHF1* cells express histone H4 exclusively from the chromosomal locus *HHF1*, where the endogenous *HHF1* promoter was replaced by the *GAL1* promoter.

Figure S3

(A) Histone depletion increases the spindle length. Distribution of cells with two or a single cenIV-GFP focus according to their spindle length, which was determined as the distance between the SPBs (detected as Spc42-Cherry foci) in the metaphase arrested cells from Figure 3C. The average (\pm SEM) spindle length is also shown. Three asterisks indicate a statistically significant difference according to a one-way Anova test (p-value <0.001).

(B) Distribution of cells with two or a single cenIV-GFP focus according to the symmetry of their centromeres relative to their SPBs, which was determined as the ratio between the short and long distances from the centromere (detected as a cenIV-GFP dot) to each SPB (detected as two Spc42-Cherry dots) in the metaphase arrested cells from Figure 3C.

Figure S4

(A) Western blot analysis of histone H4 in *t::HHF2*, *t::HHF2 smc2-8*, *M::HHF2* and *M::HHF2* top2^{td} cells synchronized in G1 and released into fresh medium under conditions of histone depletion for 120 (*t::HHF2* strains) and 90 (*M::HHF2* strains) minutes at restrictive conditions for either *smc8-2* or *top2^{td}*. Pgk1 was used as loading control. MW, molecular weight marker.
(B) Cell cycle progression analysis by Flow cytometry of wild-type, *t::HHF2*, *smc2-8* and *t::HHF2 smc2-8* cells synchronized in G1 with α-factor and released into fresh medium at 26°C under conditions of histone depletion.

(C) DNA damage sensitivity of wild-type and *smc2-8* cells at permissive temperature as

determined by plating ten-fold serial dilutions from the same number of mid-log phase cells in SMM plates containing either methyl-methane sulfonate (MMS) or hydroxyurea (HU) at the indicated concentrations.

(**D**) Cell cycle progression analysis by Flow cytometry of wild-type and *smc2-8* cells synchronized in G1 with α -factor and released in the presence of 50 mM HU for different times at 26°C.

Figure S5

S phase checkpoints are not required for t::HHF2 viability in the absence of Mad2. Cell growth analyses of wild-type, $mec1\Delta$, $mad2\Delta$, t::HHF2, t::HHF2 $mec1\Delta$, t::HHF2 $mad2\Delta$, t::HHF2 $mec1\Delta$ $mad2\Delta$ (**A**), $mad2\Delta$, $rad53\Delta$ $chk1\Delta$, $mad2\Delta$ $rad53\Delta$ $chk1\Delta$, t::HHF2 $mad2\Delta$, t::HHF2 $rad53\Delta$ $chk1\Delta$, and t::HHF2 $mad2\Delta$ $rad53\Delta$ $chk1\Delta$ (**B**). All strains are $sml1\Delta$.

Figure S6

Southern analysis of intermediates of the centromeric plasmid pRS416 in *top2^{td}* transformants synchronized in G1 and released into fresh medium at restrictive conditions for Top2 expression. CI, CII and CIII show different catenated intermediates as inferred by their accumulation in the absence of Top2; rM, relaxed monomers; SC(-)M, negatively supercoiled monomers. *t::HHF2* (times 90 and 120 min) are samples from Figure 7C. The asterisk marks an unspecific signal.

Table S1. Saccharomyces cerevisiae strains used in this study

Strain	Genotype	Ref.	Figure
w303-1aR5	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15	(1)	1A-C; 3A;
	RAD5		4D; 5A; 6A-
VK 402 2	MATe law 2 2 112 turn 1 1 ung 2 1 ado 2 1 agus 1 100 kin 2 11 15	(2)	C; S2B
I K402-2	$MA1a \ leu2-5,112 \ lrp1-1 \ ura5-1 \ aae2-1 \ can1-100 \ nus5-11,15$ $RAD5 \ bar1A \cdots hisG$	(2)	1E, 2A, 4A C E-H [.]
			5C: 7A.C:
			S1A-B;
			S4B-D
wtH4-9	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15	(3)	1A-C; 3A;
	$RAD5 hhfl\Delta::HYGMX4 hhf2\Delta::KANMX4 (p413TARtetH4)$		6A-C; S2B
wtH4-9b	$MATa \ leu2-3,112 \ trp1-1 \ ura3-1 \ ade2-1 \ can1-100 \ his3-11,15$	This work	1E; 2A;
	$KADJ nnj1\Delta$.: $\Pi IGMA4 nnj2\Delta$.: $KANMA4 (p4151AKlel\Pi4)$ har1A ··NatMYA		4С,Е-Г,П, 5С: 7А С:
			S1A-B [.]
			S4A-B; S6
w303s1r53c1-	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15	(1)	1A-B; S2A;
1B	$RAD5 \ sml1\Delta::URA3 \ rad53\Delta::LEU2 \ chk1\Delta::NatMX4$		S5B
wtH4r53s1c1-	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15	This work	1A-B; S2A;
1D	$RAD5 hhf1\Delta::HYGMX4 hhf2\Delta::KANMX4 (p413TARtetH4)$		S5B
wm2 2	$SMII\Delta:: UKA3 raa55\Delta:: LEU2 cnk1\Delta:: NatMX4$ MATa lau2 3 112 trp1 1 ura3 1 ada2 1 cap1 100 his3 11 15	This work	$1 \wedge \mathbf{B} \cdot 6 \wedge \cdot$
w1112-2	RAD5 bar $1A$ ···hisG mad $2A$ ···LEU 2	THIS WOLK	ТА-В, 0А, 7В
wtH4bm2-1	MATa leu2-3.112 trp1-1 ura3-1 ade2-1 can1-100 his3-11.15	This work	1A-B: 6A:
	$RAD5 hhfl\Delta::HYGMX4 hhf2\Delta::KANMX4 (p413TARtetH4)$		7B
	$bar1\Delta$::NatMX4 mad2 Δ ::LEU2		
wm1-1	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15	This work	6A
114 1 17D	$RAD5 mad1\Delta$::NatMX4	7F1 · 1	
wtH4m1-1/B	$MA1a \ leu2-3,112 \ trp1-1 \ ura3-1 \ aae2-1 \ can1-100 \ nis3-11,13$ $PAD5 \ bhf1a \cdots HVCMYA \ bhf7a \cdots KANMYA \ (nA12TAPtatHA)$	I his work	6A
	(p4151AKleff14) mad1 Λ ··NatMX4		
whta	MATa leu2-3.112 trp1-1 ura3-1 ade2-1 can1-100 his3-11.15	This work	S2B
	rad5-535 hta1-S129*		
wtH4hta-2B	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15	This work	S2B
	$rad5-535 hhf1\Delta::HYGMX4 hhf2\Delta::KANMX4 (p413TARtetH4)$		
. 1.10.1	htal-S129*	TT1.:	10. (D
what 10-1	MA1a leu2-3,112 trp1-1 ura3-1 aae2-1 can1-100 nis3-11,15 PAD5 ndc10 1	I his work	IC; 6B
wtH4ndc10-1	MATa leu2-3 112 trn1-1 ura3-1 ade2-1 can1-100 his3-11 15	This work	1C: 6B
1D	$RAD5 hhfl\Delta::HYGMX4 hhf2\Delta::KANMX4 (p413TARtetH4)$	THIS WORK	10, 02
	ndc10-1		
BYPds1HAb-	MATa his $3\Delta 1$ leu $2\Delta 0$ ura $3\Delta 0$ met $15\Delta 0$ trp 1Δ ::KANMX4	This work	1D
1	bar1A::HYGMX4 pds1::PDS1-3HA::TRP1		15
BYtH4Pds1H	$MATa his 3\Delta 1 leu 2\Delta 0 ura 3\Delta 0 hhf 1\Delta :: KANMX4$	This work	ID
Ab-12A	$nnJ2\Delta$::KANMX4 (p4131AKIeIH4) bar1 Δ ::HYGMX4 nds1::DDS1 3H4::TDD1		
KR3011	MATa leu2-3.112 trp1-1 ura3-1 ade2-1 ade3 can1-100 his3-	(4)	1E
1110011	$11,15 \text{ rad}5-135 \text{ bar}1\Delta \text{ pds}1\Delta$::LEU2	(.)	12
wtH4pds1b-	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15	This work	1E
1B	RAD5 hhf1\[]::HYGMX4 hhf2\[]::KANMX4 (p413TARtetH4)		
	$bar1\Delta::NatMX4 \ pds1\Delta::LEU2$		a .P.
wm2GFP-20C	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15	This work	2B
wtH4m2GFP-	KAD5 maa2::MAD2-eGFP::HIS5 M4Talnha leu2-3 112 trn1-1 ura3-1 ade2-1 can1-100 his3-	This work	2B
4B	$11.15 \text{ rad}5-535 \text{ hhf} \Lambda$. HYGMX4 hhf 2Λ ··KANMX4	THIS WULK	20
	(p413TARtetH4) mad2::MAD2-eGFP::HIS3		
wtH4m2GFP-	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15	This work	2B
9A	rad5-535 hhf1\[]::HYGMX4 hhf2\[]:KANMX4 (p413TARtetH4)		
	mad2::MAD2-eGFP::HIS3	(7)	0,4,55
F267	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15	(5)	3A; 6C

	rad5-535 ip11-321		
wtH4ipl1- 321-1B	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15 rad5-535 hhf1\[]::HYGMX4 hhf2\[]::KANMX4 (p413TARtetH4) in[1-32]	This work	3A; 6C
wcIVM20-7C	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15 rad5-535 pURA3::tetRGFP::LEU2 cenIV::tetOx448::URA3 CDC20::MetCDC20::URA3	This work	3B
wGH4cIVM2 0-10C	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15 rad5-535 hhf1\Delta::HYGMX4 hhf2D::KANMX4 (pUK421) pURA3::tetRGFP::LEU2 cenIV::tetOx448::URA3 CDC20::MetCDC20::URA3	This work	3B
wcIVM20Spc -1D	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15 rad5-535 pURA3::tetRGFP::LEU2 cenIV::tetOx448::URA3 CDC20::MetCDC20::URA3 Spc42::Spc42- mCherry::KANMX4	This work	3C; S3A-B
wGH4cIVM2 0Spc-18A	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15 rad5-535 hhf1Δ::HYGMX4 hhf2Δ::KANMX4 (pUK421) pURA3::tetRGFP::LEU2 cenIV::tetOx448::URA3 CDC20::MetCDC20::URA3 Spc42::Spc42- mCherry::KANMX4	This work	3C; S3A-B
Y2200	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15 rad5-535 Brn1-Pk9::HIS3	(6)	4D; 5A-B
GH4BPk9-5D	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15 rad5-535 hhf1\[]::HYGMX4 hhf2\[]::KANMX4 (pUK421) Brn1- Pk9::HIS3	This work	4D; 5A-B
wtop2tdb	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15 RAD5 bar1 Δ NatMX4 UBR1::Gal-Ubiquitin-M-LacIfragment- Myc-UBR1::HIS3 leu2-3,112::pCM244(CMVp-tetR'- SSN6,LEU2)x3 top2td TOP5' upstream-100 to -1 replaced with KANMX-ttA(tetR-VP16)tetO-Ub-DHFRts-Myc	This work	4A,B,G; S6
MetH4-8Cb	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15 RAD5 bar1 Δ NatMX4 hhf1 Δ ::HYGMX4 hhf2 Δ ::KANMX4 (n416MetH4)	This work	4A,G; S1A; S4A
MetH4top2td- 2Bb	$MATa \ leu2-3, 112 \ trp1-1 \ ura3-1 \ ade2-1 \ can1-100 \ his3-11, 15$ $rad5-535 \ bar1\Delta NatMX4 \ hhf1\Delta::HYGMX4 \ hhf2\Delta::KANMX4$ $(p416MetH4) \ UBR1::Gal-Ubiquitin-M-LacIfragment-Myc-$ $UBR1::HIS3 \ leu2-3, 112::pCM244(CMVp-tetR'-$ $SSN6, LEU2)x3 \ top2td \ TOP5' \ upstream-100 \ to -1 \ replaced$ with $KANMX$ -ttA(tetR-VP16)tetO2-Ub-DHFRts-Myc	This work	4A,B,G; S4A
wsmc2-8b- 10B	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15 RAD5 smc2-8::TRP1 bar1∆NatMX4	This work	4C,E,H; 5C; 7C; S4B-D
wtH4smc2- 8b-9B	$MATa \ leu2-3,112 \ trp1-1 \ ura3-1 \ ade2-1 \ can1-100 \ his3-11,15 \ RAD5 \ hhf1\Delta::HYGMX4 \ hhf2\Delta::KANMX4 \ (p413TARtetH4) \ smc2-8::TRP1 \ bar1\DeltaNatMX4$	This work	4C,E,H; 5C; 7C; S4A-B
w303cIVGFP -1C	<i>MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15</i> <i>rad5-535 pURA3::tetRGFP::LEU2 cenIV::tetOx448::URA3</i>	This work	6D; S1A; S2C
wGH4cIVGF P-13A	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15 rad5-535 hhf1A::HYGMX4 hhf2A::KANMX4 (pUK421) pURA3::tetRGFP::LEU2 cenIV::tetOx448::URA3	This work	6D; S1A; S2C
wm2cIVGFP- 47C	$MATa \ leu2-3,112 \ trp1-1 \ ura3-1 \ ade2-1 \ can1-100 \ his3-11,15 \ rad5-535 \ mad2\Delta::KANMX4 \ pURA3::tetRGFP::LEU2 \ cenIV::tetOx448::URA3$	This work	6D; S2C
wm2GH4cIV GFP-19B	<i>MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15</i> <i>rad5-535 mad2</i> Δ:: <i>KANMX4 hhf1</i> Δ:: <i>HYGMX4</i> <i>hhf2</i> Δ:: <i>KANMX4(pUK421) pURA3::tetRGFP::LEU2</i> <i>cenIV::tetOx448::URA3</i>	This work	6D; S2C
w303sml1- 10B	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15 RAD5 sml1∆::URA3	(1)	S2A; S5A
w303s1m1- 12A	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15 RAD5 sml1Δ::URA3 mec1Δ::LEU2	(1)	S2A; S5A
wtH4s1	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15 RAD5 hhf1A::HYGMX4 hhf2A::KANMX4 (p413TARtetH4)	This work	S2A; S5A

	$smll\Delta$:: $URA3$		
wtH4m1s1-	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15	This work	S2A; S5A
4B	$RAD5 hhfl\Delta::HYGMX4 hhf2\Delta::KANMX4 (p413TARtetH4)$		
	$sml1\Delta$:: $URA3 mec1\Delta$:: $LEU2$		
ws1m2-2A	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15	This work	S5A-B
	$RAD5 \ sml1\Delta::URA3 \ mad2\Delta::KANMX4$		
wtH4s1m2-	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15	This work	S5A-B
2C	RAD5 hhf1A::HYGMX4 hhf2A::KANMX4 (p413TARtetH4)		
	$sml1\Delta$::URA3 mad2 Δ ::KANMX4		
wtH4m1s1m2	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15	This work	S5A
	$RAD5 hhfl\Delta::HYGMX4 hhf2\Delta::KANMX4 (p413TARtetH4)$		
	$sml1\Delta::$ URA3 mec1 $\Delta::$ LEU2 mad2 $\Delta::$ KANMX4		
wr53s1c1m2-	MATa leu2-3,112 trp1-1 ura3-1 ade2-1 can1-100 his3-11,15	This work	S5B
2A	RAD5 sml1 Δ ::URA3 rad53 Δ ::LEU2 chk1 Δ ::NatMX4		
	$mad2\Delta$::KANMX4		
wtH4r53s1c1	MATa leu2-3.112 trp1-1 ura3-1 ade2-1 can1-100 his3-11.15	This work	S5B
m2-10D	$RAD5 hhfl\Delta::HYGMX4 hhf2\Delta::KANMX4 (p413TARtetH4)$		
	$sml1\Lambda::URA3$ rad $53\Lambda::LEU2$ chk $1\Lambda::NatMX4$		
	$mad2\Lambda$ ··KANMX4		
BYh2cGh1-5	$MATa$ his $3\Lambda 1$ lev $2\Lambda 0$ yra $3\Lambda 0$ met $15\Lambda 0$ hhf $2\Lambda \cdots KANMX4$	This work	S2D
D1112001110	hhfl::GAIn-hhfl::I/RA3	THIS WORK	520
BVh2cGh1m2	MATa his 3A 1 low 2A 0 wra 3A 0 hhf 2A ···K 4NMX4 hhf 1···G 4I n-	This work	\$2D
3 Å	hhli ··· UR A3 mad 2A ··· K ANMYA	THIS WOLK	52D
-57	$mj1OAJ muu2\DeltaAAI viviA4$		

Table S2. Oligos used for real-time PCR amplifications

Oligo	Sequence
CEN3-1	GTTGAGCATCCCATCCAGTT
	GGGTAATGGCAAATCTGCTT
CEN3-2	TGAAGGGAAGAGGCTCATTT
	CAATTGGAGGCATCTCAAGC
CEN4	TGGTGTGGAAGTCCTAATATCG
	TGCATGATCAAAAGGCTCAA
CEN5	GTTGCATTTGCCTTTGGACT
	CCCAATTTTAAACGCTCCAA
rDNA	TTTCTGCCTTTTTCGGTGAC
	TGGCATGGATTTCCCTTTAG

SUPPLEMENTAL REFERENCES

- González-Prieto, R., Muñoz-Cabello, A.M., Cabello-Lobato, M.J. and Prado, F. (2013) Rad51 replication fork recruitment is required for DNA damage tolerance. *EMBO J.*, **32**, 1307– 1321.
- 2. Ogi, H., Wang, C.-Z., Nakai, W., Kawasaki, Y. and Masumoto, H. (2008) The role of the *Saccharomyces cerevisiae* Cdc7–Dbf4 complex in the replication checkpoint. *Gene*, **414**,

- Clemente-Ruiz, M. and Prado, F. (2009) Chromatin assembly controls replication fork stability. *EMBO Rep.*, 10, 790–796.
- Ross, K.E. and Cohen-Fix, O. (2003) The role of Cdh1p in maintaining genomic stability in budding yeast. *Genetics*, 165, 489–503.
- Biggins, S., Severin, F.F., Bhalla, N., Sassoon, I., Hyman, A.A. and Murray, A.W. (1999) The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. *Genes Dev.*, 13, 532–544.
- D'Ambrosio, C., Schmidt, C.K., Katou, Y., Kelly, G., Itoh, T., Shirahige, K. and Uhlmann, F. (2008) Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. *Genes Dev.*, 22, 2215–2227.

Murillo_Figure S2

Murillo_Figure S3

Murillo_Figure S4

Murillo_Figure S5

Murillo_Figure S6

